Développement : Théorème de Savitch

Pierron Théo - Huguet Lauriane

13 avril 2014

Lemme 1

Soit M une machine de Turing de complexité temporelle t(n) et de complexité spatiale s(n). Alors il existe une constante K > 0 telle que $t(n) \leq 2^{Ks(n)}$.

```
Théorème 1 Si\ s(n) \geqslant n\ alors\ \mathrm{NSPace}(s(n)) \subset \mathrm{Space}(s(n)^2)
```

COROLLAIRE 1 PSPACE=NPSPACE

Démonstration. Soit M une machine de Turing non déterministe de complexité en espace s(n). On peut supposer qu'il existe un unique étant final q_f . De plus, on peut supposer que la machine efface son ruban avant d'accepter. Ainsi, la seule configuration acceptantes est (q_f, ε) .

Soit w un mot de longueur n.

On va donner un algorithme déterministe de complexité spatiale $O(s(n)^2)$ pour déterminer si un sommet du graphe des configurations de M est accessible depuis la configuration (w, q_0) .

Algorithme 1: Access(C, C', t, r)

Entrées : C et C' deux configurations, t et r deux entiers

Sorties : oui ssi il existe un calcul $C \to^* C'$ de longueur au plus t utilisant des configurations de taille au plus r

10 retourner non

D'après nos hypothèses sur M et d'après le lemme, $w \in L(M)$ ssi $Access((q_0, w), (q_f, \varepsilon), 2^{Ks(n)}, s(n))$.

La complexité spatiale de la fonction Access est $O(\log r + (2r + \log t) \log t)$ car :

- La profondeur de pile maximale est $\log(t)$ car à chaque étape, t est divisé par 2
- À chaque appel récursif, on doit stocker C, C' et t d'où une mémoire de $2r + \log(t)$
- r ne varie pas dans la fonction donc il peut être stocké à part dans $\log(r)$ cases mémoire Ainsi, l'appel $Access((q_0, w), (q_f, \varepsilon), 2^{Ks(n)}, s(n))$ a une complexité de $O(\log(s(n)) + K(2 + K)s(n)^2) = O(s(n)^2)$.

Supposons dans un premier temps que s(n) est calculable en espace O(s(n)). Alors la machine M' qui :

 $\bullet\,$ Prend en entrée un mot w de taille n

- Calcule s(n)
- Exécute l'algorithme $Access((q_0, w), (q_f, \varepsilon), 2^{Ks(n)}, s(n))$. est déterministe, a une complexité spatiale $O(s(n)^2)$ et L(M') = L(M).

On ne suppose plus que s(n) est calculable en espace O(s(n)). Soit w un mot de taille n. On définit m comme étant la taille maximale d'une configuration accessible à partir de (q_0, w) . On va donner un algorithme qui calcule m en espace $O(s(n)^2)$.

Pour k > n, on définit N_k comme le cardinal de l'ensemble E_k des configurations de taille au plus k accessibles depuis (q_0, w) en passant que par des configurations de taille au plus k.

La suite N_k est croissante et majorée par le nombre de configurations de taille au plus s(n). Ainsi il existe k tel que $N_k = N_{k+1}$. On pose $k = \min\{i, N_i = N_{i+1}\}$. Par définition de m, on a $k \leq m$.

Supposons k < m. Alors il existe un calcul à partir de (q_0, w) utilisant des configurations de taille au moins k + 1. Soit C la première configuration de ce calcul de taille k + 1. On a alors

$$(q_0, w) \to C_1 \to \cdots \to C_p \to C$$

avec C_1, \ldots, C_p de taille au plus k. Alors $C \in E_{k+1} \setminus E_k$ donc $N_{k+1} > N_k$, ce qui est absurde. Alors k = m. On déduit de ceci l'algorithme suivant, qui calcule m à partir de w:

Algorithme 2: Calcul $\underline{}$ m(w)

 $k \leq m$ donc l'espace utilisé par chaque appel à Access est en $O(m^2)$. L'espace utilisé par i et N est inférieur à m donc on a un algorithme en $O(m^2)$. Comme $m \leq s(n)$, on obtient un algorithme en $O(s(n)^2)$.

Ainsi, la machine de Turing qui :

- $\bullet\,$ Prend en entrée w
- \bullet Calcule m
- Exécute Access $((q_0, w), (q_f, \varepsilon), 2^{Km}, m)$

est déterministe, a une complexité spatiale en $O(s(n)^2)$ et vérifie L(M) = L(M'), d'où le résultat.