Théorèmes de Tychonov et Helly

Pierron Théo

1er juin 2014

THÉORÈME 1 Soit $(K_n)_n$ une suite de compacts métriques. Alors $K:=\prod_{n=0}^{\infty}K_n$ est compact.

Démonstration. On a des métriques donc on peut utiliser la compacité séquentielle. Soit $(X_n)_n$ une suite d'éléments de K.

 $(X_n^1)_n$ est une suite d'éléments de K_1 , il existe donc une extractrice φ_1 telle que $X_{\varphi_1(n)}^1$ converge vers $\overline{X^1} \in K_1$. $(X_{\varphi_1(n)}^2)_n$ est une suite de K_2 donc il existe φ_2 strictement croissante telle que $X_{\varphi_1(\varphi_2(n))}^2$ converge vers $\overline{X^2} \in K_2$.

Par récurrence on construit ainsi une suite d'extractrices ϕ_n et des $\overline{X^n} \in K_n$ tels que

$$\lim_{n \to \infty} X_{\varphi_1 \circ \dots \circ \varphi_p(n)}^p = \overline{X^p}$$

Posons $\varphi(n) = \varphi_n(n)$ et $\overline{X} = (\overline{X^p})_p$. Montrons que $X_{\varphi(n)}$ converge vers \overline{X} i.e. pour tout $p, X_{\varphi(n)}^p$ converge vers $\overline{X^p}$.

Soit p fixé et n > p. On a

$$X_{\varphi(n)}^p = X_{\varphi_1 \circ \dots \circ \varphi_n(n)}^p = X_{\varphi_1 \circ \dots \circ \varphi_p \circ \varphi_{p+1} \circ \dots \circ \varphi_n(n)}^p$$

Or $\lim_{n\to\infty} \varphi_{p+1} \circ \ldots \circ \varphi_n(n) = \infty$ donc

$$\lim_{n \to \infty} X_{\varphi(n)}^p = \lim_{n \to \infty} X_{\varphi_1 \circ \dots \circ \varphi_p(n)}^p = \overline{X^p}$$

Ainsi K est séquentiellement compact donc compact.

COROLLAIRE Soit D une partie dénombrable de \mathbb{R} , $(f_n)_n$ une suite de fonctions $D \to [-1, 1]$. Alors il existe une sous-suite qui converge simplement.

Démonstration. $K := [-1,1]^D$ est un produit dénombrable de compacts métriques, il est donc compact. Chaque f_n appartient à cet ensemble donc on a une suite d'éléments de K. Par compacité, on en extrait une sous-suite $f_{\varphi(n)}$ qui converge vers f au sens de la topologie sur K i.e. pour tout $x, f_{\varphi(n)}(x) \to f(x)$.

THÉORÈME 2 Soit $(f_n)_n$ une suite de fonctions $\mathbb{R} \to [-1,1]$ croissantes. Alors il en existe une sous-suite qui converge simplement.

Démonstration. On applique le théorème avec $D = \mathbb{Q}$. Quitte à extraire, on peut donc supposer que $(f_n)_n$ converge simplement sur \mathbb{Q} vers une fonction $f : \mathbb{Q} \to [-1, 1]$.

f est croissante sur \mathbb{Q} par conservation des inégalités larges. Notons D_f l'ensemble des points de discontinuité de f, qui est alors au plus dénombrable. Alors quitte à extraire une seconde fois, $(f_n)_n$ converge simplement sur \mathbb{Q} et sur D. Montrons alors que cette suite converge sur les points de continuité de f.

Soit $x \in \mathbb{R}$ tel que $\lim_{t \to x^-} f(t) = l = \lim_{t \to x^+} f(t)$. Soit $\varepsilon > 0$. Par hypothèse, il existe $\eta > 0$ tel que pour tout $t \in [x - \eta, x + \eta] \cap \mathbb{Q}$,

$$|f(t) - l| \leqslant \frac{\varepsilon}{2}$$

Soit $\alpha \in [x - \eta, x] \cap \mathbb{Q}$ et $\beta \in [x, \eta + x] \cap \mathbb{Q}$. Comme on a convergence simple, il existe N tel que pour tout n > N, $f_n(\alpha) \ge f(\alpha) - \frac{\varepsilon}{2}$ et $f_n(\beta) \le f(\beta) + \frac{\varepsilon}{2}$. On a alors :

$$l - \varepsilon \leqslant f(\alpha) - \frac{\varepsilon}{2} \leqslant f_n(\alpha) \leqslant f_n(x) \leqslant f_n(\beta) \leqslant f(\beta) + \frac{\varepsilon}{2} \leqslant l + \varepsilon$$

Donc $|f_n(x) - l| \leq \varepsilon$ d'où la convergence de f_n vers f en tout point de continuité de f. Finalement, on a extrait une sous-suite qui converge simplement sur \mathbb{R} .