Modèles de la théorie des type par traduction de programme

Simon Boulier, Pierre-Marie Pédrot, Nicolas Tabareau

École des Mines de Nantes - INRIA

▶ Peut-on prouver que $(\forall x. f x = g x) \rightarrow f = g$?

Modèles par traduction de programme

But : construire un modèle d'une théorie source ${\mathcal S}$

Un terme t de $\mathcal{S} \longrightarrow [t] \in \mathscr{C}$.

Modèles par traduction de programme

But : construire un modèle d'une théorie source ${\mathcal S}$

Un terme t de $\mathcal{S} \longrightarrow [t]$ $\not = \mathscr{K}$ terme de \mathcal{T} .

On compile ${\mathcal S}$ vers ${\mathcal T}$.

Cadre : CC_{ω}

Termes et types :

```
► x

► \square_0, \square_1, ...

► \Pi x : A. B, \lambda x : A. t, t u

► \Sigma x : A. B, (t, u), \pi_1 t, \pi_2 t

► \mathbb{B}

► t =_A u
```

+ streams, Prop, inductifs-récursifs

Cadre théorique

Autres traductions

Nier Propext

Pattern-matching sur $\hfill\square$

Cadre théorique

Autres traductions

Nier Propext

Pattern-matching sur 🛭

But : montrer que $(\Pi x : A. f x = g x) \rightarrow f = g.$

Pour ça on montre que $CC_{\omega} + \text{notFunext}$ est équiconsistante à CC_{ω} .

Où notFunext axiome de type :

$$\Big(\Pi(A:\Box)(B:\Box)(f\,g:A\to B).(\Pi\,x:A.\,f\,x=g\,x)\to f=g\Big)\to\bot$$

Nier Funext: Traduction

$$CC_{\omega} + \mathsf{notFunext} \longrightarrow CC_{\omega}$$

```
 [\Pi x : A. B] \qquad := (\Pi x : [A]. [B]) \times \mathbb{B} 
 [\lambda x : A. t] \qquad := (\lambda x : [A]. [t], \text{ true}) 
 [t u] \qquad := \pi_1 [t] [u] 
 [\Box_i] \qquad := \Box_i 
 [x] \qquad := x 
 ... 
 [notFunext] \qquad := (cf. demo)
```

notFunext:

$$\Big(\Pi(A:\Box)(B:\Box)(f\,g:A\to B).(\Pi\,x:A.\,f\,x=g\,x)\to f=g\Big)\to\bot$$

Nier Funext: Correction

Théorème

 $Si \Gamma \vdash t : A, alors [\Gamma] \vdash [t] : [A].$

Nier Funext: Correction

Théorème

Si
$$\Gamma \vdash t : A$$
, alors $[\Gamma] \vdash [t] : [A]$.

Ex : règle du lambda

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x : A. \ t : \Pi x : A. \ B} \qquad \frac{[\Gamma], x : [A] \vdash [t] : [B]}{[\Gamma] \vdash [\lambda x : A. \ t] : ? [\Pi x : A. \ B]}$$

ok car
$$[\lambda x : A. t] = (\lambda x : [A]. [t], true)$$

 $[\Pi x : A. B] = (\Pi x : [A]. [B]) \times \mathbb{B}$

Nier Funext: Correction

Théorème

Si
$$\Gamma \vdash t : A$$
, alors $[\Gamma] \vdash [t] : [A]$.

Ex : règle de conversion

$$\frac{\Gamma \vdash t : A \qquad \Gamma \vdash B : \square \qquad A \equiv B}{\Gamma \vdash t : B}$$

Lemme

Si
$$t \equiv u$$
, alors $[t] \equiv [u]$.

Théorème

 $Si~\mathrm{CC}_{\omega}$ est consistante, alors $\mathrm{CC}_{\omega}+\mathsf{notFunext}$ l'est aussi.

Démonstration.

Théorème

 $Si~\mathrm{CC}_{\omega}$ est consistante, alors $\mathrm{CC}_{\omega}+\mathsf{notFunext}$ l'est aussi.

Démonstration.

Si $\vdash_{CC_{\omega}+\mathbf{notFunext}} t : \Pi X : \square. X.$

Théorème

 $Si~\mathrm{CC}_{\omega}$ est consistante, alors $\mathrm{CC}_{\omega}+\mathsf{notFunext}$ l'est aussi.

Démonstration.

Si $\vdash_{CC_{\omega} + \mathbf{notFunext}} t : \Pi X : \square. X.$

Alors $\vdash_{CC_{\omega}} [t] : (\Pi X : \square. X) \times \mathbb{B}.$

Théorème

 $Si~\mathrm{CC}_{\omega}$ est consistante, alors $\mathrm{CC}_{\omega}+\mathsf{notFunext}$ l'est aussi.

Démonstration.

Si $\vdash_{CC_{\omega}+\mathbf{notFunext}} t : \Pi X : \square. X.$

Alors $\vdash_{CC_{\omega}} [t] : (\Pi X : \square. X) \times \mathbb{B}.$

D'où $\vdash_{CC_{\omega}} \pi_1[t] : \Pi X : \square. X$.

Nier Funext : Plugin

Cadre théorique

Autres traductions

Nier Propext

Pattern-matching sur 🛭

Cadre théorique

$$egin{array}{ccccc} \mathcal{S} & \longrightarrow & \mathcal{T} \\ \operatorname{terme} \ t & \longrightarrow & \operatorname{terme} \ [t] \\ \operatorname{type} \ A & \longrightarrow & \operatorname{type} \ \llbracket A
rbracketeta \end{bmatrix} \\ \operatorname{contexte} \ \Gamma & \longrightarrow & \operatorname{contexte} \ \llbracket \Gamma
rbracketeta \end{array}$$

Où
$$\llbracket A \rrbracket := \iota \ \llbracket A \rrbracket$$

et $\llbracket \Gamma \rrbracket := \mathsf{x}_1 : \llbracket A_1 \rrbracket, \ldots, \mathsf{x}_n : \llbracket A_n \rrbracket.$

Cadre théorique

```
préservation de la conversion  \text{si } t \equiv u \text{ alors } [t] \equiv [u],  préservation du typage  \text{si } \Gamma \vdash t : A \text{ alors } \llbracket \Gamma \rrbracket \vdash [t] : \llbracket A \rrbracket,  préservation de la consistance  \text{si } \llbracket \bot_{\mathcal{S}} \rrbracket \text{ est habité alors } \bot_{\mathcal{T}} \text{ l'est aussi.}
```

Théorème

Sous ces conditions, la consistance de $\mathcal T$ implique celle de $\mathcal S$.

Cadre théorique

Autres traductions

Nier Propext

Pattern-matching sur \square

Nier Propext

Prop univers imprédicatif :

$$\frac{A: \Box_i \qquad x: A \vdash P: Prop}{\prod x: A. P: Prop}$$

 $\mathsf{But} : \mathsf{montrer} \ \mathsf{que} \ \ (\mathtt{P} \leftrightarrow \mathtt{Q}) \not \to (\mathtt{P} = \mathtt{Q}) \ \ \mathsf{pour} \ \mathtt{P}, \mathtt{Q} : \mathtt{Prop}.$

Nier Propext

$$\mathrm{CC}_\omega + \mathsf{Prop} + \mathsf{notPropext} \longrightarrow \mathrm{CC}_\omega + \mathsf{Prop}$$

$$[\Box_i] \qquad := (\Box_i \times \mathbb{B}, \, \mathsf{true})$$

$$[\mathsf{Prop}] \qquad := (\mathsf{Prop} \times \mathbb{B}, \, \mathsf{true})$$

$$[\Pi x : A. \, B] \qquad := (\Pi x : [\![A]\!]. \, [\![B]\!], \, \mathsf{true})$$

$$\cdots \qquad \qquad [\![A]\!] \qquad := \pi_1 \, [\![A]\!]$$

Rq : on a bien
$$[\Box_i]$$
 : $[\![\Box_{i+1}]\!]$
car $[\Box_i] = (\Box_i \times \mathbb{B}, \text{ true})$
et $[\![\Box_{i+1}]\!] = \pi_1 \ [\Box_{i+1}] = \Box_{i+1} \times \mathbb{B}.$

Pattern-matching sur \square

$$f: \Pi A: \square. A \to A$$
 $f:=\lambda(A:\square).$ match A with $| \mathbb{B} \Rightarrow \text{neg}$ $| \Pi x: B. C \Rightarrow \text{id}$ $| \square \Rightarrow \text{id}$ end

$$f \mathbb{B} \mapsto \text{neg}$$
 $f (\mathbb{B} \to \mathbb{B}) \mapsto \text{id}$

Pattern-matching sur \square

$$f: \Pi A: \square. A \to A$$
 $f:=\lambda(A:\square).$ match A with $| \mathbb{B} \Rightarrow \text{neg}$ $| \Pi x: B. C \Rightarrow \text{id}$ $| \square \Rightarrow \text{id}$ end

$$f \mathbb{B} \mapsto \text{neg}$$
 $f (\mathbb{B} \to \mathbb{B}) \mapsto \text{id}$

ldée : traduire \Box par un type inductif-récursif sur lequel on peut faire du pattern-matching.

Pattern-matching sur □

```
Inductive TYPE : \square := | B : TYPE | Pi : \Pi(a: TYPE). (Elt a \rightarrow TYPE) \rightarrow TYPE | U : TYPE with Elt : TYPE \rightarrow \square := fun | B \Rightarrow \mathbb{B} | Pi a b \Rightarrow \Pi(x: Elt a). Elt (b x) | U \Rightarrow TYPE.
```

Pattern-matching sur □

```
Inductive TYPE : \square :=
   B : TYPE
   Pi : \Pi(a: TYPE). (Elt a \rightarrow TYPE) \rightarrow TYPE
   U : TYPE
 with Elt : TYPE \rightarrow \square := fun
  \mid B \Rightarrow \mathbb{B}
  Pi a b \Rightarrow \Pi(x : Elt a). Elt (b x)
   IJ
      \Rightarrow TYPE.
CC_{\omega} + univ rec \longrightarrow CC_{\omega} + TYPE
               [\Box]
                                                 := U
               [\Pi x : A. B] := Pi [A] (\lambda x : [A]. [B])
               [\lambda x : A. t]
                                               := \lambda x : [A]. [t]
               . . .
               \llbracket A \rrbracket
                                                 := Elt [A]
```

Pattern-matching sur \square

Théorème

 $\mathit{Si} \ \mathrm{CC}_{\omega} + \mathtt{TYPE} \ \mathit{est consistante}, \ \mathit{alors} \ \mathrm{CC}_{\omega} + \mathtt{univ_rec} \ \mathit{l'est aussi}.$

Pattern-matching sur \square

Théorème

 $Si~{
m CC}_{\omega} + {
m TYPE}~est~consistante,~alors~{
m CC}_{\omega}^{\rm e} + {
m univ_rec}~l'est~aussi.$

Conclusion

Modèles donnés par traduction de programme $\mathcal{S} \longrightarrow \mathcal{T}$.

Avantages:

- ▶ simple
- n'utilise que la théorie des types
- modulaire
- implémentable

```
4 traductions (CC_{\omega} + qqch \longrightarrow CC_{\omega}):

    notFunext
    notStreamext
    Formalisées et implémentées comme plugin.
```

▶ univ rec

https://github.com/CoqHott/Program-translations-CC-omega