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Introduction

This document is my master thesis, it has been written during the second semester of the year
2019/2020. It consists of an exposition of some results of the paper [EMV10], but we also try to
give details on the proofs of some classical facts that are just quoted brie�y in the latter. The article
describes an ergodic method due to Linnik, which is used to answer the question of the equidistribution
of integer points on spheres (under some conditions). More precisely, if d is a given positive integer,
the 2-dimensional sphere of radius

√
d is the following subset of R3 :{

(x, y, z) ∈ R3 | x2 + y2 + z2 = d
}

We denote by R3(d) the set of points where the three coordinates are integers :

R3(d) :=
{

(x, y, z) ∈ Z3 | x2 + y2 + z2 = d
}

There are several problems about R3(d) that are simply stated but remained unsolved for a long time.
For example, in increasing order of �neness, one may ask :

(1) When is R3(d) non-empty ? In other words : which integers can be written as a sum of three
squares of integers ?

(2) If non-empty, how large does R3(d) get ?

(3) If |R3(d)| gets large as d goes to in�nity, how are the points of R3(d) distributed on the sphere
of radius

√
d ?

In this document, we answer question (1) in an almost self-contained proof, we just quote without proof
the Hasse-Minkowski local-global principle, as well as some known facts on p-adic �elds. The precise
answer to question (1) is given by theorem 3.4.2, and states that the integers that can be written as
a sum of three squares of integers are those which are not of the form 4a(8b + 7) for some a, b ∈ N.
Such integers will be called admissible.
We also give a lower bound to answer question (2), relying on Siegel's theorem on the value at 1 of
L-functions attached to real primitive Dirichlet characters. The conclusion is that for every ε > 0,
there exists a constant C(ε), depending only on ε, such that for any d > 2 admissible and square-free,

|R3(d)| > C(ε)d
1
2
−ε

(see section 4.4).
Finally, following [EMV10], we discuss a discrete analogue of question (3), namely the question of how
the points of R3(d) get distributed in the discrete sphere modulo q (under some conditions on the
integer q) :

R3(d, q) :=
{

(x, y, z) ∈ (Z/qZ)3 , x2 + y2 + z2 = d
}

It is in the study of this last question that we use an ergodic approach due to Linnik.
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Comments on the plan of this document

Since the �rst two sections do not seem to be immediately related to our questions, let us explain
brie�y the aim of each section and when it is used to answer questions (1), (2) and (3).

• In section 1 we collect some results from number theory that are usually taught in a graduate
course on the subject. The aim is to introduce notations that are used a lot in the following
sections. The statements which are really important to have in mind when reading the remainder
of this master thesis are :

� The fact that the ring of integers of a number �eld K is a Dedekind ring, denoted by OK ,
and the de�nition of the class group which follows from this fact. The class group is denoted
by Cl(OK).

� The fact that Cl(OK) is a �nite abelian group. Its cardinality is called the class number of
the �eld K.

� The de�nitions and statements relative to the norm of an ideal in the ring of integers of a
number �eld.

• Section 2 deals with Dirichlet class number formula for imaginary quadratic �elds. This formula
reveals a link between the class number of an imaginary quadratic �eld K = Q(

√
−d) and

the value at 1 of the L-function attached to a certain Dirichlet character χD (where D is the
discriminant of the �eld K). Although it can be proved completely in a modern way, using only
the theory of ideals, we chose to develop the connection with representations of integers by binary
quadratic forms. Indeed, it is interesting from an historical perspective to see how this formula
was proved at a time where the notion of ideal had not emerged yet.

• In section 3, we answer question (1) from the introduction. Some congruence conditions modulo
8 allow us to exclude some integers from the list of those which are a sum of three squares
of integers. Then, to prove that the remaining integers are indeed a sum of three squares, we
proceed in several steps. If d is a positive integer not of the form 4a(8b+ 7) for some a, b ∈ N,

� we use Newton's lemma to write d as a sum of three squares in every Qp for p prime,

� then we use the Hasse-Minkowski local-global principle to �nd a representation of d as a
sum of three squares of rational numbers,

� and �nally, we use the fact that the ring B(Z) of Hurwitz quaternions is left-euclidean to
�nd a representation of d as a sum of three squares of rational integers.

This is why the beginning of section 3 consists of an exposition of some generalities and arithmetic
properties of quaternions. They are a powerful tool to deal with questions related to sums of
three or four squares.

• Section 4 is central in this master thesis. This is where we introduce an action of the class group
of Q(

√
−d) on R̃3(d)+ (which is roughly the set of orbits for the action of SO3(Z) on R3(d) by

left multiplication. These notations are introduced with more details in the core of the text). We
prove that (at least when d ≡ 1 or 2 mod 4) this action is free and transitive, and this shows that
there is an explicit relation connecting |R3(d)| and the class number of Q(

√
−d). By Dirichlet

class number formula (which is the subject of section 2), we can express it as the value at 1 of
some L-function attached to a real primitive Dirichlet character. Then we quote without proof
a famous theorem by Siegel which gives a lower bound for this value. This gives us an estimate
of |R3(d)| as announced in the introduction. In particular, the size of R3(d) goes to in�nity as d
goes to in�nity, so it is natural to wonder how the points get distributed on the sphere of radius√
d.

• In section 5, we focus for technical reasons on a discrete analogue of this question : the distribution
of the points of R3(d) in the sphere modulo q denoted by R3(d, q) (see the introduction). We
use Linnik's ergodic method to prove that they get equidistributed.
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1. Preliminaries

In this section, we give a quick review of some classical results in algebraic number theory that will be
used throughout this thesis. The goal is to set the notations and to explain what will be considered as
"well known" in this document. Most of these results are stated without proofs, I personally learned
them in the notes [Bri20], but I will also refer to some books that contain the same statements. In this
section, all the rings we consider are commutative.

1.1 Some notations and conventions

If A is a ring, A× will always denote the set of invertible elements of A, also called the units of A.
An element a ∈ A is in A× if and only if there exists b ∈ A such that ab = 1A (since we are only
considering commutative rings in this section, this also means that ba = 1A).
Two elements x, y ∈ A are said to be associated if there exists u ∈ A× such that y = ux. We denote
it by x ∼ y.
We also introduce the convenient notations UFD and PID :

De�nition 1.1.1. A principal ideal domain, denoted by PID, is an integral domain A in which every
ideal is principal, that is : of the form I = xA for some x ∈ A.
A unique factorization domain, denoted by UFD, is an integral domain A such that :

(i) every non-zero element x ∈ A can be written as a product x = up1 . . . pr where u ∈ A× and the
pi's are irreducible elements of A.

(ii) This decomposition is unique up to permutation and units : if x = up1 . . . pr = vq1 . . . qs, then
r = s and there exists σ ∈ Sr such that for all i ∈ {1, . . . , r}, qi ∼ pσ(i).

1.2 Integral extensions

First, we recall the de�nition of an algebra over a ring A.

De�nition 1.2.1. Let A be a ring. An A-algebra is just a ring homomorphism ϕ : A → B. The ring
B is naturally endowed with a structure of A-module : for all a ∈ A and b ∈ B, the product a · b is
given by ϕ(a)b.

Now, if A is a ring and ϕ : A → B is an A-algebra, we de�ne the notion of an integral element of B
over A. An element b ∈ B is said to be integral over A if there exists a monic polynomial P with
coe�cients in A such that P (b) = 0. For example, Q(

√
2) is a Z-algebra (the ring homomorphism

being just the natural inclusion), and
√

2 is integral over Z since the polynomial X2− 2 is monic, with
coe�cients in Z, and vanishes at

√
2.

The set of elements in B that are integral over A is a sub-A-algebra of B. It is called the integral
closure of A inside B. We say that B is integral over A if all the elements of B are integral over A (i.e.
if the integral closure of A in B is exactly B). When A is an integral domain, the integral closure of A
(without specifying in which A-algebra) always refers to the integral closure of A in its fraction �eld.
The following proposition will be useful in the study of extensions of Dedekind rings, since it roughly
states that the maximality of an ideal p in A is equivalent to the maximality of any prime ideal P ⊆ B
that lies over p (see the proof of proposition 1.5.6).

Proposition 1.2.2. Let ϕ : A→ B be an A-algebra. Suppose that B is an integral domain, that ϕ is
injective, and that B is integral over A. In other words, we say that ϕ is an integral inclusion between
domains. Then A is a �eld if and only if B is a �eld.

De�nition 1.2.3. Let A be an integral domain, and K its fraction �eld. We say that A is integrally
closed if it is integrally closed in K, that is : the only elements of K that are integral over A are the
elements of A.

An important (but not di�cult) proposition is the following :
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Proposition 1.2.4. UFD's are integrally closed. In particular, PID's are integrally closed.

Proposition 1.2.5. Let A be an integral domain, K := Frac(A), and L/K an algebraic �eld extension.
Denote by B the integral closure of A in L. If x ∈ L, there exists a ∈ A \ {0} such that ax ∈ B. So
L = (A \ {0})−1B, which implies that L = Frac(B). Moreover, B is integrally closed.

This proposition is really elementary, but will play a role when we will check that the ring of integers
of a number �eld is a Dedekind domain. Finally, the following classical result allows us to justify easily
that some element of B is not integral over A.

Proposition 1.2.6. Assume that A is integrally closed, let K = Frac(A) and L/K be an algebraic
extension. An element of L is integral over A if and only if its minimal polynomial over K has
coe�cients in A.

Taking again A = Z (which is integrally closed, because Z is a PID), and L = Q(
√

2), we can conclude
that 1√

2
is not integral over Z, because its minimal polynomial over Q is X2 − 1

2 : it is not in Z[X].

1.3 Traces and norms

Let A be a ring, and M a free A-module of �nite rank n. Let B = (e1, . . . , en) be a basis of M over A.
If f ∈ EndA(M) (i.e. f is an A-linear map from M to M), we can write the matrix of f in the basis
B : MatB(f) = (ai,j)16i,j6n. Then we de�ne :

Tr(f) := Tr ((ai,j)16i,j6n) =

n∑
i=1

ai,i ∈ A, and det(f) := det ((ai,j)16i,j6n) ∈ A.

These elements of A depend only on f and not on the choice of a basis of the A-module M .

Now, let B be a free A-algebra of rank n over A (i.e. it is free of rank n when we see B as an A-module
for the natural A-module structure coming from the de�nition of an A-algebra). For all x in B, the
multiplication by x :

mx : B → B
b 7→ xb

belongs to EndA(B), so we can consider Tr(mx) and det(mx) as above.

De�nition 1.3.1. With the notations above, we de�ne TrB/A(x) := Tr(mx) and NB/A(x) := det(mx).
They are called the trace of x and the norm of x.

The following properties follow easily from the de�nition : for all x, y ∈ B, for all a ∈ A :

• NB/A(xy) = NB/A(x)NB/A(y)

• TrB/A(ax+ y) = aTrB/A(x) + TrB/A(y)

• NB/A(a) = an

• TrB/A(a) = na

Note that if L/K is a �nite �eld extension, L is a K-algebra, of �nite dimension as a K-vector space,
so we recover the notion of traces and norms of elements in �eld extensions. Let us state a few classical
results in this context. Recall that a �eld extension L/K is said to be separable when it is algebraic
and every element of L has its minimal polynomial over K which has only roots of multiplicity one in
some algebraic closure of K.

Proposition 1.3.2. Let L/K be a �nite and separable �eld extension, of degree n. Let K be an alge-
braic closure of K. There are exactly n homomorphisms of K-algebras from L to K : HomK-alg(L,K) =
{σ1, . . . , σn}. Then for all x ∈ L, we have :

TrL/K(x) =

n∑
i=1

σi(x) and NL/K(x) =

n∏
i=1

σi(x)
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But more generally, if we do not assume that L/K is separable, we still have an expression of TrL/K(x)
and NL/K(x) in terms of the conjugates of x. Indeed, if L/K is a �nite extension, x ∈ L, and x1, . . . , xm
are the conjugates of x over K (i.e. the roots (counted with multiplicities) of the minimal polynomial
of x over K, in some algebraic closure K), then :

TrL/K(x) = [L : K(x)]
m∑
i=1

xi and NL/K(x) =

(
m∏
i=1

xi

)[L:K(x)]

(1)

Complete proofs of the preceding formulas for traces and norms in �eld extensions can be found in
[Goz10].

The last part of the following proposition will be useful in the study of units in the ring of integers of
a number �eld.

Proposition 1.3.3. Let A be an integrally closed domain, K its fraction �eld, L/K a �nite extension,
and B the integral closure of A in L. If b ∈ B, then NL/K(b) ∈ A, TrL/K(b) ∈ A. Moreover, b ∈ B×
if and only if NL/K(b) ∈ A×.

Proof. Since b ∈ B, it is integral over A, so its minimal polynomial has coe�cients in A by proposition
1.2.6. Therefore, the conjugates of b are also integral over B, because by de�nition, they share the
same minimal polynomial. Using the formulas given in (1) for the trace and norm, and the fact that
B is a subring of L, we deduce the �rst part of the statement. For the second part, let us take b ∈ B,
and denote by P = Xd + a1X

d−1 + · · · + ad−1X + ad ∈ A[X] its minimal polynomial over K. Then
the minimal polynomial of b−1 over K is Xd +

ad−1

ad
Xd−1 + · · ·+ a1

ad
X + 1

ad
. Thus, by proposition 1.2.6,

b−1 ∈ B if and only if ad ∈ A×. But if we look again at the expression of the norm given in (1), we

see that NL/K(b) =
(
(−1)dad

)[L:K(b)]
, which implies that ad ∈ A× if and only if NL/K(b) ∈ A×. This

concludes the proof.

Finally, let us stress that the behaviour of the trace map is very di�erent depending on the separability
of the �eld extension. In fact, one can show that when L/K is not separable, the trace map TrL/K is
zero, whereas when L/K is separable, the pairing

L× L → K
(x, y) 7→ TrL/K(xy)

is non-degenerate. This follows from Dedekind's independence theorem.

This last fact is very useful because it gives rise to the notion of dual basis with respect to the trace
map. If (x1, . . . , xn) is a basis of L/K, there exists a unique basis (y1, . . . , yn) of L/K such that for all
1 6 i, j 6 n, TrL/K(xiyj) = δi,j .
This notion of a dual basis plays a central role to prove the following proposition :

Proposition 1.3.4. Let A be an integrally closed domain, K := Frac(A) and L/K a �nite separable
�eld extension. Let B denote the integral closure of A in L. Then B contains a basis of L/K and it is
a sub-A-module of a free A-module of rank [L : K] contained in L.

This statement implies the following result, which is very useful in number theory (when A = Z and
B = OK is the ring of integers of a number �eld).

Corollary 1.3.5. Under the assumptions of the preceding proposition,

(i) If A is noetherian, then B is a �nite A-algebra (i.e. it is �nitely generated as an A-module). In
particular, B is also noetherian.

(ii) If A is a PID, then B is a free A-module of rank [L : K].
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1.4 Discriminants

De�nition 1.4.1. Let B be a free A-algebra of rank n, and let (x1, . . . , xn) ∈ Bn. We de�ne the
discriminant of (x1, . . . , xn) as follows :

D(x1, . . . , xn) := det
(
(TrB/A(xixj))16i,j6n

)
∈ A.

If

x1
...
xn

 ∈ Bn and M ∈Mn(A), and if we denote

y1
...
yn

 := M

x1
...
xn

, then
D(y1, . . . , yn) = det(M)2D(x1, . . . , xn).

As a consequence, if det(M) ∈ A×, D(x1, . . . , xn)A = D(y1, . . . , yn)A. In particular, if (x1, . . . , xn)
and (y1, . . . , yn) are two bases of B/A, then there is a matrix M ∈ GLn(A) such thaty1

...
yn

 = M

x1
...
xn


so the ideals D(x1, . . . , xn)A and D(y1, . . . , yn)A are equal.

De�nition 1.4.2. We denote by dB/A the ideal D(x1, . . . , xn)A, where (x1, . . . , xn) is any basis of
B/A. We call this ideal the discriminant of B/A.

Proposition 1.4.3. Under the assumptions of de�nition 1.4.1, assume moreover that A is a UFD. Let
(x1, . . . , xn) ∈ Bn. If D(x1, . . . , xn) ∈ A \ {0} is square-free, then x1, . . . , xn is a basis of B over A.

Note that in the context of number �elds, A will be Z, which is a UFD, and B will be OK (the integral
closure of Z in the number �eld K), so that this proposition will apply. Thus, the discriminant can be
used to detect bases of OK as a Z-module.
Finally, let us give a characterization of the discriminant in a �eld extension, in terms of �eld auto-
morphisms. This can be useful to compute discriminants in quadratic �elds for examples (because in
this case, the Galois group is easy to describe).

Proposition 1.4.4. Let L/K be a �nite and separable extension of degree n, and let K be an algebraic
closure of K. Write HomK-alg(L,K) = {σ1, . . . , σn}. Then for any basis x1, . . . , xn of L/K, we have
that

D(x1, . . . xn) = (det ((σi(xj))16i,j6n))2 6= 0

1.5 Dedekind rings

We now recall some of the main results about Dedekind rings. These rings play a central role in number
theory, since when we take the integral closure of Z in some number �eld, we don't always get a UFD
(and this is the reason why some early attemps to prove Fermat's last theorem failed). However, we
always get a Dedekind domain, which is not exactly a UFD, but where we also have a nice unique
factorization property, at the level of ideals instead of elements.

De�nition 1.5.1. Let A be an integral domain. We say that A is a Dedekind ring if :

(i) A is not a �eld

(ii) A is noetherian

(iii) A is integrally closed

(iv) Every non-zero prime ideal in A is maximal.

PID's that are not �elds are Dedekind rings, but the converse is not true.
One of the main results about Dedekind rings is the following, that tells us that we have unique
factorization at the level of ideals.
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Theorem 1.5.2. Let A be a Dedekind ring, and let I be a non-zero ideal of A. There exist pairwise
distinct non-zero prime ideals p1, . . . , pr, and positive integers α1, . . . , αr such that :

I = pα1
1 . . . pαrr

This factorization is unique up to the order of factors, and the primes that appear in the decomposition
are exactly the prime ideals of A that contain I.

In order to de�ne the class group of a Dedekind ring, we need to introduce the notion of a fractional
ideal.

De�nition 1.5.3. Let A be an integral domain, and K its fraction �eld. A fractional ideal of A is a
sub-A-module I of K such that there exists d ∈ A \ {0} such that I ⊆ d−1A.

We remark that a fractional ideal is nothing but a subset of K of the form d−1a for some ideal a ⊆ A.
Since fractional ideals appear a lot in the theory of Dedekind rings, we sometimes just call them ideals,
and say integral ideals when we want to stress that we speak about usual ideals of A.

We de�ne operations on fractional ideals as it is usually done in the case of ideals :

• If I and J are two fractional ideals, we de�ne I+J as the sub-A-module of K generated by I∪J .

• We de�ne their product IJ as the sub-A-module of K generated by elements of the form xy, for
x ∈ I and y ∈ J .

It is easy to verify that IJ and I+J are still fractional ideals. A simple example of a fractional ideal is
the sub-A-module of K generated by an element x ∈ K : I = xA. Such ideals are called the principal
fractional ideals.

When A is an integral domain, we will denote by Fr(A) the set of non-zero fractional ideals of A, and
by Princ(A) the set of non-zero principal fractional ideals.

When I is a fractional ideal, we also de�ne I−1 as {x ∈ K | xI ⊆ A}, and we say that I is invertible
when the inclusion II−1 ⊆ A is an equality. For example, a principal fractional ideal xA (for some
x ∈ K×) is invertible, and its inverse is given by x−1A.
A corollary of the unique factorization at the level of ideals in a Dedekind ring is the following :

Corollary 1.5.4. Let A be a Dedekind ring. Then any non-zero fractional ideal of A is invertible.

Using this corollary, we deduce that Fr(A) can be given a group structure :

Fr(A)× Fr(A) → Fr(A)
(I, J) 7→ IJ

where the unit element is A and the inverse of an ideal I is the ideal I−1 de�ned above. This group is
abelian, and the set Princ(A) forms a subgroup.

De�nition 1.5.5. When A is a Dedekind ring, we de�ne its ideal class group as the quotient

Cl(A) := Fr(A)/Princ(A).

Finally, to �nish this section, let us recall the vocabulary of rami�cation in extensions of Dedekind
domains.

Proposition 1.5.6. Let A be a Dedekind ring, K = Frac(A), and L/K a �nite and separable �eld
extension. Denote by B the integral closure of A in L. Then B is still a Dedekind ring.

Proof. The fact that B is noetherian comes from corollary 1.3.5 (i). It is also integrally closed by
proposition 1.2.5. Finally, if P ⊆ B is a non-zero prime ideal, then P ∩ A =: p is a non-zero prime
ideal of A. Since A is a Dedekind ring, p is maximal, hence A/p is a �eld. Now, the natural morphism
A/p → B/P is injective and integral, so B/P is a �eld by proposition 1.2.2, which is what we
wanted.

9



For any non-zero prime ideal p in A, we say that a prime ideal P of B lies above p if P ∩ A = p. We
denote it by P | p.
Any non-zero prime ideal p ⊂ A generates an ideal pB in B. By the previous proposition, B is a
Dedekind ring, so we can write pB as a product of non-zero prime ideals in B :

pB =
∏
P|p

PeP

eP is called the rami�cation index of p at P.
We also have that the natural embedding A/p→ B/P is a �nite �eld extension : we denote by fP its
degree, which is called the residual degree of p at P. Then we have the following theorem :

Theorem 1.5.7. ∑
P|p

ePfP = [L : K]

1.6 Number �elds

De�nition 1.6.1. A number �eld is a �eld K such that K/Q is a �nite �eld extension.

If K is a number �eld, we denote by OK the integral closure of Z in K. It is called the ring of integers
of the �eld K.
By corollary 1.3.5 (ii), we have the following fundamental theorem :

Theorem 1.6.2. The ring of integers OK of a number �eld K is a free Z-module of rank [K : Q].

In particular, we can speak about the discriminant of a basis of OK over Z. But here, the situation is
better than in the general setting : not only the ideal D(x1, . . . , xn)Z does not depend on the basis of
OK over Z, but the number D(x1, . . . , xn) does not depend on the basis ! Indeed, if (x1, . . . , xn) and
(y1, . . . , yn) are two bases of OK over Z, then there exists M ∈ GLn(Z) such thaty1

...
yn

 = M

x1
...
xn


and then D(y1, . . . , yn) = det(M)2D(x1, . . . , xn) = D(x1, . . . , xn) because det(M) ∈ {±1}.

De�nition 1.6.3. IfK is a number �eld, we de�ne its discriminant as D(x1, . . . , xn), where (x1, . . . , xn)
is any basis of OK over Z.

Now, if K is a number �eld, the extension K/Q is separable (because Q has characteristic zero, so
it is a perfect �eld), so OK is a Dedekind domain by the general fact we recalled in proposition 1.5.6
(indeed, Z is a PID, hence a Dedekind domain).

Therefore, every non-zero ideal a in OK can be written uniquely (up to the order of factors) as a
product of non-zero prime ideals :

a =
∏
p|a

pvp(a)

where the product runs over all the prime ideals containing a. In particular, the prime ideals in Z
(which are exactly the ideals of the form pZ for some prime number p) may not remain prime if we
look at the ideal generated in OK . We can write pOK as a product

∏
p|p p

ep , and as we de�ned in the
section on Dedekind rings, we call ep the rami�cation index of p at p. Besides, for all p | p, the natural
ring homomorphism Z/pZ→ OK/p is a �nite �eld extension, and we denote its degree by fp.

Given a prime number p, it is not easy to �nd the factorization of pOK as a product of prime ideals
in OK . We will see an example of rami�cation law in the case of quadratic �elds (see proposition
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2.1.8). It is a situation where a simple congruence condition provides the shape of the factorization
(the number of prime ideals above pOK and the exponents appearing in the factorization). However,
it does not give explicitly the prime ideals above some prime number p.

As OK is a Dedekind ring, we can also de�ne the ideal class group of OK (as we did in the section on
Dedekind rings). One central result in number theory is the following :

Theorem 1.6.4 (Finiteness of the class number). Let K be a number �eld. Then Cl(OK) is a
�nite group.

Now, we give some preliminary results in order to de�ne the norm of an ideal of OK . This notion
will play a role in the proof of Dirichlet's class number formula, since we will see that counting
representations of integers by quadratic forms amounts to counting ideals with a prescribed norm.

Proposition 1.6.5. If x ∈ OK \ {0}, and if we denote by (x) the ideal generated by x in OK , then

|NK/Q(x)| = |OK/(x)| .

Proof. First, note that since x ∈ OK , NK/Q(x) ∈ Z by proposition 1.3.3, so that the equality we want
to prove makes sense.
Let us denote by n the degree of the extension K/Q. By theorem 1.6.2, we know that OK is a free
Z-module of rank n. The ideal (x) (which is by de�nition a sub-OK-module) is in particular a sub-Z-
module of OK . Thus, by the adapted basis theorem (for modules over a PID, in this case : Z), there
exists a basis (e1, . . . , en) of OK , an integer r 6 n, and positive integers c1, . . . , cr such that{

c1 | c2 | . . . | cr
(c1e1, . . . , crer) is a basis of xOK over Z

But since the multiplication by x : OK → xOK is an isomorphism of Z-modules, the rank of xOK
is in fact also equal to n. This implies that r = n. Then we have OK = e1Z ⊕ · · · ⊕ enZ and
(x) = c1e1Z⊕ · · · ⊕ cnenZ, hence

OK/(x) ' (Z/c1Z)× · · · × (Z/cnZ) .

In particular, we have |OK/(x)| = c1c2 . . . cn. But on the other hand, since (e1, . . . , en) is a basis of
OK over Z, (xe1, . . . , xen) is also a basis of xOK ! Thus, if we write each of these elements in the other
basis (c1e1, . . . , cnen) : 

xe1 = a1,1(c1e1) + · · ·+ a1,n(cnen)
...

...

xen = an,1(c1e1) + · · ·+ an,n(cnen)

(2)

the matrix M := (ai,j)16i,j6n that appears is in GLn(Z). Indeed, it maps a basis of xOK onto another
basis of xOK .
Now, let us denote by B the basis (e1, . . . , en) of OK over Z (it is in particular a basis for the extension
K/Q). Given an element y ∈ K, we denote by #�y the column vector in Qn of its coordinates in the
basis (e1, . . . , en) of K/Q. Then (2) precisely states that for all i ∈ {1, . . . , n},

#   �xei =

ai,1c1
...

ai,ncn


because xei =

∑n
j=1 ai,jcjej . It is easy to verify that the vector #   �xei ∈ Qn is the i-th column of the

matrix CtM , where C denotes the diagonal matrix
c1

c1

. . .
cn


11



In other words, CtM #�ei = #   �xei. This shows that CtM is the matrix of the multiplication by x in the basis
B of K/Q. Therefore, det(CtM) = NK/Q(x) = det(C) det(M) = ±c1c2 . . . cn (because det(M) ∈ {±1}
since M ∈ GLn(Z)). This concludes the proof.

Proposition 1.6.6. For all non-zero ideal a ⊆ OK , OK/a is �nite.

Proof. If a is a non-zero ideal, we can take an element x ∈ a \ {0}. Then xOK ⊆ a, so that OK/a
identi�es with a quotient of OK/(x). As the latter is �nite by the previous proposition, OK/a is
�nite.

This proof also explains that any non-zero ideal a in OK is a free Z-module of rank n. Indeed, for any
element x ∈ a\{0}, we have xOK ⊆ a ⊆ OK . It follows from the adapted basis theorem for Z-modules
that there are integers r 6 s 6 n such that (x) is a free Z-module of rank r, and a a free Z-module of
rank s. But as we saw in the proof of proposition 1.6.5, (x) has rank n. This implies that this is also
the case for a.

De�nition 1.6.7. If a ⊆ OK is a non-zero ideal we de�ne its norm as follows :

N(a) := |OK/a| .

Proposition 1.6.8. If a, b are two non-zero ideals in OK , then N(ab) = N(a)N(b).

Proof. See for instance [Sam71].

Proposition 1.6.9. If K/Q is Galois, with Galois group denoted by G, then for all a non-zero ideal
in OK , ∏

σ∈G
σ(a) = N(a)OK .

Proof. See [IR90], proposition 14.1.2.

De�nition 1.6.10. Let K be a number �eld. We de�ne the Dedekind zeta function of K as follows :
for all s ∈ C such that Re(s) > 1,

ζK(s) :=
∑

a⊆OK

1

N(a)s

where the sum ranges over all the non-zero ideals of OK .

This series de�nes an holomorphic function on {s ∈ C | Re(s) > 1}. We remark that when K = Q we
recover the standard Riemann zeta function.

Proposition 1.6.11. The Dedekind zeta function from the previous de�nition has an Euler product
expansion : with the notations above, for all s ∈ C such that Re(s) > 1,

ζK(s) =
∏
p

(
1− 1

N(p)s

)−1

where the product ranges over all the non-zero prime ideals in OK .

Proof. See for instance [Bri]. This formula expresses in analytic terms the unique factorization of ideals
into a product of prime ideals.
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2. The class number formula for imaginary quadratic �elds

What we discuss in this section can be proved using only the modern language of ideals in the ring
of integers of a number �eld. However, this is not how the class group was �rst thought in the case
of quadratic �elds. In this section, we will start by a quick review of standard facts on imaginary
quadradic �elds, expressed in the modern language. But then, we will also describe how Gauss de�ned
the same class group with a very di�erent point of view : it was de�ned as a set of equivalence classes
of binary quadratic forms with integral coe�cients. It turns out that this point of view still has some
advantages, and we will use it in the proof of Dirichlet class number formula. This is also interesting
from an historical perspective, since this theory of equivalence of quadratic forms was a �rst step in
the development of the theory of rings and ideals.

2.1 Imaginary quadratic �elds

In this section, we specialize the general results on number �elds to the case of imaginary quadratic
�elds.

De�nition 2.1.1. A quadratic �eld K is a degree 2 extension of Q. It can always be written as
K = Q(

√
d) for some squarefree integer d. Imaginary quadratic �elds are those quadratic �elds Q(

√
d)

with d negative.

Remark. Each time we write
√
m for m negative, we mean i

√
−m, the root with positive imaginary

part. This choice does not change the extension Q(
√
d) (any square root of d in C would give the same

extension), but this convention will be important when we will introduce the notion of correctly ordered
basis of an ideal.

Let K = Q(
√
d) be an imaginary quadratic �eld. By theorem 1.6.2, OK is a free Z-module of rank 2.

In fact, we know a more precise statement : we can give a basis of OK as a Z-module.

Proposition 2.1.2. OK = Z + ωZ with

ω =

{√
d if d ≡ 2, 3 mod 4

1+
√
d

2 if d ≡ 1 mod 4

Note that the extension K/Q is Galois, and that the two automorphisms of K are the identity and
the complex conjugation (indeed, since d < 0, the automorphism de�ned by

√
d 7→ −

√
d is nothing

but the complex conjugation). Using proposition 1.4.4, we have that the discriminant of the �eld is

D =

(
det

(
1 ω
1 ω

))2

=

{
4d if d ≡ 2, 3 mod 4

d if d ≡ 1 mod 4.

In any case, K = Q(
√
D) and OK = Z + D+

√
D

2 Z. Note that this shows that the discriminant of a
quadratic �eld cannot be any integer. We will not need more than the following observation : D is
necessarily congruent to 0 or 1 modulo 4.

De�nition 2.1.3. We will call a fundamental discriminant any integer that arises as the discriminant
of a quadratic �eld.

The units of OK are also well known, and except for two exceptional cases, there are only +1 and −1.

Proposition 2.1.4. Let d be a squarefree negative integer. Denote by K := Q(
√
d) the imaginary

quadratic �eld generated by a square root of d, and by w the number of units in OK . Then :

• if d = −1, O×K = {±1,±i}, hence w = 4.

• if d = −3, O×K = {±1,±µ,±µ2} where µ = e
2iπ
3 , hence w = 6.
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• if d = −2 or d < −3, O×K = {±1}, hence w = 2.

The idea to prove this proposition is to use proposition 1.3.3, which tells us that an element a+ b
√
d ∈

OK is a unit if and only if NK/Q(a + b
√
d) ∈ {±1}. But since NK/Q(a + b

√
d) = a2 − db2 with d

negative, there are not so many solutions. The study of units in real quadratic �elds is more di�cult
since when d is positive, the equation a2 − db2 = 1 is a kind of Pell-Fermat equation, which can have
in�nitely many solutions.

As we remarked in the preliminaries on number �elds, every non-zero ideal in OK is a free Z-module
of rank 2 (since K/Q is an extension of degree 2 here). We will sometimes use the phrase "(α, β) is
an integral basis of a " to say that (α, β) is a basis of a as a Z-module, i.e. a = αZ⊕ βZ.

Proposition 2.1.5. Let a be a non-zero ideal in OK , and let (α, β) be an integral basis of a. Then we
have :

det

(
α β

α β

)
= ±
√
D N(a).

Proof. See [Hec81], theorem 76 for the analogue statement in any number �eld. We give a proof only
in the case of imaginary quadratic �elds, but the ideas are the same. We know from the section on
number �elds that a is a free Z-module of rank 2. By the adapted basis theorem, there exists a basis
(e1, e2) of OK over Z, and positive integers c1, c2 such that{

c1 | c2

(c1e1, c2e2) is a basis of a

Then since OK = e1Z⊕ e2Z and a = c1e1Z⊕ c2e2Z, we deduce that

OK/a ' (Z/c1Z)× (Z/c2Z)

hence N(a) = |OK/a| = c1c2.

Now, since c1e1 and c2e2 belong to a = αZ⊕ βZ, there exists a unique M ∈M2(Z) such that(
c1e1

c2e2

)
= M

(
α
β

)
But as (c1e1, c2e2) is also a basis of a, we have that M ∈ GL2(Z) in fact. In particular, it has
determinant ±1. Now, if we take the complex conjugates in this equality, and use the fact c1, c2 and
the coe�cient of M are real, we obtain :(

c1 0
0 c2

)(
e1 e1

e2 e2

)
= M

(
α α

β β

)
Finally, we transpose this equality, take determinants, and use proposition 1.4.4 to interpret det

(
e1 e2

e1 e2

)
as ±
√
D, where D is the discriminant of K. This gives the announced result.

De�nition 2.1.6. We say that a basis (α, β) of an ideal a in OK is correctly ordered if the sign is
positive, that is : if we have

det

(
α β

α β

)
= +
√
D N(a).

Proposition 2.1.7. If a is a non-zero ideal in OK , with basis (α, β) over Z, we have :

N(a) = gcd
(
NK/Q(α),NK/Q(β),TrK/Q

(
αβ
))

Proof. Adapted from [EW05], chapter 4. We proceed in several steps :
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• We prove that if k ∈ Z is a common divisor of NK/Q(α),NK/Q(β) and TrK/Q
(
αβ
)
in Z, then k

divides αβ and αβ in OK .

To prove this, we just notice that NK/Q

(
αβ
k

)
= 1

k2
NK/Q(α)NK/Q

(
β
)
. But with proposition

1.3.2 it is clear that NK/Q

(
β
)

= NK/Q (β). Therefore, the two norms on the right hand side are

divisible by k by assumption, so we can conclude that NK/Q

(
αβ
k

)
∈ Z.

We also have TrK/Q

(
αβ
k

)
= 1

kTrK/Q
(
αβ
)
, and since we assumed that TrK/Q

(
αβ
)
is divisible

by k, we get : TrK/Q

(
αβ
k

)
∈ Z. Since the coe�cients of the minimal polynomial of αβ

k over

Q are, up to the sign, the trace and the norm we just computed, we deduce that this minimal

polynomial has coe�cients in Z. By proposition 1.2.6, this implies that αβ
k belongs to OK , and

this is what we wanted to show.

• Next, we prove that aa is a principal ideal of the form kOK , with

k := gcd
(
NK/Q(α),NK/Q(β),TrK/Q

(
αβ
))
.

By de�nition, aa contains αα, ββ and αβ + αβ. Therefore, it also contains the Z-module
generated by these three elements, which is exactly kZ. In particular, k ∈ aa, hence kOK ⊆ aa.
Conversely, aa = (αZ + βZ)

(
αZ + βZ

)
= ααZ+βαZ+αβZ+ββZ. But by de�nition, k divides

αα and ββ in Z, hence in OK , and the preceding point shows that k also divides αβ and αβ in
OK . Therefore, aa ⊆ kOK , so we have equality.

• Finally, we know by proposition 1.6.9 that aa = N(a)OK . Therefore, N(a)OK = kOK . But if we
intersect with Z we get that kZ = N(a)Z, and since k and N(a) are both positive integers, we
must have equality.

Now, let us study the question of how prime numbers ramify in an imaginary quadratic �eld. By
theorem 1.5.7 and the fact that in our case [K : Q] = 2, we see that there are not many possibilities
for the rami�cation of a prime number p : only three cases can occur.

• either p is inert : pOK is a prime ideal p in OK . In this case, the rami�cation index of p at p is
1, and so the residual degree equals 2, meaning that OK/p is a degree 2 extension of Z/pZ. In
particular we have N(p) = p2.

• or p is totally rami�ed : p = p2 for some prime ideal p ⊂ OK . In this case the rami�cation index
at p is 2, so the residual degree is 1, meaning that the inclusion Z/pZ→ OK/p is also surjective.
In particular, we have N(p) = p.

• or p is split : p = pp′ for some distinct prime ideals p, p′ ⊂ OK . In this case, the residual degree
at each of these two primes has to be one, so that N(p) = p = N(p′).

Proposition 2.1.8. Let K = Q(
√
d) be a quadratic �eld with discriminant denoted by D. If p is a

prime number, we have :

• p is split if and only if
(
D
p

)
= 1

• p is inert if and only if
(
D
p

)
= −1

• p is totally rami�ed if and only if
(
D
p

)
= 0

where
(
·
p

)
denotes the Kronecker symbol. For odd primes p, it is just the usual Legendre symbol, but

for p = 2, it is another convention, that we explain in appendix B.
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Proof. For this exact statement, see [Hec81], theorem 90. The proof of this rami�cation law is also
nicely done in [Sam71], but the result is expressed in terms of

(
d
·
)
instead of

(
D
·
)
, so it requires some

little changes.

According to the de�nition of the Kronecker symbol, we can give a reformulation of the rami�cation
law for the prime 2 :

• 2 is split if and only if D ≡ 1 mod 8

• 2 is inert if and only if D ≡ 5 mod 8

• 2 is totally rami�ed if and only if D ≡ 0 mod 4.

Note that the rami�cation law for the prime 2 seems to miss some possible congruences for D, but
in fact it does not. Indeed, as we already observed, a discriminant of a quadratic �eld can only be
congruent to 0 or 1 modulo 4.

2.2 Classical theory of binary quadratic forms

The main interest of this section is the study of binary quadratic forms with integral coe�cients.
Namely, we will focus on forms

ϕ(X,Y ) = aX2 + bXY + cY 2

where (a, b, c) ∈ Z3.

De�nition 2.2.1. If ϕ is a binary quadratic form as above, we de�ne its discriminant D as follows :
D := b2 − 4ac.

Note that D can only be congruent to 0 or 1 modulo 4.

We remark that the matrix of ϕ in the canonical basis of R2 is Matϕ :=

(
a b/2
b/2 c

)
, which has

determinant ac − b2

4 , so that the discriminant of ϕ is nothing but −4 det(Matϕ). This will be useful
to prove that easily that the discriminant is invariant under some group action that we are going to
de�ne on the set of quadratic forms.
Since our aim is to use this point of view to prove Dirichlet class number formula for imaginary
quadratic �elds, we restrict to the case where D < 0.
There are some natural questions about these forms :

• Which integers are represented by ϕ (that is : for which m ∈ Z does there exist (u, v) ∈ Z2 such
that ϕ(u, v) = m ?) For instance, if ϕ(X,Y ) is given by X2 + Y 2, this is the famous question of
which integers are the sum of two squares.

• Once we know that ϕ represents some integer m, how many pairs (u, v) satisfy ϕ(u, v) = m ?

For instance, in the case of the form ϕ(X,Y ) = X2 + Y 2, we have the following result :

Theorem 2.2.2. Let n be a positive integer. Write

n :=
∏

p prime

pvp(n)

We have that n is the sum of two squares if and only if for all prime p such that p ≡ 3 mod 4, vp(n)
is even. Moreover, the numbers of pairs (u, v) ∈ Z2 such that n = u2 + v2 is 4(d1(n) − d3(n)), where
di(n) denotes the number of positive divisors of n that are congruent to i mod 4.
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Let us come back to the general case of a binary quadratic form ϕ(X,Y ) = aX2 + bXY + cY 2 with
negative discriminant D. We remark that

4aϕ(X,Y ) = 4a2 + 4abXY + 4acY 2 = (2aX + bY )2 + (4ac− b2)Y 2 = (2aX + bY )2 + |D|Y 2.

Therefore, ϕ is either de�nite positive (if a > 0) or de�nite negative (if a < 0). Since replacing ϕ by
−ϕ turns a positive form into a negative one, and conversely, the study of the integers represented by
a form with negative discriminant can be reduced to the case where ϕ is positive de�nite (i.e. a > 0).
Finally, to study the question of which integers are represented by a given form, we can assume that the
form is primitive, i.e. that gcd(a, b, c) = 1. Indeed, if d denotes gcd(a, b, c), then 1

dϕ is primitive, and to
get the set of integers represented by ϕ, it su�ces to multiply by d the set of integers represented by 1

dϕ.

This is why we introduce the following set, for all D negative integer such that D ≡ 0, 1 mod 4 :

Q+
D :=

{
primitive binary quadratic forms ϕ(X,Y ) = aX2 + bXY + cY 2

such that a > 0 and b2 − 4ac = D

}
Note that Q+

D is non-empty, since the following quadratic form :

ϕ(X,Y ) :=

{
X2 −DY 2 if D ≡ 0 mod 4

X2 +XY + 1−D
4 Y 2 if D ≡ 1 mod 4

is an element of Q+
D. We will call it the principal quadratic form of discriminant D (this terminol-

ogy will make more sense when we will explain the link between these quadratic forms and ideals in
Q(
√
D)). Maybe it is also worth insisting on the fact that elements in Q+

D are assumed to be primitive,
although it does not appear in the notation.

This remark on the existence of a principal form of discriminant D shows that an integer is the
discriminant of a binary quadratic form if and only if it is congruent to 0 or 1 modulo 4. This
motivates the following de�nition.

De�nition 2.2.3. An integer ∆ ∈ Z is said to be a discriminant if ∆ ≡ 0 mod 4 or ∆ ≡ 1 mod 4.

Now, let us denote by Γ the modular group SL2(Z). We de�ne, for all ϕ ∈ Q+
D and σ =

(
α β
γ δ

)
∈ Γ,

ϕσ(X,Y ) := ϕ(αX + βY, γX + δY )

Proposition 2.2.4. For all σ ∈ Γ and for all ϕ ∈ Q+
D, we have that ϕσ ∈ Q+

D. Moreover, if σ, τ ∈ Γ,
then ϕστ = (ϕσ)τ , hence

Γ×Q+
D → Q+

D

(σ, ϕ) 7→ ϕσ

de�nes a right group action of Γ on Q+
D.

Proof. First, we take ϕ ∈ Q+
D and σ ∈ Γ, and we want to check that ϕσ is still in Q+

D. We write

σ :=

(
α β
γ δ

)
and ϕ(X,Y ) := aX2 + bXY + cY 2 (as before).

In terms of matrices, we have

ϕ(X,Y ) =
(
X Y

)( a b/2
b/2 c

)(
X
Y

)
and

ϕσ(X,Y ) =
(
X Y

)
tσ

(
a b/2
b/2 c

)
σ

(
X
Y

)
.
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Therefore, the matrix of the quadratic form ϕσ is :

tσ

(
a b/2
b/2 c

)
σ.

Computing the determinant of this matrix (using the fact that σ has determinant 1) shows that ϕσ

has the same discriminant as ϕ.

Besides,

ϕσ(X,Y ) = ϕ(αX + βY, γX + δY )

= · · ·
= aσX

2 + bσXY + cσY
2

with 
aσ = aα2 + bαγ + cγ2 = ϕ(α, γ)

bσ = 2aαβ + b(αδ + βγ) + 2cγδ

cσ = aβ2 + bβδ + cδ2 = ϕ(β, δ).

This shows that the coe�cients of ϕσ are still integers. Moreover, since ϕ is positive de�nite, aσ > 0,
so that ϕσ is also positive de�nite (note that to go from aσ > 0 to ϕσ positive de�nite, we use the fact
that the discriminant is negative, so it is important to prove �rst that the discriminant is preserved).
Finally, it remains to show that ϕσ is still primitive. But from the equations for aσ, bσ, cσ, we see that
gcd(a, b, c) divides the coe�cients of ϕσ. Thus, if we do the same computations with σ−1 instead of
σ, we would prove that gcd(aσ, bσ, cσ) divides all the coe�cients of ϕ, hence divides gcd(a, b, c) = 1,
so ϕσ is also primitive, and this �nishes the proof that the action of Γ stabilizes Q+

D. The second part
of the statement is straightforward.

Two elements of Q+
D are said to be equivalent if they are in the same Γ-orbit, i.e. ϕ ∼ ψ if and only if

there exists σ ∈ Γ such that ψ = ϕσ. We will denote by [ϕ] the orbit of ϕ under the action of Γ, that
is :

[ϕ] = {ϕσ, σ ∈ Γ} = {ψ ∈ Q+
D | ψ ∼ ϕ}.

It is not hard to prove that two equivalent forms represent the same integers, so that we only need to
study a representative set for this action to study representations of integers by elements of Q+

D.

De�nition 2.2.5. A binary quadratic form ϕ(X,Y ) = aX2 + bXY + cY 2 ∈ Q+
D is said to be reduced

if its coe�cients satisfy −a < b 6 a 6 c and b > 0 if a = c.

We are going to prove that every element in Q+
D is equivalent to a unique reduced form, so that the

set of reduced forms is a representative set for the equivalence classes of Q+
D under the action of Γ.

However, this strange condition on the relative sizes of the coe�cients does not seem natural at all.
So we start by explaining why this is a natural choice of representatives.
In fact every binary quadratic form ϕ ∈ Q+

D can be factored into a product of two linear factors over
C :

ϕ(X,Y ) = aX2 + bXY + cY 2 = a(X + zϕY )(X + zϕY )

where zϕ = b+
√
D

2a , and we choose the root
√
D := i

√
−D so that zϕ ∈ H = {z ∈ C | Im(z) > 0}. This

gives us a natural way associate a unique point in H with each form in Q+
D. We call zϕ the principal

root of ϕ. Now, the nice thing is that Γ also acts on H in the following way :

Γ×H → H((
α β
γ δ

)
, z

)
7→ αz+β

γz+δ

and this action is compatible with the action on quadratic forms !
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Proposition 2.2.6. Let ϕ ∈ Q+
D, and let σ =

(
α β
γ δ

)
∈ Γ. Then the principal root of ϕσ is

αzϕ+β
γzϕ+δ .

Proof. Since Γ is generated by the two matrices S :=

(
1 1
0 1

)
and T :=

(
0 −1
1 0

)
, it su�ces to prove

the statement for the action of these matrices. Still denoting ϕ(X,Y ) = aX2 + bXY + cY 2, we prove
the statement for the matrix T . We have that ϕT (X,Y ) = ϕ(−Y,X) = cX2− bXY + aY 2, so that its

principal root is −b+
√
D

2c . Let us show that this is also the image of zϕ after the action of T : namely
−1
zϕ
.

−1

zϕ
=
−2a

b+
√
D

=
−2a(b−

√
D)

(b+
√
D)(b−

√
D)

=
−2a(b−

√
D)

b2 −D
=
−2a(b−

√
D)

b2 − (b2 − 4ac)
=
−b+

√
D

2c
.

This proves the statement for the action of the matrix T , and similar computations give the result for
the matrix S, hence the conclusion.

Using this observation together with the usual knowledge of the action of Γ on H, we see that each
ϕ ∈ Q+

D is equivalent to a unique form whose principal root is in the standard fundamental domain
for the action of Γ on H :

D :=

{
z ∈ H | − 1

2
< Re(z) < 0, |z| > 1

}
∪
{
z ∈ H | 0 6 Re(z) 6

1

2
, |z| > 1

}
And in fact, a simple computation shows that the condition to have the principal root in D is exactly
equivalent to the condition to be a reduced form (see de�nition 2.2.5). This shows that the set of
reduced forms is indeed a representative set for Q+

D/∼.

Proposition 2.2.7. For a given discriminant D < 0, there are only �nitely many reduced forms with
discriminant D. In other words, the quotient Q+

D/∼ is �nite.

Proof. Let ϕ(X,Y ) = aX2 + bXY + cY 2 be a reduced form of discriminant D. Then |b| 6 a 6 c, so

that 4b2 6 4ac. Replacing 4ac by b2 −D we obtain : 4b2 6 b2 −D, hence |b| 6
√
−D

3 . Thus, there are

only �nitely many choices for b (recall that we require b ∈ Z), and for each b, there are only �nitely
many (a, c) ∈ Z2 such that b2 −D = 4ac.

De�nition 2.2.8. We denote by h(D) the number of equivalence classes of forms in Q+
D, i.e. the

number of elements in Q+
D/∼. It is called the class number of discriminant D. This is also the number

of reduced forms with discriminant D.

Now, to study representations of integers by quadratic forms, the notion of automorphs is important.
For a given ϕ ∈ Q+

D, we say that σ ∈ Γ is an automorph of ϕ if ϕσ = ϕ. In terms of matrices,this
means that tσMatϕσ = Matϕ.

Proposition 2.2.9. Let D be a negative discriminant. Then each ϕ ∈ Q+
D has exactly w automor-

phisms, where w is the number of units in Q(
√
D).

Proof. See [Str08], lemma 5.5 and corollary 5.6.

Note that thanks to proposition 2.1.4, we know exactly w :

w =


4 if D = −1

6 if D = −3

2 otherwise

(3)

We started this section on quadratic forms by some motivating questions. One of them was the question
of which integers are represented by a given quadratic form. In fact, this question is quite di�cult,
and we will only give conditions for an integer to be represented by some binary quadratic form of
discriminant D (not by a �xed form).
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De�nition 2.2.10. Let ϕ be a binary quadratic form. We say that an integer m is properly represented
by ϕ if there exist u, v ∈ Z, coprime, such that ϕ(u, v) = m.

The following proposition gives a very simple condition for m to be properly represented by some form
of discriminant D.

Proposition 2.2.11. Let m ∈ Z be a positive integer. Then there exists ϕ ∈ Q+
D such that m is

properly represented by ϕ if and only if D is a square modulo 4m.

Proof. [Str08], lemma 5.10. (where the statement is also more precise).

Now, given a discriminant D < 0, let us denote by S = {ϕ1, . . . , ϕh} a representative set for Q+
D/∼

(in particular, h = h(D) is the class number). For all i ∈ {1, . . . , h}, we denote by ri(n) the number of
distinct representations of n by ϕi :

ri(n) := |
{

(x, y) ∈ Z2 | ϕi(x, y) = n
}
|

Note that this number is �nite. Indeed, if ϕ is a binary quadratic form with discriminant D < 0,
say ϕ(X,Y ) = aX2 + bXY + cY 2, and if (x, y) is a representation of some integer n by ϕ, then :
ax2 +bxy+cy2 = n. This implies that 4a2x2 +4abxy+4acy2 = 4an so that (2ax+by)2−(b2−4ac)y2 =
4an i.e. (2ax + by)2 + |D|y2 = 4an. But a, b, c, n being �xed, it is clear that there are only �nitely
many (x, y) ∈ Z2 satisfying this last equality.
Finally, we also introduce the notation RD(n) for the number of representations of n by a representative
set of Q+

D/∼. Explicitly :

RD(n) :=
h∑
i=1

ri(n).

Theorem 2.2.12. Let n ∈ Z be a positive integer such that gcd(n,D) = 1. Then :

RD(n) = w
∑
m|n

(
D

m

)

where w is given by (3) and
(
D
·
)
is the Kronecker symbol (see appendix B).

Proof. See [Str08], theorem 5.9 for a proof only based on quadratic forms. We chose to give an
alternative proof later, using the connection between this theory and the modern point of view on the
class group (in terms of ideals).

2.3 Uni�cation of the two points on view on the class group

This section is mostly based on [Hec81].

Associating a quadratic form with an ideal : Let K := Q(
√
d) be an imaginary quadratic �eld,

with discriminant D. We are given an ideal a ⊂ OK , and the question is : how do we de�ne an
associated element of Q+

D ?

Let us consider a correctly ordered Z-basis (α, β) of a (see de�nition 2.1.6). We assign to the ideal a
the following form (which depends on a but also on the basis) :

ϕa,(α,β)(X,Y ) :=
NK/Q(αX + βY )

N(a)
=

(αX + βY )(αX + βY )

N(a)
.

Let us check that this form is indeed in Q+
D. If we expand the numerator, we get :

(αX + βY )(αX + βY ) = ααX2 + (αβ + βα)XY + ββY 2

= NK/Q(α)X2 + TrK/Q(αβ)XY + NK/Q(β)Y 2
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But thanks to proposition 2.1.7, we know that the gcd of these three coe�cients is exactly N(a), so
ϕa,(α,β)(X,Y ) has coe�cients in Z and it is primitive.
Moreover, since we are working with imaginary quadratic �elds, the norm of a non-zero element is
always positive, so the leading coe�cient of ϕa,(α,β)(X,Y ) is positive. Finally, let us prove that the
discriminant of this form is D. By de�nition, it is(

αβ + βα
)2 − 4ααββ

N(a)2
.

But this equals (
αβ − βα

)2
N(a)2

,

which is exactly D by proposition 2.1.5.
This concludes the proof that the form we associate with the ideal a and the basis (α, β) is indeed in
Q+
D.

Associating an ideal with a quadratic form : Now let D be a fundamental negative discriminant
(see de�nition 2.1.3). Let d be a negative squarefree integer such that K := Q(

√
d) has discriminant

D. We assume that we are given a binary quadratic form ϕ ∈ Q+
D, and we are wondering how we can

de�ne an associated ideal in OK .
We write

ϕ(X,Y ) = aX2 + bXY + cY 2 = a(X + zϕY )(X + zϕY )

where zϕ = b+
√
D

2a is the principal root of ϕ. We assign to ϕ the ideal

aϕ := a (Z + zϕZ)

which is indeed contained in OK since a ∈ Z ⊆ OK and zϕ = b−
√
D

2 = b+D
2 − D+

√
D

2 ∈ Z + D+
√
D

2 Z =
OK since b+D = b+ (b2 − 4ac) ≡ 0 mod 2.
Note that aϕ is a priori only a sub-Z-module of OK , and not clearly an ideal : there is something to

prove here. We want to show that aϕOK ⊆ aϕ. Since OK = Z + D+
√
D

2 Z, we have :

aϕOK =

(
aZ +

b−
√
D

2
Z

)(
Z +

D +
√
D

2
Z

)

⊆ aZ +
b−
√
D

2
Z︸ ︷︷ ︸

=aϕ

+ a
D +

√
D

2
Z +

(
b−
√
D

2

)(
D +

√
D

2

)
Z.

So it just remains to prove that aD+
√
D

2 and
(
b−
√
D

2

)(
D+
√
D

2

)
are also in aϕ.

• aD+
√
D

2 = aD+b
2 − a b−

√
D

2 ∈ aZ + b−
√
D

2 Z because D + b = b2 − 4ac+ b ≡ 0 mod 2.

•

(
b−
√
D

2

)(
D+
√
D

2

)
=
(
b−
√
D

2

)(
D+b−b+

√
D

2

)
= b2−D

4 +
(
D−b

2

) (
b−
√
D

2

)
∈ aZ + b−

√
D

2 Z because

b2 −D = 4ac so b2−D
4 ∈ aZ and D − b = b2 − 4ac− b ≡ 0 mod 2 so D−b

2 ∈ Z.

Thus, aϕ is an ideal of OK .

Connection between the two points of view : With the notations above, the aim is to prove
that there is a bijection between Cl(OK) and Q+

D/∼. More precisely, we are going to show that the
two associations we described above induce bijections inverse one to the other at the level of classes.
Let us explain how it works. We take [I] ∈ Cl(OK), and we choose a an integral ideal of OK that
is equivalent to I (i.e. such that there exists λ ∈ K× such that a = (λ)I). Then we choose (α, β) a
correctly ordered Z-basis of a, and we de�ne the form ϕa,(α,β) as above. Finally, we take the class of
ϕa,(α,β) in Q+

D/∼.

There are many things to verify :
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(i) First, we have to check that the class of ϕa,(α,β) does not depend on the choice of a correctly
ordered basis (α, β). This will prove that we have a well de�ned map form the set of integral
ideals of OK to Q+

D/∼ :

a 7→ [ϕa]

(ii) Then we have to verify that two equivalent integral ideals are mapped to the same class of binary
quadratic forms. This will prove that the map

[I] ∈ Cl(OK) 7→ [ϕa]

does not depend on the choice of an integral ideal a in [I].

(iii) Once we know that we have a well de�ned map from Cl(OK) to Q+
D/∼, it remains to explain

why this map is a bijection.

Proof. (i) Let a be a non-zero ideal inOK , and let (α, β) and (γ, δ) be two correctly ordered bases of a
(which is a free Z-module of rank 2). Then there exists σ ∈ GL2(Z) such that

(
γ δ

)
=
(
α β

)
σ.

Then (
γ δ

γ δ

)
=

(
α β

α β

)
σ

and so if we take the determinant in this equality, we get :
√
DN(a) =

√
DN(a) det(σ). Thus,

det(σ) = 1 i.e. σ ∈ SL2(Z). Denote σ :=

(
a b
c d

)
. We have

ϕa,(γ,δ)(X,Y ) =
NK/Q(γX + δY )

N(a)

=
NK/Q ((αa+ βc)X + (αb+ βd)Y )

N(a)

=
NK/Q(α(aX + bY ) + β(cX + dY ))

N(a)

= ϕa,(α,β)(aX + bY, cX + dY ) = ϕσa,(α,β)(X,Y )

Thus ϕa,(γ,δ) = ϕσa,(α,β), and σ ∈ SL2(Z), so they are in the same equivalence class. Therefore,
the class of the form we assign to an ideal a and a correctly ordered basis (α, β) actually does
not depend on the choice of such a basis, so we just denote [ϕa] instead of

[
ϕa,(α,β)

]
.

(ii) Now, suppose that a and b are two integral ideals of OK that de�ne the same class in Cl(OK).
Let λ ∈ K× be such that a = (λ)b. Let (α, β) be a basis of a and (γ, δ) be a basis of b. Then
(λγ, λδ) is a basis of (λ)b = a. So there exists

σ :=

(
a b
c d

)
∈ GL2(Z)

such that
(
α β

)
σ =

(
λγ λδ

)
. But then we have(

α β

α β

)
σ =

(
λγ λδ

λγ λδ

)
.

Taking the determinant of this equality gives
√
DN(a) det(σ) = |λ|2

√
DN(b) (since (α, β) and

(γ, δ) are respectively correctly ordered bases of a and b). This implies that det(σ) > 0, and
since we already know that det(σ) ∈ {±1} (because σ ∈ GL2(Z)), we deduce that σ ∈ SL2(Z).
We also deduce that

|λ|2 =
N(a)

N(b)
. (4)
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Then :

ϕσa,(α,β)(X,Y ) =
NK/Q(α(aX + bY ) + β(cX + dY ))

N(a)

=
NK/Q((αa+ βc)X + (αb+ βd)Y )

N(a)

=
NK/Q(λγX + λδY )

N(a)

=
NK/Q(λ)NK/Q(γX + δY )

N(a)

and using the fact that NK/Q(λ) = λλ = |λ|2 and equality (4), we conclude that ϕσa,(α,β)(X,Y ) =

ϕb,(γ,δ)(X,Y ). Therefore, [ϕa] = [ϕb] in Q+
D/∼.

(iii) • Surjectivity : Let ϕ = aX2 + bXY + cY 2 ∈ Q+
D. We want to show that there exists an ideal

a in OK such that [ϕa] = [ϕ].

Consider a := aZ + b−
√
D

2 Z = a(Z + zϕZ). This is an ideal of OK as we proved above.

Since
√
D is not real,

(
a, b−

√
D

2

)
is a Z-basis of a. Therefore, the norm of a is given by

proposition 2.1.7, and is easily seen as the content of the form :(
aX +

b−
√
D

2
Y

)(
aX +

b+
√
D

2
Y

)
.

But this form is nothing but aϕ(X,Y ), and so it has content a (as ϕ is primitive). Thus,

N(a) = a. Now, a direct computation shows that the basis
(
a, b−

√
D

2

)
=: (α, β) is correctly

ordered, and that
ϕa,(α,β)(X,Y ) = ϕ.

This shows that [ϕa] = [ϕ].

• Injectivity : Let a, b be two ideals of OK , take (α, β) (resp. (γ, δ)) a correctly ordered basis
for a (resp. for b), and suppose that ϕa,(α,β) ∼ ϕb,(γ,δ). The aim is to show that there exists
λ ∈ K× such that a = (λ)b. For brevity, let us denote :

F (X,Y ) := ϕa,(α,β)(X,Y ) =
NK/Q(αX + βY )

N(a)

and

G(X,Y ) := ϕb,(γ,δ) =
NK/Q(γX + δY )

N(b)

The assumption F ∼ G gives us a matrix σ =

(
a b
c d

)
∈ SL2(Z) such that G = F σ, i.e.

(γX + δY )(γX + δY )

N(b)
=

((αa+ βc)X + (αb+ βd)Y )
(
(αa+ βc)X + (αb+ βd)Y

)
N(a)

.

By looking at the zeros of the polynomial G(X, 1), we see that αa+βc
αb+βd = γ

δ or γ

δ
, so there

exists λ ∈ K× such that :{
αa+ βc = λγ

αb+ βd = λδ
or

{
αa+ βc = λγ

αb+ βd = λδ

However, in the second case, we would have :
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(
α β

α β

)(
a b
c d

)
=

(
λγ λδ

λγ λδ

)
.

Since ad− bc = 1, taking the determinant leads to N(a)
√
D = −|λ|2N(b)

√
D, hence a sign

contradiction. Thus, only the �rst case can happen. In this case, we have that (λγ, λδ) is
deduced from (α, β) by multiplication by σ ∈ SL2(Z). This implies that (λγ, λδ) is also a
basis of a, hence a = (λ)b and this concludes the proof.

Remark. We can use this bijection to endow Q+
D/∼ with a group structure, which corresponds to the

composition law originally considered by Gauss. This composition law is discussed at the beginning of
chapter 22 of [IK04]. Quite recently, Manjul Bhargava discovered a very elegant way to look at Gauss
composition law, see [Bha04].

Counting representations of an integer : We still assume that D is a negative fundamental
discriminant, and denote by K = Q(

√
d) an imaginary quadratic �eld of discriminant D. As in the

end of section 2.2, let us denote by S := {ϕ1, . . . , ϕh} a representative set for Q+
D/∼. We also use

again the notation ri(n) for the number of representations of n by a quadratic form ϕi, that is :

ri(n) := |
{

(x, y) ∈ Z2 | ϕi(x, y) = n
}
|.

We are interested in the total number of representations of n by our complete system of representatives
of Q+

D/∼ :

RD(n) :=

h∑
i=1

ri(n).

In fact, we are going to show that this is more or less equivalent to counting ideals of OK with norm
equal to n. More precisely, we have the following theorem.

Theorem 2.3.1. Let w :=
∣∣O×K∣∣ be the number of units in OK (see proposition 2.1.4). Let us denote

by ρi(n) the set of representations of n by ϕi, so that ri(n) = |ρi(n)|. There is a surjective w-to-1 map
from the disjoint union of the sets ρi(n) to the set of integral ideals a of OK such that N(a) = n. In
particular, RD(n) = w #{a integral ideal in OK | N(a) = n}.

Proof. (Adapted from [Tao14]). Let us stress that in this statement, we use the notion of disjoint union
for sets that are non necessarily pairwise disjoint. Indeed, if (x, y) is a representation of n by ϕi and
ϕj for some i 6= j, we will map it to two di�erent ideals, one when we consider (x, y) as an element of
ρi(n), and one other ideal when we consider (x, y) as an element of ρj(n).

For all i ∈ {1, . . . , h}, if we write

ϕi(X,Y ) = aiX
2 + biXY + ciY

2

let us denote by (αi, βi) the basis
(
ai,

bi−
√
D

2

)
of aϕi (the ideal associated with ϕi, as described in the

paragraph about associating an ideal to a quadratic form). Then we proved (see the point (iii) of the
paragraph connecting the two points of view on the class group) :

ϕaϕi ,(αi,βi)
= ϕi

Now, let us explain how to assign an ideal of norm n to any representation of n by one of the ϕi's.
Let (x, y) be a representation of n by ϕi ∈ S. Then we have that

n = ϕi(x, y)

= ϕaϕi ,(αi,βi)
(x, y)

=
NK/Q (αix+ βiy)

N(aϕi)
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Using the fact that OK is a Dedekind domain, and that (αix+ βiy)OK ⊆ aϕi , we can deduce that
there is a unique ideal b ⊆ OK such that

(αix+ βiy)OK = aϕib. (5)

But if we take the norms, we get N ((αix+ βiy)OK) = NK/Q(αix+ βiy) = N(aϕi)N(b) on one hand,
and on the other hand, we also have NK/Q (αix+ βiy) = nN(aϕi). Therefore, this unique ideal b has
norm n, and this is the ideal we assign to the representation (x, y).

Now, we need to explain that the map we de�ne this way is indeed w to 1. First of all, equation (5)
tells us that [b] = [aϕi ]

−1 in Cl(OK). This implies that if (x, y) and (u, v) are two representations of n
by di�erent forms (ϕi and ϕj for i 6= j), then they will never be mapped to the same ideal. Therefore,
we just need to show the to following points :

• if b arises from a representation of n by some ϕi, then there are exactly w representations of n
by ϕi that lead to the same ideal b.

• every integral ideal b in OK of norm n arises in this way (i.e. comes from a representation of n
by one of the ϕi's).

Suppose that b comes from a representation (x, y) of n by ϕi. Then the other representations (u, v)
of n by ϕi leading to the same ideal b are exactly those for which (αiu+ βiv)OK = (αix+ βiy)OK .
But two principal ideals are equal if and only if their generators are the same modulo multiplication
by a unit. So the other representations (u, v) are exactly the (u, v) such that αiu+βiv = µ(αix+βiy)
for any µ ∈ O×K . Since each µ gives a di�erent element of aϕi (we recall that aϕi is an ideal of OK , so
it is stable under multiplication by elements of OK) and since (αi, βi) is a Z-basis of aϕi , we have the
following :
For all µ ∈ O×K there exists a unique (u, v) ∈ Z2 such that αic+ βid = µ(αix+ βiy). This proves that
there are exactly w representations of n by ϕi that are mapped to b.

Finally, let b be an integral ideal of norm n, and let us prove that there exists a representation of n by
one of the ϕi's that is mapped to b.

As S = {ϕ1, . . . , ϕh} is a representative set for Q+
D/∼, the associated ideals describle completely the

class group :
Cl(OK) = { [aϕi ] , 1 6 i 6 h}

Therefore, there exists a unique i ∈ {1, . . . , h} such that [b] = [aϕi ]
−1. Then the ideal aϕib is a principal

ideal of OK , contained in aϕi = αiZ + βiZ. So there exists (x, y) ∈ Z2 such that

aϕib = (αix+ βiy)OK . (6)

Then if we take the norms in this equality and use the fact that N(b) = n and that for all z ∈ OK ,
N(zOK) = NK/Q(z), we get that (x, y) is a representation of n by the form ϕaϕi ,(αi,βi)

= ϕi. Besides,
equality (6) tells us that this representation of n is mapped to the ideal b, and this �nishes the proof.

Thanks to this theorem, we will be able to prove the simple expression for RD(n) stated without proof
in theorem 2.2.12. A key step is the following lemma.

Lemma 2.3.2. Let K = Q(
√
d) be an imaginary quadratic �eld (in fact the result also holds in any

number �eld). For all n ∈ N∗, let us denote by F (n) the number of integral ideals of OK of norm n.
Then F is a multiplicative function, that is : for all a, b coprime integers, F (ab) = F (a)F (b).

Proof. For all c ∈ N∗, let us denote by I (c) the set of ideals c in OK such that N(c) = c (so that
F (c) = |I (c)|).
Let us prove that when a and b are coprime positive integers, the map
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I (a)×I (b) → I (ab)
(a, b) 7→ ab

is a bijection (this will show the multiplicativity of F ). First of all, this map is well-de�ned, because
for all (a, b) ∈ I (a)×I (b), N(ab) = ab thanks to proposition 1.6.8.
Now, let c ∈ I (ab), and let us prove that we can write c = ab with N(a) = a and N(b) = b, and a and
b uniquely determined.
If such a factorization exists, let us write a = pα1

1 . . . pαss and b = p
αs+1

s+1 . . . p
αs+t
s+t (using the fact that

OK is a Dedekind domain, so we have an essentially unique factorization of ideals into products of
non-zero prime ideals). For the moment, we don't know whether or not the same prime ideals appear
in the factorization of a and b. There could exist i ∈ {1, . . . , s} and j ∈ {1, . . . , t} such that pi = ps+j .
But in fact, we are going to prove that this cannot happen. For all i, we denote by pi the unique prime
on which pi lies above, that is : the unique rational prime such that pi ∩ Z = piZ. Then the norm of
pi is some positive power of pi (just because Z/piZ → OK/pi is a �nite �eld extension). As a and b
are coprime, the equalities N(a) = N(p1)α1 . . .N(ps)

αs = a and N(b) = N(ps+1)αs+1 . . .N(ps+t)
αs+t = b

show that all the pi's are distinct, since they lie above distinct primes. Therefore, the factorization
c = ab = pα1

1 . . . pαss p
αs+1

s+1 . . . p
αs+t
s+t is the factorization of c into a product of distinct non-zero prime

ideals. This shows that a and b are uniquely determined : if we write the factorization of c, the ideal a
is the product of the prime factors that lie above the prime divisors of a, whereas b is the product of
the prime factors that lie above the prime divisors of b. Conversely, one checks that with this choice,
we obtain a ∈ I (a) and b ∈ I (b).

Thanks to the multiplicativity of F , we just need to focus on the study of F (pk) for p prime. This is
the aim of the next proposition.

Proposition 2.3.3. For all p prime and k ∈ N,

F (pk) =

k∑
i=0

(
D

pi

)
= 1 +

k∑
i=1

(
D

p

)i
Proof. See [Hec81], lemma just before theorem 148.
First, let us recall an argument that we already used in the proof of the previous lemma : if a =
pα1

1 . . . pαrr (factorization as a product of distinct non-zero prime ideals), and if we denote by pi the
prime pi lies above, then N(a) = N(p1)α1 . . .N(ps)

αs and each N(pi) is a power of pi. Thus, if an ideal
a ⊆ OK has norm equal to pk for some prime number p, this means that the only prime ideals that
appear in the factorization of a are lying above p.

Now, let us start the proof of the proposition. Let p be a �xed prime number, and k > 1. If a is an
ideal in OK such that N(a) = pk, then by what we just recalled, this means that a is a product of
prime ideals lying above p. Thanks to proposition 2.1.8, we have three distinct cases :

(i)
(
D
p

)
= −1 : in this case, p is inert, meaning that the ideal pOK =: p is a prime ideal in OK .

Since the ideals lying above p are exactly the ideals that appear in the factorization of pOK as
a product of non-zero prime ideals, we get that p is the only prime ideal lying above p. Thus, a
has to be of the form pu for some u > 0. Then pk = N(a) = N(pu) = N(puOK) = p2u. Therefore,

if k is even, there is exactly one ideal in OK of norm pk (and it is the ideal generated by p
k
2 in

OK). If k is odd, then there is no ideal of norm pk in OK . Thus :

F (pk) =

{
1 if k is even

0 if k is odd

in agreement with the equality in the proposition.

26



(ii)
(
D
p

)
= 0 : in this case, p is totally rami�ed i.e. pOK = p2 for some non-zero prime ideal p.

As above, this means that an ideal a of norm pk is necessarily a power of p : a = pu. Then
pk = N(a) = N(p)u. But N(p) = p (see the section 2.1, where we recalled some facts about
imaginary quadratic �elds), hence u = k. Therefore, there is a unique ideal of norm pk, and it is
a := pk. So

F (pk) = 1 = 1 +
k∑
i=1

(
D

p

)i

(iii)
(
D
p

)
= +1 : in this case, p is split, that is pOK = p1p2 for two distinct prime ideals p1 and p2.

Then an ideal a of norm pk is necessarily of the form pu1p
v
2 for some u, v ∈ N. But the condition

N(a) = pk combined with fact that N(p1) = p = N(p2) implies that u + v must be equal to k.
Thus, we have k + 1 possibilities for (u, v) (namely the tuples (i, k − i), for i ∈ {0, . . . , k}). This
shows that there are k + 1 ideals of norm pk. So

F (pk) = k + 1 = 1 +
k∑
i=1

(
D

p

)i
and this �nishes the proof.

Corollary 2.3.4. Using the multiplicativity of F and the previous proposition, we deduce that for all
n ∈ N∗,

F (n) =
∑
m|n

(
D

m

)
Combining this result and the link between F and the number of representations of n by a complete
system of non-equivalent binary quadratic form (theorem 2.3.1), we �nally have a proof of theorem
2.2.12, in the case where D is fundamental discriminant (and, to me, it looks like we don't need the
assumption gcd(n,D) = 1 anymore).

Theorem 2.3.5. Let D be a negative fundamental discriminant, and let n ∈ Z be a positive integer.
Then :

RD(n) = w
∑
m|n

(
D

m

)
where w is given by (3) and

(
D
·
)
is the Kronecker symbol (see appendix B).

Proof. Follows immediately from the preceding corollary and theorem 2.3.1.

According to a semester project report [PG12], to have a nice correspondence between forms of dis-
criminant D and ideals in quadratic �elds when D is not a fundamental discriminant, one needs to
work with orders in quadratic �elds, and not only ring of integers.

2.4 Dirichlet class number formula for imaginary quadratic �elds

For this section, the following references have been of great help : [PG12], who took inspiration from
[Gra07] (and the latter refers to the book of Davenport [Dav80]).

The aim is to prove the following theorem, which makes a connection between the value at 1 of the
Dirichlet L-function associated with the character

(
D
·
)
and the class number of the imaginary quadratic

�eld K = Q(
√
D).
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Theorem 2.4.1 (Dirichlet class number formula). Let D be a negative fundamental discrimi-
nant, K = Q(

√
d) an imaginary quadratic �eld with discriminant D. Let us denote by χD :=

(
D
·
)
the

Kronecker symbol (see appendix B). Then

L(1, χD) =
2π

w
√
|D|
|Cl(OK)|

where w still denotes the number of units in OK .

Proof. With the notations introduced before, the main idea is to evaluate in two di�erent ways the
quantity

lim
N∞

1

N

N∑
n=1

RD(n).

• The �rst way : we replace RD(n) by its expression in terms of χD (theorem 2.3.5). This gives

1

N

N∑
n=1

RD(n) =
1

N

N∑
n=1

w
∑
m|n

χD(m) =
w

N

∑
16m16N

∑
16m26 N

m1︸ ︷︷ ︸⌊
N
m1

⌋
terms

χD(m1)

=
w

N

∑
16m6N

⌊
N

m

⌋
χD(m)

We would like to approximate
⌊
N
m

⌋
by N

m , in order to have a partial sum of L(1, χD). The problem
is that if we are not subtle, we will get∣∣∣∣∣∣

∑
16m6N

⌊
N

m

⌋
χD(m)−

∑
16m6N

N

m
χD(m)

∣∣∣∣∣∣ 6
∑

16m6N

∣∣∣∣⌊Nm
⌋
− N

m

∣∣∣∣︸ ︷︷ ︸
61

|χD(m)|︸ ︷︷ ︸
61

6 N

which is not a su�ciently good inequality to conclude that :

lim
N∞

1

N

∑
16m6N

⌊
N

m

⌋
χD(m) = lim

N∞

1

N

∑
16m6N

N

m
χD(m) = L(1, χD).

Thus, we split the sum at some rank k (to be determined later), and control di�erently the �rst
terms and the last terms.

∑
16m6N

⌊
N

m

⌋
χD(m) =

∑
16m6k

⌊
N

m

⌋
χD(m) +

∑
k<m6N

⌊
N

m

⌋
χD(m).

For the lowest values, we use just approximate
⌊
N
m

⌋
by N

m as follows :∣∣∣∣∣∣
∑

16m6k

⌊
N

m

⌋
χD(m)−

∑
16m6k

N

m
χD(m)

∣∣∣∣∣∣ 6
∑

16m6k

∣∣∣∣⌊Nm
⌋
− N

m

∣∣∣∣︸ ︷︷ ︸
61

|χD(m)|︸ ︷︷ ︸
61

6 k (7)

whereas for the highest values we proceed like this :

∑
k<m6N

⌊
N

m

⌋
χD(m) =

∑
k<m6N

∑
16`6N

m

χD(m) =
∑

16`<N
k

∑
k<m6N

`

χD(m)
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So that :

∣∣∣∣∣∣
∑

k<m6N

⌊
N

m

⌋
χD(m)

∣∣∣∣∣∣ 6
∑

16`<N
k

∣∣∣∣∣∣∣
∑

k<m6N
`

χD(m)

∣∣∣∣∣∣∣︸ ︷︷ ︸
6|D| by lemma A.4

6
|D|N
k

(8)

Thus, if we choose k := b
√
Nc, we obtain :∑

16m6N

⌊
N

m

⌋
χD(m) =

∑
16m6b

√
Nc

⌊
N

m

⌋
χD(m) +

∑
b
√
Nc<m6N

⌊
N

m

⌋
χD(m)

=
N∞

∑
16m6b

√
Nc

N

m
χD(m) +O(

√
N) +O(

√
N)

thanks to (7) and (8). Note that the implied constants in the "O(
√
N)" can depend on D since

we work with a �xed discriminant. Then :

1

N

N∑
n=1

RD(n) =
w

N

∑
16m6N

⌊
N

m

⌋
χD(m)

=
N∞

w

N

 ∑
16m6b

√
Nc

N

m
χD(m) +O(

√
N)


=
N∞

w
∑

16m6b
√
Nc

χD(m)

m
+ o(1)

and so :

1

N

N∑
n=1

RD(n) −→
N∞

wL(1, χD) (9)

(here we used the fact that the L-function associated with χD is still well-de�ned at 1. This is a
consequence of the general fact that we recall in appendix A, proposition A.8).

• The second way : we use the de�nition of RD(n). Let us denote by S := {ϕ1, . . . , ϕh} a complete
system of non-equivalent forms modulo the action of SL2(Z) on Q+

D (for instance, one can take
the ϕi's reduced in the sense of de�nition 2.2.5). Note that h = |Cl(OK)| by the correspondence
we proved between binary quadratic forms and the class group. We recall that we introduced
the notation

ri(n) :=
{

(x, y) ∈ Z2 | ϕi(x, y) = n
}
.

and that RD(n) was de�ned as the sum of the numbers ri(n). Thus,

1

N

N∑
n=1

RD(n) =
1

N

N∑
n=1

h∑
i=1

ri(n) =
h∑
i=1

1

N

N∑
n=1

ri(n)

Now, we are going to prove that
1

N

N∑
n=1

ri(n) converges as N goes to in�nity, and that the limit

does not depend on i. Let us denote ϕi = aX2 + bXY + cY 2, with b2 − 4ac = D and a > 0.

Then the sum 1 +

N∑
n=1

ri(n) equals the number of pairs of integers (u, v) belonging to the domain

E :=
{

(x, y) ∈ R2 | ax2 + bxy + cy2 6 N
}
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(the +1 is just here to count the solution (0, 0), which is the only representation of 0 by ϕi since
we work with forms that are positive de�nite).

As in the famous Gauss circle problem, we can prove that the number of integer points in the
domain E (which is the area of the plane delimited by an ellipse) is the area of the domain +
an error term of the size of the perimeter. This can be proved by covering E by unit squares
centered at the integer points. I refer to [PG12] for more details on this part. In the end, we get
that

1 +
N∑
n=1

ri(n) =
N∞

Area(E ) +O(
√
N)

We don't do the computation and take as a fact that

Area(E ) =
2π√
|D|

N

so that
1

N

N∑
n=1

ri(n) −→
N∞

2π√
|D|

. This is indeed independent of i, and so we deduce that

1

N

N∑
n=1

RD(n) −→
N∞

2πh√
|D|

(10)

Comparing the limits obtained via the two methods (equations (9) and (10)) gives the Dirichlet class
number formula for imaginary quadratic �elds :

L(1, χD) =
2π

w
√
|D|
|Cl(OK)|

Besides, there is a strong connection between L( · , χD) and the zeta fonction of K = Q(
√
d).

Proposition 2.4.2. For all s ∈ C such that Re(s) > 1,

ζK(s) = ζ(s)L(s, χD)

Proof. Let s ∈ C such that Re(s) > 1. By proposition 1.6.11, we have

ζK(s) =
∏
p

(
1− 1

N(p)s

)−1

We split this product in three parts : a product over the prime ideals lying over a split rational prime,
a product over the prime ideals lying over a totally rami�ed rational prime, and a product over the
inert primes.

ζK(s) =
∏
p split

∏
p|p

(
1− 1

N(p)s

)−1

×
∏

p tot. ram.

∏
p|p

(
1− 1

N(p)s

)−1

×
∏
p inert

∏
p|p

(
1− 1

N(p)s

)−1

We can replace N(p) by its value, according to the paragraph above proposition 2.1.8. This gives :

ζK(s) =
∏
p split

∏
p|p

(
1− 1

ps

)−1

︸ ︷︷ ︸
two factors

×
∏

p tot. ram.

∏
p|p

(
1− 1

ps

)−1

︸ ︷︷ ︸
only one factor

×
∏
p inert

∏
p|p

(
1− 1

p2s

)−1

︸ ︷︷ ︸
only one factor
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hence

ζK(s) =
∏
p split

(
1− 1

ps

)−2

×
∏

p tot. ram.

(
1− 1

ps

)−1

×
∏
p inert

(
1− 1

p2s

)−1

=
∏
p

(
1− 1

ps

)−1

×
∏
p split

(
1− 1

ps

)−1 ∏
p inert

(
1 +

1

ps

)−1

Here we used the identity 1− 1
p2s

=
(

1− 1
ps

)(
1 + 1

ps

)
. In this last factorization of ζK , the �rst product

is the Euler product of the Riemann Zeta function, and the second part is exactly

∏
p

(
1− χD(p)

ps

)−1

which is equal to L(s, χD) by proposition A.6 (in the appendix on L-functions). This gives the result.

Since we know that ζ has an analytic continuation to C with a single pole at s = 1, where the residue
equals 1, we deduce the following corollary :

Corollary 2.4.3. Let K = Q(
√
d) be an imaginary quadratic �eld with discriminant D. Then we

have :

ress=1ζK(s) =
2π

w
√
|D|
|Cl(OK)|

We proved this statement only for imaginary quadratic �elds, but in fact if K is any number �eld, a
similar analytic formula for the class number also holds. A precise statement and a proof can be found
in [Lan94].
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3. Sums of three squares

The aim of this section is to start the core of this master thesis, namely the study of integer points
on spheres. We answer the �rst question that arises when studying such a problem : "when are there
integer points on a sphere ?".

The sphere of radius
√
d is the set of points (x, y, z) ∈ R3 such that x2 + y2 + z2 = d. We will denote

by R3(d) the set of integers points :

R3(d) = {(x, y, z) ∈ Z3 | x2 + y2 + z2 = d}

The question we try to answer in this section is "for which values of d is R3(d) non-empty ?"
In other words, which integers can be written as the sum of three squares of integers ?
Once we know when it is non-empty, the next natural question is to estimate the size of this set. That
is why we also introduce a notation for the number of integer points : r3(d) := |R3(d)|.

In this thesis, we focus on the case of two-dimensional spheres, but the question is also interesting
in other dimensions. For all m ∈ N∗, we will denote Rm(d) the set of (x1, . . . , xm) ∈ Zm such that
x2

1 + · · · + x2
m = d and by rm(d) the cardinality of Rm(d) : the number of representations of d as a

sum of m squares.

For spheres of dimension 1, the question becomes : which integers are the sum of two squares ? (or
equivalently : when is R2(d) non-empty ?). The classical way to answer this question is to work in
the ring Z[i] of gaussian integers, where the question becomes : which numbers arise as the norm of a
gaussian integer ? By multiplicativity of the norm, it is even su�cient to answer the question : which
prime numbers arise as the norm of a gaussian integer ? We obtain the following reformulation of
theorem 2.2.2 :

Theorem 3.0.1. For all d ∈ N∗, R2(d) is non-empty if and only if every prime factor p of d sat-
isfying p ≡ 3 mod 4 appears with an even power in the factorization of d. Moreover, the number of
representations of d as a sum of two squares is also known :

r2(d) := |R2(d)| = 4(d1(d)− d3(d))

where di(d) denotes the number of divisors of d (not necessarily prime) that are congruent to i modulo
4.

Proof. At the end of [RMS18], there is a nice problem, with a lot of intermediate questions leading to
this result, starting almost from highschool level.

For three-dimensional spheres, the result is also well known, and there is an elegant proof due to Venkov
([Ven22], [Ven29]) which follows exactly the steps of the proof of the two-square theorem, except that
the ring Z[i] is replaced by the (non-commutative) ring of Hurwitz quaternions (we give more details
in the sequel).

Theorem 3.0.2. Every natural number d ∈ N is a sum of four squares, i.e. for all d ∈ N, R4(d) is
non-empty. Moreover, there is also a formula for the number of representations :

r4(d) = |R4(d)| = 8
∑

m|d, 4-m

m

Proof. For the fact that every integer d > 0 is a sum of four squares, the proof based on quaternions
is detailed in [Hin08], chapter III, or also in [Sam71]. For the number of representations (this part of
the statement is called Jacobi's four-square theorem), many methods and references are given in this
mathover�ow discussion :
https://mathoverflow.net/questions/84897/proofs-of-jacobis-four-square-theorem.
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Now, our aim in this section is to get a statement similar to theorems 3.0.1 and 3.0.2 for sums of three
squares. We start by reminders on Hurwitz quaternions, since they will be useful at the end of the
proof. Indeed, using a local-global principle, we will be able to deduce, starting from representations
as sums of three squares in Qp, representations of an integer as a sum of three squares in Q. Then,
it is the fact that the ring of Hurwitz quaternions is euclidean (and some corollaries of this fact) that
will allow us to deduce representations as sums of three squares in Z.

3.1 Quaternions

This section contains generalities on quaternions, that one can �nd in [Sam71] section 5.7, or [Hin08],
chapter III (in both references, the aim is to prove the four-square theorem using quaternions). How-
ever, we use the same notations as in [EMV10], because it is our main reference for the proof of the
three-square theorem.

We denote by B(Q) the Q-algebra of Hamilton quaternions. It is a Q-vector space of dimension 4,
with a basis denoted by (1, i, j, k). The multiplication in B(Q) is de�ned by the rules :

i2 = j2 = k2 = −1 and ij = −ji = k.

Endowed with this multiplication, B(Q) is a non-commutative Q-algebra. The elements of B(Q) are
called quaternions. They can all be written uniquely as u+ ai+ bj + ck with (u, a, b, c) ∈ Q4.

De�nition 3.1.1. If x = u+ ai+ bj + ck ∈ B(Q), we de�ne :

• its conjugate x := u− ai− bj − ck

• it reduced trace Tr(x) := x+ x = 2u

• its reduced norm N(x) := xx = u2 + a2 + b2 + c2

Note that for all x, y ∈ B(Q), we have x+ y = x+ y but xy = y x (it reverses the order of multiplica-
tion).

One can view B(Q) as a subset ofM2(C) by identifying 1 with 1 :=

(
1 0
0 1

)
, i with I :=

(
i 0
0 −i

)
,

j with J :=

(
0 1
−1 0

)
and k with K :=

(
0 i
i 0

)
. Then B(Q) is the sub-Q-vector space of M2(C)

generated by these four matrices :

B(Q) =
{
u1 + aI + bJ + cK, (u, a, b, c) ∈ Q4

}
It is easy to verify that the trace of a quaternion coincides with the trace of the associated matrix, and
that its norm is nothing but the determinant of the associated matrix when we see B(Q) as a subset
ofM2(C) under the above identi�cations. This gives an easy proof of the following properties.

Proposition 3.1.2. If x, y ∈ B(Q), then

• Tr(x+ y) = Tr(x) + Tr(y)

• N(xy) = N(x)N(y)

• x2 − Tr(x)x+ N(x) = 0.

We also have that B(Q) is a division ring : for every x ∈ B(Q)\{0}, N(x) > 0 and we have x x
N(x) = 1.

As x
N(x) belongs to B(Q), this shows that any non-zero quaternion is invertible, and its inverse is given

by x
N(x) · Therefore, the set of units in B(Q), denoted by B×, is nothing but B(Q) \ {0}. It is a non

commutative group for the multiplication of quaternions, and it is not hard to prove that its center,
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denoted by Z(B×), is Q×1. We will often forget the "1" because we see Q as a subset of B(Q) by
identifying Q and Q1. We also introduce the notation

PB× := B×/Z(B×) = B×/Q× (11)

Since elements of Q× commute with all the other quaternions, conjugation by those elements is the
identity of B×. This is why the group that we are naturally led to consider when working with inner
automorphisms of B× is PB×. We will see this in section 4.1.

De�nition 3.1.3. We denote by B(0)(Q) the set of trace-free quaternions, also called pure quaternions :

B(0)(Q) := {x ∈ B(Q) | Tr(x) = 0} = {ai+ bj + ck, (a, b, c) ∈ Q3}

Finally, we also introduce the ring of Hurwitz quaternions :

B(Z) := Z1 + Zi+ Zj + Zk + Zδ, where δ :=
1 + i+ j + k

2

It is the set of quaternions u+ ai+ bj + ck where u, a, b, c are either all in Z or all in Z + 1
2 .

It is not hard to check that B(Z) is a subring of B(Q), and a free Z-module of rank 4 (a basis is
given by i, j, k, δ) : we say that it is an order of B(Q). This order looks less natural to consider than
Z+Zi+Zj+Zk, but it has nicer properties. First of all, the norms of elements in B(Z) reach exactly
the same integers as the norms of elements in Z + Zi+ Zj + Zk, i.e.

N(B(Z)) = N(Z + Zi+ Zj + Zk) = {u2 + a2 + b2 + c2, (u, a, b, c) ∈ Z4}.
This is an important fact in the proof of the four-square theorem, since the right-hand side is exactly
the set of numbers that can be written as a sum or four squares, but on the left hand side, the ring
B(Z) has nice properties. The main result is that B(Z) is (both left and right)-euclidean. Let us make
this statement more precise.

Theorem 3.1.4. B(Z) is left-euclidean with respect to the reduced norm i.e. for all x ∈ B(Z) and
y ∈ B(Z) \ {0} there exists a unique (q, r) ∈ B(Z)2 such that{

x = qy + r

N(r) < N(y)

Similarly, B(Z) is right-euclidean with respect to the reduced norm (the property required is the same,
just replace x = qy + r by x = yq + r).

Proof. See [Hin08], chapter III.

In particular, this implies that every left ideal is principal (and similarly for right ideals).

Corollary 3.1.5. Let a ⊆ B(Z) be a left ideal (i.e. an additive subgroup of B(Z) such that B(Z)a ⊆ a :
we just require stability under multiplication on the left by elements of the ring). Then there exists y ∈ a
such that a = B(Z)y. Similarly, any right ideal b of B(Z) is of the form yB(Z) for some y ∈ b.

Proof. The proof is the same proof as in the commutative case, when we show that an euclidean ring
is a PID. Let a be a left ideal of B(Z). If a = {0} then we just have to take y = 0. Otherwise, when
a 6= {0}, there is an element of minimal non-zero norm : let us denote by y ∈ a such an element. It
satis�es

N(y) = min
y′∈a\{0}

N(y′).

Then of course B(Z)y ⊆ a (just because y ∈ a and a is a left ideal). Conversely, if x ∈ a, let us write
the euclidean division of x by y (theorem 3.1.4) : there exists a unique (q, r) ∈ B(Z) such that{

x = qy + r

N(r) < N(y)

Then r = x−qy ∈ B(Z) and its norm is less than N(y). By minimality of N(y), this implies that r = 0,
hence x = qy ∈ B(Z)y. This proves that a = B(Z)y. The case of right ideals goes the same way.
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Corollary 3.1.6. If M ⊆ B(Q) is a �nitely generated left B(Z)-module, then M is of the form B(Z)z
for some z ∈ B(Q). Similarly, any �nitely generated right B(Z)-module is of the form zB(Z).

Proof. Let M = B(Z)x1 + · · ·+ B(Z)xn be a �nitely generated left B(Z)-submodule of B(Q). For all
m ∈ {1, . . . , n}, we can write xm = um + ami+ bmj + cmk for some (um, am, bm, cm) ∈ Q4. Therefore,
if we multiply by some integer r su�ciently large to clear all the denominators of the um, am, bm, cm
for all m, then rM ⊆ B(Z) and so rM is a left ideal in B(Z). So we can �nd y ∈ B(Z) such that
rM = B(Z)y by the preceding corollary. Thus, M = B(Z)z with a := y

r ∈ B(Q). Note that we used
the fact that 1

rB(Z) = B(Z)1
r , which is true because Q1 is contained in the center of B(Q) (it is fact

equal to the center).

Corollary 3.1.7. If R is a subring of B(Q) which is �nitely generated as a Z-module, then it is
conjugate to a subring of B(Z).

Proof. Let R = Zx1 + · · ·+Zxn be a subring of B(Q), �nitely generated as a Z-module. Then RB(Z),
the right B(Z)-submodule of B(Q) generated by R, consists of the �nite sums of elements of the form
xy, where x ∈ R and y ∈ B(Z). It is easy to see that x1, . . . , xn generate RB(Z) as a B(Z)-module.
The preceding corollary then shows that there exists z ∈ B(Q) such that RB(Z) = zB(Z). This implies

z−1Rz ⊆ z−1RRB(Z) ⊆ z−1RB(Z) = z−1zB(Z) = B(Z)

So z−1Rz is a subring of B(Z), and this concludes the proof.

Finally, another important fact about the arithmetic of B(Z) is that the units are well known.

Proposition 3.1.8. The group of units in the ring B(Z), denoted by B(Z)× is exactly the set of
elements of norm 1. The explicit list is as follows :

B(Z)× =

{
±1,±i,±j,±k, ±1± i± j ± k

2

}
Proof. Recall that a quaternion z = u1 + ai+ bj + ck is in B(Z) if and only if u, a, b, c are either all in
Z or all in Z + 1

2 . From this it is easy to see that the norm of a Hurwitz quaternion in always in N.

• If z ∈ B(Z) is invertible (in B(Z)), then there exists z′ ∈ B(Z) such that zz′ = 1. Then by
multiplicativity of the norm : N(z)N(z′) = 1. But since N(z),N(z′) ∈ N, this implies that
N(z) = N(z′) = 1.

• Conversely, if z ∈ B(Z) has norm 1, then zz = 1, and z ∈ B(Z) since B(Z) is clearly stable under
conjugation. Thus, z ∈ B(Z)× and z−1 = z.

Now it is easy to see which elements of B(Z) have norm 1, and this leads to the explicit list given.

3.2 Sums of three squares in Qp

As we said at the beginning of the section, the strategy to prove the three-square theorem is to use a
local-global principle, together with the fact that �nding representations as a sum of three squares is
easier in Qp than in Q. The reason why we can �nd roots of polynomials more easily in Qp is because
Newton's lemma holds in such �elds. This lemma is sometimes called Hensel's lemma too. Let us give
a statement for complete non-archimedean valued �elds, Qp with the p-adic value being a �eld of this
kind.

Theorem 3.2.1 (Newton's lemma). Let (K, | · |) be a complete non-archimedean valued �eld, with
ring of integers OK . Let P ∈ OK [X] and α ∈ OK . Assume there exists ε ∈ [0, 1[ such that

|P (α)| 6 ε|P ′(α)|2

Then, there exists a unique α̃ ∈ OK such that P (α̃) = 0 and |α− α̃| 6 ε|P ′(α)|.
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Proof. See for instance the notes [Bri20].

Let us see how this lemma can be used to study sums of three squares in Qp. The reference [Gam06]
helped me understanding the next two propositions. First, we assume that p is odd.

Proposition 3.2.2. Let p be an odd prime and d ∈ Z. Then d is the sum of three squares in Zp (so
it is a sum of three squares in Qp).

Proof. We look at the equation x2 + y2 + z2 = d. We choose to look for solutions (x, y, z) ∈ Z3
p with

z = 1. Then the question is to show that there are p-adic integers x, y ∈ Zp such that x2 + y2 + 1 = d,
i.e. x2 + 1 = d − y2. But while x runs over Fp, x2 takes p+1

2 distinct values in Fp (because when p
is odd, there are p−1

2 squares in F×p and p−1
2 non-squares. So if we also count zero, which is a square,

we obtain that the number of squares in Fp is
p+1

2 ). This implies that x2 + 1 also takes p+1
2 distinct

values in Fp. The same argument shows that while y runs over Fp, d− y2 takes p+1
2 distinct values in

Fp. In other words, if we denote

A := {x2 + 1, x ∈ Fp} and B := {d− y2, y ∈ Fp}

we have |A| = |B| = p+1
2 . As |A ∪ B| = |A| + |B| − |A ∩ B| 6 p (because A ∪ B ⊆ Fp), this implies

that A ∩B 6= ∅.
Let x, y ∈ Z be such that that their reduction modulo p (denoted x, y) satisfy x2 + 1 = d − y2 in
Fp. Then the polynomial P (Z) := Z2 + x2 + y2 − d is in Z[Z] ⊆ Zp[Z]. Moreover, 1 ∈ Z ⊆ Zp and
|P (1)|p 6 1

p because by the choice of x and y, 1+x2+y2−d is divisible by p. Besides, 1
p = 1

p |P
′(1)|2p since

P ′(1) = 2, which has p-adic absolute value equal to 1 since p is odd. Thus, we have |P (1)|p 6 ε|P ′(1)|2p,
with ε = 1

p ∈ [0, 1[, so Newton's lemma applies. In particular, it tells us that there exists z ∈ Zp such

that P (z) = 0. Then (x, y, z) ∈ Z3
p is a representation of d as a sum of three squares in Zp.

Now, let us deal with the case p = 2.

Proposition 3.2.3. If d ∈ Z is not of the form 4a(8b+ 7), then it is the sum of three squares in Q2.

Proof. Let us write d = 4ad′ with 4 - d′ (we just factorize the highest power of 4 that we can). Then it
is su�cient to show that d′ is a sum of three squares in Q2. Indeed, if we can write d′ = x2 + y2 + z2,
then

d = 4ad′ = (2ax)2 + (2ay)2 + (2az)2

so it is also a sum of three squares in Q2. Now since d′ is not divisible by 4, and not congruent to 7
modulo 8 by assumption, we have d′ ≡ 1, 2, 3, 5, 6 mod 8. Now, we have the following table :

x y z x2 + y2 + z2 mod 8

0 0 1 1
0 1 1 2
1 1 1 3
2 0 1 5
2 1 1 6

which tells us that for any possible value of d′ modulo 8, there exist x, y ∈ Z such that x2 + y2 + 1 ≡
d′ mod 8. Then, the polynomial P (Z) := Z2 + x2 + y2 − d′ belongs to Z[Z] ⊆ Z2[Z] and satis�es
8 | P (1), so |P (1)|2 6 1

8 . On the other hand, P ′(1) = 2, so |P ′(1)|2 = 1
2 . Thus, |P (1)|2 6 ε|P ′(1)|2

with ε = 1
2 ∈ [0, 1[. So we can apply Newton's lemma to obatin the existence of a root z ∈ Z2 for the

polynomial P . Then (x, y, z) ∈ Z3
2 is a representation of d′ as a sum of three squares in Q2.
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3.3 Hasse-Minkowski local-global principle

In order to prove the three-square theorem, we will use a well known local-global principle. In this
section, we just state the result and refer to [Ser70], or [Gam06] for a proof.

This theorem is about representations of rationals by quadratic forms over Q, so we start by introduc-
ing some notations and vocabulary about quadratic forms.

Let K be �eld of characteristic di�erent from 2, and let V be a vector space over K. Then a quadratic
form on V is a map q : V → K satisfying

(i) for all x ∈ V and all λ ∈ K, q(λx) = λ2q(x).

(ii) the map (x, y) ∈ V × V 7→ q(x+ y)− q(x)− q(y) is a bilinear form.

We also de�ne the bilinear form associated with q to be the map b : (x, y) 7→ 1
2 (q(x+ y)− q(x)− q(y))

(here we use the assumption char(K) 6= 2). This form is clearly symmetric. Two vectors x, y ∈ V
are said to be orthogonal (with respect to the quadratic form q) if b(x, y) = 0. Finally, we say that
q is non-degenerate when the only vector which is orthogonal to every vector of V is 0 i.e. when the
implication "b(x, ·) = 0V ∗ =⇒ x = 0V " holds for all x ∈ V .

De�nition 3.3.1. Let α ∈ K×. We say that a quadratic form q : V → K represents α if there exists
x ∈ V such that q(x) = α.

We will only work with the quadratic form "sum of three squares" over Q3. In this case, the base �eld
is Q, and the vector space is V := Q3. The quadratic form we study is (writing x = (x1, x2, x3)) :

q3 : Q3 → Q
x 7→ x2

1 + x2
2 + x2

3

The bilinear form associated with q3 is the standard dot product on Q3 :

b3(x, y) =

x1

x2

x3

 ·
y1

y2

y3

 = x1y1 + x2y2 + x3y3

so that q3 is non-degenerated.

Although we will only need Hasse-Minkowski theorem for the quadratic form q3, let us give the state-
ment in a slightly more general setting :
Let q : Qn → Q be a quadratic form in n variables. It can be the "diagonal form" :

x = (x1, . . . , xn) 7→ x2
1 + · · ·+ x2

n

but also any homogeneous polynomial of degree 2, in n variables, with coe�cients in Q. For any
prime number p, we can view Q as a sub�eld of the �eld Qp of p-adic numbers, so the homogeneous
polynomial de�ning q can also be seen as a polynomial with coe�cients in Qp. Thus, we may extend
q to a quadratic form on Qn

p , just by applying the same polynomial to entries (x1, . . . , xn) ∈ Qn
p .

Similarly, the inclusion of Q inside R allows us to extend q to a quadratic form on Rn. We will
still denote these quadratic forms by q : they are given by the same homogeneous polynomial with
coe�cients in Q, we just apply the polynomial to entries in a larger �eld. With this little abuse of
notation, if a ∈ Q×, we will say that q represents a over Qp (resp. R), if there exists (x1, . . . , xn) in
Qn
p (resp. over Rn) such that q(x1, . . . , xn) = a.

Theorem 3.3.2 (Hasse-Minkowski). Let n > 2 and let q : Qn → Q be a non-degenerate quadratic
form. Then for all a ∈ Q×, q represents a over Q if and only if it represents a over R and over Qp

for every prime number p.
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In other words, if we apply this to the quadratic form q3 : for all a ∈ Q×, the equation

x2
1 + x2

2 + x2
3 = a

has a solution (x1, x2, x3) in Q3 if and only if it has a solution in R3 and a solution in Q3
p for every

prime p.

3.4 The three-square theorem

We can �nally prove the three-square theorem. The question was studied by Legendre, but the proof
he gave in 1798 was incomplete, because he assumed the existence of primes in arithmetic progressions,
and this result was only proved by Dirichlet 40 years later. The �rst complete proof was published by
Gauss in his Disquisitiones Arithmeticae (1801). We start by a lemma on squares modulo 8.

Lemma 3.4.1. If x, y, z ∈ Z, x2 + y2 + z2 6≡ 7 mod 8. Moreover, x2 + y2 + z2 ≡ 0, 4 mod 8 if and
only if x, y and z are even.

Proof. Reducing modulo 8 all the x2 for x ∈ {0, . . . , 7} leads to the following table :

x mod 8 0 1 2 3 4 5 6 7
x2 mod 8 0 1 4 1 0 1 4 1

In particular, for all x ∈ Z, x2 ≡ 0, 1 or 4 mod 8. From this, one can just check every possibility and
see that for all x, y, z ∈ Z, x2 + y2 + z2 6≡ 7 mod 8 : the following trees list all the possibilities for
x2 + y2 + z2 modulo 8.

x2 y2 z2 x2 + y2 + z2

0 0

0 1 1

4 4

0 1

0 1 1 2

4 5

0 4

4 1 5

4 0

x2 y2 z2 x2 + y2 + z2

0 4

0 1 5

4 0

0 5

4 1 1 6

4 1

0 0

4 1 1

4 4
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x2 y2 z2 x2 + y2 + z2

0 1

0 1 2

4 5

0 2

1 1 1 3

4 6

0 5

4 1 6

4 1

Moreover, we notice that x2 + y2 + z2 ≡ 0, 4 mod 8 if and only if x2, y2 and z2 are not congruent to 1
modulo 8, and this happens if and only if x, y and z are all even numbers.

Theorem 3.4.2 (Legendre-Gauss). An integer d ∈ N is the sum of three squares if and only if it
is not of the form 4a(8b+ 7) for some a, b ∈ N.

Proof. First, let us explain why the condition is necessary. Assume for a contradiction that there exists
a number of the form 4a(8b+7) which is representable as a sum of three squares. De�ne a0 as follows :

a0 := min{a ∈ N | ∃b ∈ N, 4a(8b+ 7) is a sum of three squares}.

Then a0 > 1 because a number of the form 8b+ 7 cannot be a sum of three squares (by the previous
lemma). Let b ∈ N and (x, y, z) ∈ Z3 be such that 4a0(8b+7) = x2 +y2 +z2. Since a0 > 1, x2 +y2 +z2

is divisible by 4, so it is congruent to 0 or 4 modulo 8. But this is only possible if x, y and z are even
(by lemma 3.4.1). Then we can divide by 4 and get :

4a0−1(8b+ 7) =
(x

2

)2
+
(y

2

)2
+
(z

2

)2

Since x, y and z are even, this is a representation of 4a0−1(8b + 7) as a sum of three squares, which
contradicts the minimality of a0. Thus, no integer of the form 4a(8b+ 7) is representable as a sum of
three squares.

Conversely, if d is not of the form 4a(8b+ 7), then for any prime p, the equation x2 + y2 + z2 = d has a
solution (x, y, z) ∈ Q3

p (by propositions 3.2.2 and 3.2.3). Moreover, since d > 0, it also has a solution
in R. Therefore, the Hasse-Minkowski local global principle gives us a solution in Q3 : there exists
(a, b, c) ∈ Q3 such that a2 + b2 + c2 = d. In other words, there exists z ∈ B(0)(Q) such that N(z) = d.
Since z is a pure quaternion, we have z = −z, hence N(z) = zz = −z2, so we deduce that z2 = −d.
In particular, Z[z] = Z + Zz, so that Z[z] is �nitely generated as a Z-module. As it is also a subring
of B(Q), corollary 3.1.7 implies that it is conjugate to a subring of B(Z). Let q ∈ B(Z) be such that
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qZ[z]q−1 ⊆ B(Z). Then in particular qzq−1 ∈ B(Z), but qzq−1 also belongs to B(0)(Q) because being
trace-free is stable under conjugation (if we see B(Q) ⊆ M2(C), this is just saying that two similar
matrices have the same trace). Thus, qzq−1 ∈ B(0)(Q) ∩ B(Z) = {ai + bj + ck, (a, b, c) ∈ Z3} and
N(qzq−1) = N(z) = d, which proves that d is the sum of three squares of integers.

De�nition 3.4.3. An integer that can be represented as a sum of three squares of integers will be called
admissible.

To get back to the notations of the introduction of this section on sums of squares : d is admissible if
and only if R3(d) is non empty.
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4. Counting representations as a sum of three squares

We know from theorem 3.4.2 that R3(d) is non empty if and only if d is not of the form 4a(8b+ 7) for
some a, b ∈ N. The question we want to study now is the size of R3(d). We will only study the case
where d is square-free, in particular d is congruent to 1, 2, 3, 5 or 6 modulo 8 (the other possibilities
are either excluded by the "square-free" assumption, or by the condition in theorem 3.4.2). In fact we
can split the situation in two cases : either d ≡ 1, 2 mod 4, or d ≡ 3 mod 8. There is a slight di�erence
between the two cases, and we will only give a full proof in the �rst case.

Given an admissible, square-free integer d > 2, such that d ≡ 1, 2 mod 4, we will denote by K the
�eld Q(

√
−d). As we will see, there is an action of Cl(OK) on R̃3(d)+, where R̃3(d)+ is the quotient

of R3(d) under the natural action of SO3(Z)+ (the notations are introduced in the section below).
We prove in section 4.3 that this action is free and transitive, and this will lead to a surprising and
beautiful relation between the class number of K = Q(

√
−d) and |R3(d)|.

4.1 Geometric aspects of quaternions

In this section, we explain in detail some identi�cations that are useful to understand the action that
will allow us to count the number of representations of an integer as a sum of three squares. This will
give us a geometric point of view on some algebraic operations involving quaternions.

As B(Q) is not commutative, the action of B× (= B(Q) \ {0}) on B(Q) by conjugation is often non
trivial. For all x ∈ B×, we de�ne

γx : B(Q) → B(Q)
z 7→ xzx−1

(the "conjugation by x"). It is a Q-linear map from B(Q) to itself, which is invertible (the inverse
being γx−1). Of course if q ∈ Q× and x ∈ B×, we have γqx = γx (because Q× = Z(B×)). Thus, the
automorphism γx only depends on the class of x in the quotient PB×. We denote the class of x by [x].
This just means

[x] =
{
qx, q ∈ Q×

}
.

Then we have a group action of PB× on B(Q) :

PB× × B(Q) → B(Q)
([x], z) 7→ γx(z) = xzx−1

Since trace-free quaternions are stable by conjugation by any element, this allows us to restric the
action to B(0)(Q) :

PB× × B(0)(Q) → B(0)(Q)
([x], z) 7→ γx(z) = xzx−1

Now, (B(0)(Q),N) is a quadratic space which is isometric to (Q3, ‖ · ‖22) (where ‖ · ‖2 denotes the
restriction of the usual euclidean norm on R3, restricted to Q3). Indeed,

(a, b, c) ∈ Q3 7→ ai+ bj + ck ∈ B(0)(Q)

de�nes an isometry between those quadratic spaces. Note that even if we sometimes say that there is a
"natural" way to identify B(0)(Q) and Q3, it is only natural once we have chosen the basis of B(0)(Q)
to be (i, j, k). Once we have made this identi�cation, we may wonder what is the counterpart in Q3

of the action of PB× on B(0)(Q) ?

Indeed, we can think of the automorphism γx as an invertible linear map on Q3 i.e. an element of
GL(Q3). But is it any kind of linear map ?
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De�nition 4.1.1. We denote by O3(Q) the linear isometries of (Q3, ‖ · ‖22), that is : the subgroup of
GL(Q3) made of the endomorphisms f : Q3 → Q3 such that for all x ∈ Q3, ‖f(x)‖22 = ‖x‖22.

We denote by SO3(Q) the subgroup of O3(Q) made of the elements with determinant equal to 1.

By multiplicativity of the norm, we have : for all x ∈ B×, for all z ∈ B(0)(Q), N(xzx−1) = N(z), so
that γx acts on B(0)(Q) by isometry. So if we transport this in Q3 via our natural identi�cation, we
see that γx (seen as a transformation of Q3) is an element of O3(Q). In fact, it is even an element in
SO3(Q), but this is less immediate. We will need some extra work to understand this.

First, let us remark that the quadratic form N on B(0)(Q) is an euclidean norm : it comes from an
inner product on the Q-vector space B(0)(Q). Indeed, if x = ai+ bj+ ck and y = di+ ej+ fk are two
elements of B(0)(Q), de�ne

〈x, y〉 :=
Tr(xy)

2

Then a simple computation shows that 〈x, y〉 = ad+ be+ cf , so that under the identi�cation between
B(0)(Q) and Q3, this inner product is just the usual euclidean inner product on Q3.

De�nition 4.1.2. If (E, 〈·, ·〉) is an inner product space, a re�ection of E is a linear isometry s : E → E
with a hyperplane as a set of �xed points, and which acts as −id on the orthogonal complement.

In this setting, if x ∈ E \ {0}, let us denote by τx the re�ection with hyperplane x⊥. Then it takes the
following form : for all y ∈ E,

τx(y) = y − 2
〈y, x〉
‖x‖2

x

where ‖ · ‖ denotes the norm associated with the inner product 〈·, ·〉 i.e. ‖x‖2 = 〈x, x〉.

So if we go back to our space (B(0)(Q),N), re�ections take the following form :
For all x ∈ B(0)(Q), the re�ection of B(0)(Q) with hyperplan x⊥ is the map τx given by the explicit
expression : for all h ∈ B(0)(Q),

τx(h) = h− Tr(hx)

N(x)
x

But if we come back to the de�nition of the trace and norm of a quaternion, we can simplify this
expression as follows :

τx(h) = h−
(
hx+ hx

)
(xx)−1x

= h− hx x−1x−1x− xhx−1x−1x

= −xhx−1

But as x and h are in B(0)(Q), we have x = −x and h = −h, hence τx(h) = −xhx−1 = −γx(h).

With this description of the re�ections in B(0)(Q), we are ready to prove that B× acts by positive
isometries on Q3. We just need a last very famous result, that we will not prove here.

Theorem 4.1.3 (Cartan-Dieudonné). If (E, q) is a n-dimensional non degenerate quadratic space,
then every linear isometry of (E, q) is a product of at most n re�ections.

Proof. see for instance [Per96], chapter VIII. We will not use the full result, in fact we just need to
know that any isometry is a product of re�ections, the fact that it is a product of "at most n" can be
forgotten for our immediate purpose.

Proposition 4.1.4. For all x ∈ B×, γx (seen as a transformation of Q3) belongs to SO3(Q).
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Proof. Assume for a contradiction that there exists x ∈ B× such that γx ∈ O3(Q) \ SO3(Q). Then
by Cartan-Dieudonné's theorem, we can write γx as a product of re�ections : γx = τx1 . . . τxr where
x1, . . . , xr ∈ B(0)(Q) \ {0}. Now because re�ections have determinant −1 and γx too, we must have
r odd. Using the expression of re�ections in B(0)(Q) we just discussed above, and the fact that r is
odd, we get that for all h ∈ B(0)(Q), γx(h) = −(x1 . . . xr)h(x1 . . . xr)

−1. Let us put y := x1 . . . xr. As
h = −h, we have :

for all h ∈ B(0)(Q), γx(h) = yhy−1

But this equality also holds when h ∈ Q, since both sides equal h in this case (using the fact that the
elements of Q commute with all the other quaternions). Since B(Q) = Q1⊕B(0)(Q), we deduce that
for all h ∈ B(Q), γx(h) = yhy−1. This is impossible because on the left hand side we have γx, which is
a surjective multiplicative function of h, whereas on the right hand side, we have an anti-multiplicative
function of h (recall that for all w, z ∈ B(Q), wz = z w), which is also surjective. To make the
contradiction clearer maybe : Let us denote by fy the map h 7→ yhy−1. We just proved that fy = γx.
Now let us take h, h′ ∈ B(Q) such that γx(h) = i and γx(h′) = j. Then γx(hh′) = γx(h)γx(h′) = ij = k.
But on the other hand, we also have γx(hh′) = fy(hh

′) = fy(h
′)fy(h) = γx(h′)γx(h) = ji = −k, hence

a contradiction.

Proposition 4.1.5. The map
PB× → SO3(Q)
[x] 7→ γx

is a group isomorphism.

Proof. It is easy to prove that it is a group homomorphism. To prove the injectivity, it su�ces to
remark that if γx is the identity on B(0)(Q), then x commutes with all the elements in B(Q), so
x ∈ Z(B×), and this precisely tells us that [x] is the unit element in PB×. Finally, let us prove the
surjectivity. Let σ ∈ SO3(Q). Then by Cartan-Dieudonné's theorem, σ is a product of re�ections.
For determinant reasons, it is the product of an even number of re�ections in B(0)(Q). So there exists
r even, and x1, . . . , xr ∈ B(0)(Q) \ {0} such that σ = τx1 . . . τxr . By the description of re�ections in
B(0)(Q), we know that for all m ∈ {1, . . . , r}, for all h ∈ B(0)(Q), τxm(h) = −γxm(h). This implies
(since r is even) that for all h ∈ B(0)(Q), σ(h) = γx1...xr(h). Thus, the isometry σ ∈ SO3(Q) indeed
arises as the conjugation by some element in B×.

Corollary 4.1.6. If x, y ∈ B(0)(Q) have the same norm, then there exists z ∈ B× such that y = zxz−1.

Proof. With the isomorphism of proposition 4.1.5, we can see this question more geometrically. What
we have to prove is that if x, y ∈ Q3 are such that ‖x‖22 = ‖y‖22, then there exists σ ∈ SO3(Q) such
that y = σ(x). If x = y, then σ = id works. Now, when x 6= y, the re�ection s of Q3 with hyperplane
(y − x)⊥ maps x to y. Indeed, since ‖x‖22 = ‖y‖22 we have

〈y + x, y − x〉 = ‖y‖22 − 〈y, x〉+ 〈x, y〉 − ‖x‖22 = 0

so y + x ∈ (y − x)⊥. Therefore, {
s(y + x) = y + x

s(y − x) = x− y

hence s(x) = y. Now the problem is that s is a re�ection, so it is not in SO3(Q). Let t be any re�ection
with respect to an hyperplane containing x and y (it is the hyperplane spanned by x and y when they
are not colinear, but in the case where x = −y, we just take an hyperplane containing the line generated
by x and y). Then t ◦ s ∈ SO3(Q) since we compose two re�ections, and (t ◦ s)(x) = t(y) = y since t
is the identity on a plane containing x and y. So we can take σ := t ◦ s and it gives us a rotation of
Q3 mapping x to y.

Now, inside B× we have a particular subgroup : the group of invertible Hurwitz quaternions B(Z)×.
What is the geometrical e�ect (on Q3) of the conjugation by those particular elements ? This is what
we will try to answer now.
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De�nition 4.1.7. We denote by O3(Z) the subgroup of O3(Q) made of the isometries that preserve
the lattice Z3. Similarly, we denote by SO3(Z) the elements of O3(Z) that have determinant 1.

Let us make a few remarks on this de�nition. We denote by

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1


the canonical basis of Q3. By de�nition, an element of O3(Q) is a linear map u : Q3 → Q3 which
preserves the standard inner product on Q3 :

∀x, y ∈ Q3, 〈u(x), u(y)〉 = 〈x, y〉

From this, it is easy to see that the image of the canonical basis of Q3 by u is still an orthonormal
basis. Thus, the matrix of u in the canonical basis of Q3 is a matrix whose three columns form an
orthonormal basis of (Q3, 〈·, ·〉). Now, among those matrices, which ones are in O3(Z) ? IfM ∈ O3(Q)
has to preserve Z3, then the image of e1, which is the �rst column of M , has to be in Z3, but also has
to be of norm 1. Thus, it is of the form±1

0
0

 or

 0
±1
0

 or

 0
0
±1


If we apply the same argument to e2 and e3, we see that the columns of M are all of the form above,
and since they have to be orthogonal, we get that M is a permutation matrix where we allow signs.

Proposition 4.1.8. |O3(Z)| = 48 and |SO3(Z)| = 24.

Proof. Choosing M ∈ O3(Z), it is the choice of a (3 × 3) permutation matrix : there are 3! = 6 such
choices, and then we can choose to put either +1 or −1 for each non-zero entry of the permutation
matrix, so we have 23 = 8 possibilities. This gives |O3(Z)| = 6× 8 = 48. To show that |SO3(Z)| = 24,
there are several ways to see it. For instance one can say that the determinant is a surjective group
homomorphism O3(Z)→ {±1}, and the kernel is exactly SO3(Z). Another way to get the result is to
say that when we have to choose if we put a +1 or a −1 for the entry in the last column, we don't
have the choice anymore since the value of the determinant is prescribed.

Every element of SO3(Z) permutes the three coordinate lines in Q3. Indeed, if σ ∈ SO3(Z), each ei
is mapped to ±ej for some j, and so if we forget about the signs, and just remember the axes, we
see that σ induces a permutation of the axes. Let us detail an example to see what happens. Take
σ ∈ SO3(Z) the element with matrix in the canonical basis of Q3 :

M :=

 0 1 0
−1 0 0
0 0 1


It satis�es σ(e1) = −e2, σ(e2) = e1 and σ(e3) = e3. So σ exchanges the "x-axis" (Qe1) and the
"y-axis" (Qe2), while the z-axis remains invariant. The induced permutation on the coordinate lines
is the transposition

(
1 2

)
.

De�nition 4.1.9. We denote by SO3(Z)+ the subset of SO3(Z) made of the rotations which induce
an even permutation of the axes.

As we said before, each matrix of SO3(Z) can be constructed as follows : we start from a (3 × 3)
permutation matrix, and then we allow some coe�cients that are equal to 1 to take the value −1, with
the restriction that the determinant should be equal to 1. Then the elements of SO3(Z)+ are exactly
those we construct in this way starting from the matrix of an even permutation. Since the elements of
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S3 with signature 1 are the identity, and the two 3-cycles
(
1 2 3

)
and

(
1 3 2

)
, it is easy to deduce

the list of the elements in SO3(Z)+. Indeed, the matrices attached to our three even permutations are1 0 0
0 1 0
0 0 1

 ,

0 0 1
1 0 0
0 1 0

 and

0 1 0
0 0 1
1 0 0


and by 3-linearity of the determinant, only the changes of an even number of signs will preserve the
determinant. From the �rst one we deduce the following elements of SO3(Z)+ :1 0 0

0 1 0
0 0 1

 ,

1 0 0
0 −1 0
0 0 −1

 ,

−1 0 0
0 1 0
0 0 −1

 and

−1 0 0
0 −1 0
0 0 1


From the second one we deduce :0 0 1

1 0 0
0 1 0

 ,

0 0 −1
1 0 0
0 −1 0

 ,

 0 0 −1
−1 0 0
0 1 0

 and

 0 0 1
−1 0 0
0 −1 0


while the last one gives us :0 1 0

0 0 1
1 0 0

 ,

0 −1 0
0 0 −1
1 0 0

 ,

 0 1 0
0 0 −1
−1 0 0

 and

 0 −1 0
0 0 1
−1 0 0


The twelve matrices we just enumerated form the set SO3(Z)+.

The reason why we introduce this subset of SO3(Z) is because it is exactly how the elements of B(Z)×

act on Q3. Let us give a more precise statement.

Proposition 4.1.10. The group homomorphism

B(Z)× → SO3(Q)
x 7→ γx

induces an isomorphism B(Z)×/{±1} ∼−→ SO3(Z)+.

Proof. I did not �nd a more elegant proof than just doing the (quite tedious) computations, I am open
to any suggestion. Recall that

B(Z)× =

{
±1,±i,±j,±k, ±1± i± j ± k

2

}
,

and that we have the following rules for the multiplication in B(Q) :

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i and ki = −ik = j.

Let z := u+ ai+ bj + ck be an element of B(Q).

• First, let us see how the conjugation by i acts on the z. We have :

izi−1 = iz(−i) = i(u+ ai+ bj + ck)(−i) = (ui+ ai2 + bij + cik)(−i)
= −(ui− a+ bk − cj)i = u+ ai− bj − ck

Similar computations can be done to deduce jzj−1 and kzk−1.
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• Now, for the other "type" of units in B(Z), let us explain with ε := 1+i+j+k
2 (because the other

units look the same, up to some signs changes). Since ε ∈ B(Z)×, it has norm 1 and we have
ε−1 = ε (this is a �rst important thing to notice, computing ε−1 is not di�cult). Thus,

εzε−1 =
1

4
(1 + i+ j + k)(u+ ai+ bj + ck)(1− i− j − k)

Then the computation is a bit tedious, but in the end a lot of terms simplify and we obtain
εzε−1 = u+ ci+ aj + bk.

I checked the two examples above, and for the other units I chose to trust the following table, given in
[Han81]. Note that for all ε ∈ B(Z)×, γε = γ−ε, so we just need to do do the computations for half of
the units.

ε ε(u+ ai+ bj + ck)ε−1

1 u+ ai+ bj + ck

i u+ ai− bj − ck
j u− ai+ bj − ck
k u− ai− bj + ck

1+i+j+k
2 u+ ci+ aj + bk

−1+i−j+k
2 u+ ci− aj − bk

−1+i+j−k
2 u− ci+ aj − bk

−1−i+j+k
2 u− ci− aj + bk

1−i−j−k
2 u+ bi+ cj + ak

1+i+j−k
2 u+ bi− cj − ak

1−i+j+k
2 u− bi+ cj − ak

1+i−j+k
2 u− bi− cj + ak

From this table we easily deduce the result stated in the proposition. Indeed, let us consider (for
instance) ε := 1+i+j−k

2 · Since γε(u+ ai+ bj + ck) = u+ bi− cj − ak, we deduce that the isometry of
Q3 corresponding to γε is : ab

c

 7→
 b
−c
−a


whose matrix in the canonical basis of Q3 is 0 1 0

0 0 −1
−1 0 0

 ∈ SO3(Z)+

We do the same for each ε ∈ B(Z)×, and we see that the γε's always induce a transformation of Q3

which is in SO3(Z)+, and that, in fact, they reach all the elements in SO3(Z)+. This shows that the
group homomorphism

B(Z)× → SO3(Z)+

ε 7→ γε

is well de�ned and surjective. Now γε is the identity of Q3 if and only if ε ∈ B(Z)× ∩ Z(B×) =
B(Z)× ∩Q× = {±1}, hence the isomorphism claimed in the proposition.

Corollary 4.1.11. We have SO3(Z) = SO3(Z)+tγ1+iSO3(Z)+. In other words, a matrixM ∈ SO3(Z)
can be realized as the conjugation by a quaternion v ∈ B(Z)× t (1 + i)B(Z)×.
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Proof. It su�ces to check that the conjugation by 1 + i gives a rotation γ1+i which is in SO3(Z) but
not in SO3(Z)+. A similar computation as the ones above shows that γ1+i is the rotation of Q3 with
matrix 1 0 0

0 0 −1
0 1 0


in the canonical basis of Q3. This is an element of SO3(Z), and it is not in SO3(Z)+ since in terms of
permutation of the axes, it just permutes the y-axis and the z-axis, and the transposition

(
2 3

)
, as

any transposition, has signature −1.

4.2 De�nition of an action of an ideal class group on the representations

Let d > 2 be a square-free admissible integer. We denote by K the imaginary quadratic �eld Q(
√
−d).

We recall that R3(d) denotes the set

{(a, b, c) ∈ Z3 | a2 + b2 + c2 = d}

and that it can be seen as a subset of B(0)(Q) : the set of all the pure quaternions z := ai+ bj + ck,
where (a, b, c) ∈ Z3, such that N(z) = d. It will be convenient to introduce a notation for the pure
quaternions with coe�cients in Z :

B(0)(Z) := B(0)(Q) ∩ B(Z) = {ai+ bj + ck, (a, b, c) ∈ Z3}

With this notation, we can see R3(d) as the following subset of B(0)(Q) :

R3(d) = {x ∈ B(0)(Z) | N(x) = d} = {x ∈ B(0)(Z) | x2 = −d}

where the second equality comes from the fact that for pure quaternions, x = −x, so N(x) = xx = −x2.
Thus, any representation of d as a sum of three squares gives us a square root of −d in B(0)(Z) ⊆ B(Q),
hence another "copy" of the �eld K = Q(

√
−d).

Let us take some time to ensure that the fact that B(Q) is not commutative does not lead to any issue.
Let x ∈ R3(d), that we see as an element in B(0)(Z). We consider the map

evx : Q[X] → Q[x]
P 7→ P (x)

This map makes sense because x is an element of the Q-algebra B(Q), so we can evaluate polynomials
at x. Moreover, it is a morphism of Q-algebras, and what is important to notice is that we only use
the fact that the mutiplication in B(Q) is Q-bilinear, and we don't need commutativity. It follows that
the kernel of evx is an ideal of Q[X]. Since Q[X] is a PID, there exists a unique monic polynomial
πx ∈ Q[X] such that ker(evx) = (πx). Now since x ∈ R3(d), we have x2 + d = 0 so that πx divides
X2 + d. But the latter is irreducible in Q[X], so we have πx = X2 + d. Therefore, evx induces an
isomorphism of Q-algebras between Q[X]/(X2 + d) and Q[x]. In particular, Q[x] is a �eld so we have
Q[x] = Q(x). Thus, we really get a �eld extension of Q, obtained by adjoining a square root of −d,
so this gives a natural identi�cation with Q(

√
−d).

More precisely, for all x ∈ R3(d) (seen as a subset of B(0)(Z)), we denote by ιx the Q-linear map

K → Q(x)√
−d 7→ x

Then this map is an isomorphism of Q-algebras. This will allow us to transport ideals of OK inside
the quaternions, and it is the key idea to de�ne an action of Cl(OK) on the representations of d as a
sum of three squares. The isomorphism ιx is integral in the sense that the rings of integers on both
sides correspond via ιx.
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Lemma 4.2.1. Assume that x ∈ R3(d) for some admissible, square-free d ≡ 1, 2 mod 4. Let us denote
by Ox the ring of integers of Q(x) (i.e. the set of elements in Q(x) that are integral over Z). Then
we have Ox = Z[x] = B(Z) ∩Q(x). In particular ιx(OK) = Ox.

Proof. We prove that Ox ⊆ Z[x] ⊆ B(Z) ∩Q(x) ⊆ Ox.

• If y ∈ Ox then y ∈ Q(x) : we write it as a + bx where (a, b) ∈ Q2. If b = 0, then y is in
Q, and is integral over Z. This implies that y ∈ Z since Z is integrally closed. In particular,
y ∈ Z[x]. Otherwise, b 6= 0 and the minimal polynomial of y over Q is of degree at least 2. But
by proposition 3.1.2, we know that the polynomial X2 − Tr(y)X + N(y) vanishes at y. Thus,
this must be the minimal polynomial of y over Q. Since y ∈ Ox it has coe�cients in Z (see
proposition 1.2.6). We deduce that :{

Tr(y) = 2a ∈ Z

N(y) = a2 + b2d ∈ Z
(12)

Here we used the fact that x ∈ R3(d) to compute the trace and norm of a+ bx. Multiplying the
second line by 4 leads to (2a)2 +(2b)2d ∈ Z, hence (2b)2d ∈ Z since 2a ∈ Z. But this implies that
2b ∈ Z because d is square-free, so it cannot balance eventual denominators of 2b. Therefore,
we can take u, v ∈ Z such that a = u

2 and b = v
2 . Then the fact that a2 + b2d ∈ Z implies that

u2 + v2d ≡ 0 mod 4.

� If v is even, then v2 ≡ 0 mod 4, hence u2 ≡ 0 mod 4, so u is even too. In this case a, b ∈ Z,
so y ∈ Z[x].

� If v is odd, then v2 ≡ 1 mod 4, hence u2 + d ≡ 0 mod 4. As 0 and 1 are the only squares
modulo 4, and d is square-free, we must have u2 ≡ 1 mod 4. But then d ≡ −1 mod 4, which
is not the case by assumption. So this case cannot happen.

So we proved the inclusion Ox ⊆ Z[x].

• Now, if y ∈ Z[x], then we write y = a+ bx for some a, b ∈ Z. Since x ∈ R3(d), there are integers
c, d, e such that x = ci+ dj + ek. Thus, y = a+ bx = a1 + (bc)i+ (bd)j + (be)k is a quaternion
with all its coe�cients in Z, so it is in B(Z). This proves the inclusion Z[x] ⊆ B(Z) ∩Q(x).

• Finally, if y ∈ B(Z)∩Q(x), then since y ∈ B(Z), we have N(y),Tr(y) ∈ Z. Thus, the polynomial
X2 −Tr(y)X + N(y) is a polynomial with coe�cients in Z, that vanishes at y, showing that y is
integral over Z. This gives us the inclusion B(Z) ∩Q(x) ⊆ Ox.

To get the "in particular" part of the statement : proposition 2.1.2 tells us that for our condition on d,
we have OK = Z

[√
−d
]
, hence ιx(OK) = Z[x] = Ox. We did not give the proof of proposition 2.1.2,

but in fact it is exactly the same as what we have just done to show that Ox = Z[x].

Remark. In the case d ≡ 3 mod 8, the statement is almost the same, we still have

Ox = B(Z) ∩Q(x) = ιx(OK),

and the only di�erence is that it is not equal to Z[x] (but this dichotomy is not so surprising given
proposition 2.1.2).

Now, we de�ne the action of Cl(OK) on the representations step by step. Let x ∈ R3(d) and let I
be a (possibly fractional) ideal of OK . It is �nitely generated as a Z-module, so ιx(I) is also �nitely
generated as a Z-module. Therefore, B(Z)ιx(I) is a �nitely generated left B(Z)-submodule of B(Q).
By corollary 3.1.6, there exists q ∈ B× such that B(Z)ιx(I) = B(Z)q−1. This way, we can think of our
ideal I of OK as an element q ∈ B×. Of course, q is not uniquely determined, and we will explain how
this issue is handled. Now, de�ne y := q−1xq. Let us prove that y is also an element in R3(d).

• y ∈ B(0)(Q) since x ∈ B(0)(Q) and being trace-free is preserved under conjugation.
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• N(y) = N(x) = d by multiplicativity of the norm.

• To get the conclusion, it remains to show that y ∈ B(0)(Z). As y ∈ B(0)(Q), it just remains to
show that y ∈ B(Z). But we have :

y = q−1xq ∈ B(Z)q−1xq = B(Z)ιx(I)xq = B(Z)ιx(I)ιx(
√
−d)q = B(Z)ιx(I

√
−d)q

⊆ B(Z)ιx(I)q
(13)

because I
√
−d ⊆ I since I is an OK-submodule of K and

√
−d ∈ OK . As B(Z)ιx(I) = B(Z)q−1,

we obtain that y ∈ B(Z).

This seems to give us a way to associate to each pair (I, x) an element y which is a possibly new
representation of x as a sum of three squares. The problem is that the element q is not uniquely
determined, so the new element y ∈ R3(d) that we de�ne depends on some choices. Let us explain
how to overcome this di�culty.

The element q is de�ned as a non-zero quaternion such that B(Z)ιx(I) = B(Z)q−1. The other r ∈ B×

such that B(Z)q−1 = B(Z)r−1 are exactly the elements of the form r = qε, where ε ∈ B(Z)×. Now, if
we take r = qε instead of q to de�ne our new element in R3(d), we obtain y′ = (qε)−1x(qε) = ε−1yε.
In other words, di�erent choices of the element q (which "represents" the ideal I inside B(Q)) lead to
elements of R3(d) that only di�er by conjugation by an element of B(Z)×.

This is why the space on which Cl(OK) will act is not R3(d), but the quotient space

R̃3(d)+ := B(Z)×\R3(d)

that is : the set of orbits of R3(d) under the action of B(Z)× by conjugation. The orbit of an element
x ∈ R3(d) will be denoted by [x]. By de�nition, we have

[x] = {εxε−1, ε ∈ B(Z)×}

and R̃3(d)+ = {[x], x ∈ R3(d)}. This is the "algebraic" point of view on R̃3(d)+, because we de�ne
it via conjugation in B×. However, the previous section on the geometry behind these algebraic oper-
ations provides another interpretation of this quotient. Indeed, in view of proposition 4.1.10, if we see
the elements of R3(d) as points on the sphere of radius

√
d in Q3, the set R̃3(d)+ is also the quotient

SO3(Z)+\R3(d) (where the action of SO3(Z)+ on R3(d) is just the multiplication on the left)

We use the notations introduced in section 1.5 : Fr(OK) denotes the group of non-zero fractional ideals
of OK . What we have done so far allows us to de�ne a map

Fr(OK)×R3(d) → R̃3(d)+

(I, x) 7→ [y]
(14)

where y = q−1xq for any q ∈ B× such that B(Z)ιx(I) = B(Z)q−1. Now, let us prove that the image
of (I, x) only depends on [x]. If x′ ∈ [x], let us write x′ = εxε−1 for some ε ∈ B(Z)×. Our aim is to
prove that the image of (I, x′) by the map in (14) is the same as the image of (I, x).
We have ιx′(I) = ειx(I)ε−1, hence

B(Z)ιx′(I) = B(Z)ειx(I)ε−1 = B(Z)ιx(I)ε−1

(using the fact that ε ∈ B(Z)×, so that B(Z)ε = B(Z)). Thus, if q ∈ B× is such that B(Z)ιx(I) =
B(Z)q−1, then r := εq is such that B(Z)ιx′(I) = B(Z)r−1.
Therefore, the image of (I, x) is

[
q−1xq

]
while the image of (I, x′) is

[
r−1x′r

]
. But

r−1x′r = (εq)−1εxε−1(εq) = q−1xq

hence the conclusion. So we have a well de�ned map

Fr(OK)× R̃3(d)+ → R̃3(d)+

(I, [x]) 7→ [y] =: I.[x]
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Proposition 4.2.2. The map above is an action of the group Fr(OK) on R̃3(d)+. In other words,

• for all [x] ∈ R̃3(d)+, OK .[x] = [x]

• for all I, J ∈ Fr(OK) and for all [x] ∈ R̃3(d)+, I.(J.[x]) = (IJ).[x]

Proof. For the �rst point : we have ιx(OK) = Ox by lemma 4.2.1, hence B(Z)ιx(OK) = B(Z)Ox =
B(Z)(B(Z) ∩Q(x)). But since 1 ∈ Ox, we have B(Z) ⊆ B(Z)Ox, and conversely, we have

B(Z)(B(Z) ∩Q(x)) ⊆ B(Z)

because B(Z) is a subring of B(Q). Thus, we have B(Z)ιx(OK) = B(Z)1, so OK .[x] is de�ned as[
1−1x1

]
= [x].

Now let us prove the second point. Let I, J ∈ Fr(OK), and let q, s ∈ B× be such that{
B(Z)ιx(J) = B(Z)q−1

B(Z)ιx(IJ) = B(Z)s−1

Then (IJ).[x] =
[
s−1xs

]
and J.[x] =

[
q−1xq

]
. Let us set y := q−1xq. We want to compute I.[y].

For this we need to �nd a generator of the left B(Z)-module B(Z)ιy(I). Since y = q−1xq, we have
ιy(I) = q−1ιx(I)q, hence

B(Z)ιy(I) = B(Z)q−1ιx(I)q = B(Z)ιx(J)ιx(I)q

= B(Z)ιx(IJ)q = B(Z)s−1q

Thus, in order to de�ne I.[y], we can take r := q−1s ∈ B× as an element such that

B(Z)ιy(I) = B(Z)r−1

Then I.[y] =
[
r−1yr

]
=
[(
q−1s

)−1
q−1xq

(
q−1s

)]
=
[
s−1xs

]
= (IJ).[x]. This gives the conclusion :

I.(J.[x]) = (IJ).[x].

Finally, what we want to show now is that this action induces an action of Cl(OK) on R̃3(d)+. In
order to do this, we prove that for any I in Fr(OK), for any λ ∈ K×, the "action" of λI on R̃3(d)+ is
the same as the action of I.

Let I ∈ Fr(OK), λ ∈ K×, and x ∈ R3(d). We have

B(Z)ιx(λI) = B(Z)ιx(I)ιx(λ)

because Iλ = λI (in K everything commutes). So if q ∈ B× is such that B(Z)ιx(I) = B(Z)q−1, then
it su�ces to take r := ιx

(
λ−1

)
q to have

B(Z)ιx(λI) = B(Z)r−1

Then (λI).[x] =
[
r−1xr

]
=
[
q−1ιx(λ)xιx

(
λ−1

)
q
]

=
[
q−1ιx

(
λ
√
−dλ−1

)
q
]
. As K is commutative,

λ
√
−dλ−1 =

√
−d, hence

(λI).[x] =
[
q−1ιx

(√
−d
)
q
]

=
[
q−1xq

]
= I.[x]

Summary : All these veri�cations can be a bit long to read, and there is a risk of forgetting what we
are doing, so let us summarize here.

We have an action of Fr(OK) on R̃3(d)+ working as follows : given a (possibly fractional) ideal I of
OK and x ∈ R3(d) (that we think as a pure quaternion of norm d with coe�cients in Z), we consider
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the left B(Z)-module B(Z)ιx(I). By previous results on quaternions, we can �nd q ∈ B× such that
B(Z)ιx(I) = B(Z)q−1. This way, we can think of our ideal I as an element q in B×. Then the action
of I on x is just the conjugation by q. So we de�ne I.x as y := q−1xq. The only issue is that q is not
uniquely determined, it is determined up to multiplication by an element in B(Z)×. Thus, y is only
determined up to conjugation by an element of B(Z)×. This is the reason why we cannot really de�ne
directly an action of Fr(OK) on R3(d), but only on a quotient of R3(d) :

R̃3(d)+ := B(Z)×\R3(d)

Finally, we checked that for all I ∈ Fr(OK), and for all λ ∈ K×, the ideals I and λI have exactly the
same action on R̃3(d)+. Therefore, we have in fact a group action of Cl(OK) :

Cl(OK)× R̃3(d)+ → R̃3(d)+

[I] , [x] 7→ I.[x]

where we denoted between brackets the class of I in the class group of K. The aim of the next section
is to prove that this action is in fact free and transitive.

4.3 Conclusion on the number of representations

In this section we prove that when d ≡ 1, 2 mod 4, the action of Cl(OK) on R̃3(d)+ is free and tran-
sitive. We say that R̃3(d)+ is a Cl(OK)-torsor. This fact will give us almost immediately the size of
R3(d) in terms of the class number of Q(

√
−d). The proofs presented here follow the article [Reh82],

which gives a modernized version of some of the results in Venkov's original papers [Ven22] and [Ven29].
We start by three technical lemmas.

Recall that if x ∈ R3(d), we can see it as an element in B(0)(Z) such that N(x) = d, or equivalently
x2 = −d. We proved that there is an isomorphism of Q-algebras between Q(

√
−d) and Q(x) (just

given by
√
−d 7→ x). So Q(x) is in fact an imaginary quadratic �eld, it's just that we did not embed

it inside C by choosing a square root of −d in C. Instead, we took a square root x in B(0)(Z). But
as it is a number �eld, all the facts we recalled in section 1.6 apply to Q(x). In particular, its ring of
integers Ox is a Dedekind ring, so it makes sense to talk about fractional ideals of Ox and their inverse.

Lemma 4.3.1. If a is a fractional ideal of Ox then B(Z)a ∩Q(x) = a.

Proof. First, since 1 ∈ B(Z), we have a ⊆ B(Z)a, so

a ⊆ B(Z)a ∩Q(x).

Now, to prove the other inclusion we �rst remark that (B(Z)a∩Q(x))Ox = B(Z)a∩Q(x). Indeed, the
inclusion "⊇" is clear because 1 ∈ Ox, and the inclusion "⊆" just follows from the fact that aOx ⊆ a
(because a is a sub-Ox-module of Q(x)). Now since Ox is a Dedekind ring, every non-zero fractional
ideal is invertible : so we can consider a−1 (i.e. the fractional ideal of Ox such that aa−1 = a−1a = Ox).
Then we have :

B(Z)a ∩Q(x) = (B(Z)a ∩Q(x))Ox
= (B(Z)a ∩Q(x))a−1a

⊆ (B(Z)aa−1 ∩Q(x)a−1)a

= (B(Z)Ox︸ ︷︷ ︸
=B(Z)

∩Q(x)a−1︸ ︷︷ ︸
=Q(x)

)a

= Oxa ⊆ a

This �nishes the proof.

Lemma 4.3.2. If x ∈ R3(d) then {α ∈ B(Q), αx = xα} = Q(x).
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Proof. Let us consider the conjugation map

γx : B(Q) → B(Q)
z 7→ xzx−1

It is a Q-linear map i.e. an endomorphism of B(Q) which is a Q-vector space of dimension 4. Since
x2 = −d, we have (γx)2 = γ−d = id because −d ∈ Q× = Z(B×). Thus, the polynomial P := X2 − 1
satis�es P (γx) = 0, so the eigenvalues of γx are in {±1}. Let us prove that −1 is indeed an eigenvalue
for γx. If 1 were the only eigenvalue of γx, then its minimal polynomial would be X − 1 (since it must
divide P ). So γx would be the identity, which is equivalent to x ∈ Q×. But this is not the case since
x2 = −d < 0. Therefore, −1 is an eigenvalue of γx. Let us take t ∈ B(Q)× such that γx(t) = −t. Then
it is easy to prove that (1, x, t, xt) is a basis of B(Q), and in this basis, the matrix of γx is

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


This shows that {α ∈ B(Q) | γx(α) = α} = Q + Qx = Q(x), and this gives the lemma.

Lemma 4.3.3. If x, y ∈ R3(d), then {α ∈ B(Q), xα = αy} is a left-Q(x)-vector space space of rank 1
(hence of rank 2 over Q).

Proof. Let x, y ∈ R3(d). In particular, they are two elements in B(0)(Q) with the same norm, so
corollary 4.1.6 tells us that we can �nd q ∈ B× such that y = q−1xq. Then for all α ∈ B(Q),

xα = αy ⇐⇒ xα = αq−1xq ⇐⇒ x(αq−1) = (αq−1)x

⇐⇒ αq−1 ∈ Q(x) (by lemma 4.3.2)

⇐⇒ α ∈ Q(x)q

We are now ready to prove the Cl(OK)-torsor structure.

Proposition 4.3.4. The action of Cl(OK) on R̃3(d)+ is free, that is : for any [I] ∈ Cl(OK) and any

[x] ∈ R̃3(d)+, we have

[I].[x] = [x] =⇒ I is a principal fractional ideal.

Proof. If [I].[x] = [x], we can �nd q ∈ B× such that B(Z)ιx(I) = B(Z)q−1 and q−1xq = x. By lemma
4.3.2, this implies that q−1 ∈ Q(x), so that Oxq−1 is a (principal) fractional ideal of Q(x). Besides,

B(Z)ιx(I) = B(Z)q−1 = B(Z)Oxq−1

because B(Z)Ox = B(Z). Now, if we intersect the equality above with Q(x), and use lemma 4.3.1, we
get that ιx(I) = Oxq−1 (since ιx(I) and Oxq−1 are two fractional ideals in Q(x)). Therefore, ιx(I) is
a principal fractional ideal (generated by q−1), and we deduce that I is principal because

I = ι−1
x ιx(I) = ι−1

x (Oxq−1) = OKι−1
x (q−1)

Remark. Note that so far, we did not need the assumption "d ≡ 1, 2 mod 4". The fact that there is
a free action of the class group of Q(

√
−d) on R̃3(d)+ holds true for any d admissible, square-free. It

is only for the transitivity statement that we need to assume d ≡ 1, 2 mod 4.

In order to prove the transitivity of the action, we introduce the following notation : for all x, y ∈ R3(d),

Λx→y := {λ ∈ B(Z) | xλ = λy}

Let us collect some easy properties of this set in a lemma :
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Lemma 4.3.5. • For all x, y ∈ R3(d), Λx→y is a free-Z-submodule of B(Z) of rank 2.

• For all α ∈ B(Z), xα+ αy ∈ Λx→y

Proof. For the �rst assertion, we remark that Λx→y is a sub-Z-module of B(Z). Since B(Z) is free of
rank 4, we deduce that Λx→y is a free Z-module of rank less than or equal to 4 (by the adapted basis
theorem for modules over a PID). In fact, lemma 4.3.3 tells us that {α ∈ B(Q), xα = αy} is a Q-vector
space of dimension 2, and from this fact, one can easily prove that the rank of Λx→y as a Z-module is
equal to 2.
The second point is just a veri�cation, using the fact that since x and y belong to R3(d), they satisfy
x2 = y2 = −d.

The transitivity rests on the following lemma, that we will only prove at the end of the section because
it is quite technical.

Lemma 4.3.6. When d ≡ 1, 2 mod 4, we have : for all x, y ∈ R3(d), we have B(Z)Λx→y = B(Z).

Proof. See the end of the section. It is this lemma that fails when d ≡ 3 mod 8, in fact the alternative
B(Z)Λx→y = B(Z)(1+ i) can also happen in this case, as it is stressed by [Reh82] (but not proved).

Using this lemma, we are now able to prove the following proposition.

Proposition 4.3.7. When d ≡ 1, 2 mod 4, the action of Cl(OK) on R̃3(d)+ is transitive, that is : for

all [x], [y] ∈ R̃3(d)+, there exists [I] ∈ Cl(OK) such that [I].[x] = [y]

Proof. Let x, y ∈ R3(d). The aim is to �nd a fractional ideal I of OK such that I.[x] = [y]. It is easy
to see that Λx→y is a left Ox-module. Indeed, we know that Ox = Z[x] (see lemma 4.2.1), so it su�ces
to show that if λ ∈ Λx→y, then xλ ∈ Λx→y, and it is a straightforward veri�cation.
The only issue for us is that we would like to see Λx→y as a fractional ideal of Ox, so that it corresponds
via ιx to an ideal of OK . But Λx→y may not be contained in Q(x). In fact, corollary 4.1.6 tells us that
there exists q ∈ B× such that y = q−1xq, and then by lemma 4.3.3, we have Λx→y ⊆ Q(x)q. Thus, if
we consider Λx→yq

−1 instead of Λx→y, it will work. Indeed, Λx→yq
−1 is still a left Ox-module, and it is

contained in Q(x). As Q(x) is commutative, Λx→yq
−1 is also a right Ox-module i.e. an Ox-submodule

of the quadratic �eld Q(x).
To show that it is a fractional ideal, it just remains to �nd r ∈ Ox\{0} such that r

(
Λx→yq

−1
)
⊆ Ox. For

this, it su�ces to remark that if we denote by m the lowest common multiple of the denominators that
appear in the coe�cients of q−1 (when we write q−1 in the basis (1, i, j, k) of B(Q)), then we can take
r = 2m. Indeed, Λx→y ⊆ B(Z), so any λ ∈ Λx→y has its coe�cients in 1

2Z, so rλq
−1 has coe�cients in

Z. In particular rλq−1 ∈ B(Z)∩Q(x) = Ox. Thus Λx→yq
−1 is indeed a non-zero fractional ideal of Ox.

Now, let us prove that if we take the fractional ideal of OK

I := ι−1
x

(
Λx→yq

−1
)

it satis�es I.[x] = [y]. We have B(Z)ιx(I) = B(Z)Λx→yq
−1 = B(Z)q−1 by the key lemma 4.3.6. Thus,

I.[x] =
[
q−1xq

]
= [y]

so [I] is an element of Cl(OK) mapping [x] to [y] : this �nishes the proof.

Remark. As we just proved, the fact that the action of Cl(OK) is transitive tells us that for each

[x], [y] ∈ R̃3(d)+, there exists an element [I] of Cl(OK) such that [I].[x] = [y]. But since we also know
that the action is free, this element [I] is unique ! This is why we introduce a notation for this unique
element of the class group : let us denote by [Λx→y] the unique [I] in Cl(OK) such that [I].[x] = [y].
With the notations of the proof above, [Λx→y] denotes ι

−1
x

(
Λx→yq

−1
)
. Let us insist that there is an

abuse of notation, because Λx→y is not a fractional ideal in OK , so it does not really make sense to
consider its equivalence class in the ideal class group of OK .
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Let us now conclude on the question of the number of representations of an integer as a sum of three
squares.

Theorem 4.3.8. Let d > 2 be a square-free admissible integer. As above, we denote by K the imaginary
quadratic �eld Q(

√
−d). Let us denote by hK its class number i.e. hK := |Cl(OK)|. Then the number

of representations of d as a sum of three squares of integers is given by the following relations :

• |R3(d)| = 12hK when d ≡ 1, 2 mod 4

• |R3(d)| = 24hK when d ≡ 3 mod 8

Proof. As we said at the beginning of this section, we will only prove the result in the case where
d ≡ 1, 2 mod 4. In this case, we just proved that there is a free and transitive action of Cl(OK) on
R̃3(d)+. Thus, if we �x any point [x] ∈ R̃3(d)+, the orbit map

Cl(OK) → R̃3(d)+

[I] 7→ [I].[x]

is a bijection, so |R̃3(d)+| = |Cl(OK)| = hK .
To conclude, we need to show that |R3(d)| = 12|R̃3(d)+|.

One geometric approach is the following : recall that R̃3(d)+ = SO3(Z)+\R3(d) : the set of orbits for
the natural action of SO3(Z)+ on R3(d) (seen as a subset of Z3). If we prove that this action is free,
we will have that each orbit is made of exactly 12 = |SO3(Z)+| points, and this gives the result. So
we just need to prove that for all M ∈ SO3(Z)+, if Mx = x for some x ∈ R3(d), then M = id. I did
not investigate this approach further, but it should be possible given the explicit description of the
elements of SO3(Z)+.

Another approach is to view R̃3(d)+ as B(Z)×\R3(d) : the set of orbits for the action of B(Z)× by
conjugation (when we view R3(d) as a subset of B(0)(Z)). Then we want to show that for all x ∈ R3(d),
its orbit

[x] = {εxε−1 | ε ∈ B(Z)×}

is made of 12 elements. In order to do this, it is su�cient to show that the stabilizer of x is {±1},
because then we will have a bijection

B(Z)×/{±1} → [x]

and since B(Z)× is made of 24 elements, this will give the conclusion. So let us consider ε ∈ B(Z)×

such that εxε−1 = x. Then ε ∈ Q(x) by lemma 4.3.2, so ε ∈ B(Z)× ∩Q(x) = O×x . But Ox = Z[x], so
we can write ε = a + bx, and the fact that ε ∈ B(Z)× tells us that N(ε) = 1, so a2 + b2d = 1, which
implies that b = 0 and a ∈ {±1} (because d > 2).

Thus, we have |R3(d)| = 12|R̃3(d)+| = 12hK .

Finally, let us go back to the proof we left earlier, of an important but technical lemma.

Proof of lemma 4.3.6 : Let x, y ∈ R3(d) for some d > 2, square-free, d ≡ 1 mod 4 (the case d ≡ 2 mod 4
is similar). The aim is to show that

B(Z)Λx→y = B(Z).

First, we remark that B(Z)Λx→y is a left ideal of B(Z), so we can use corollary 3.1.5 to �nd an element
ρ ∈ B(Z) such that :

B(Z)Λx→y = B(Z)ρ.

Then B(Z)Λx→y = B(Z) if and only if ρ ∈ B(Z)×, if and only if N(ρ) = 1 (see proposition 3.1.8). We
will do it in two steps :
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• Step 1 : we prove that 2 - N(ρ).

Since Λx→y ⊆ B(Z)ρ and the norm is multiplicative, we have N(ρ) | N(λ) for all λ ∈ Λx→y.
Therefore, it su�ces to �nd an element λ ∈ Λx→y such that 2 - N(λ) to get the conclusion of this
step 1.
Recall the following general fact (stated in lemma 4.3.5) : since x2 = y2 = −d, a straighforward
veri�cation shows that for all α ∈ B(Z), xα+ αy ∈ Λx→y (this will be used below).
Now, let us write x = x1i + x2j + x3k and y = y1i + y2j + y3k. Since x2

1 + x2
2 + x2

3 = N(x) =
d ≡ 1 mod 4, two of the xi's must be even, and one of them has to be odd. Let us assume, for
instance, that

x1 ≡ x2 ≡ 0 mod 2 and x3 ≡ 1 mod 2

It is the same for y : one of the yi's is odd while the two others are even.

(i) If y1 ≡ y2 ≡ 0 mod 2 and y3 ≡ 1 mod 2 : denote by

ω0 := x+ y = (x1 + y1)i+ (x2 + y2)j + (x3 + y3)k

ω1 := xi+ iy = −(x1 + y1) + (x3 − y3)j + (y2 − x2)k

Then w0 and ω1 are in Λx→y since they are of the form xα + αy for some α ∈ B(Z).
Moreover, we remark that their coe�cients in the basis (1, i, j, k) are all even, so ω0

2 and ω1
2

are in B(Z), hence in Λx→y. Now, let us prove that one of them has a norm which is not
divisible by 2. We have

N(ω0)−N(ω1) = 4x2y2 + 4x3y3 ≡ 4 mod 8

so there exists ε ∈ {0, 1} such that N(ωε) 6≡ 0 mod 8. Then 2 - N
(
ωε
2

)
so we can take λ to

be ωε
2 . This gives an element in Λx→y such that 2 - N(λ).

(ii) If y1 ≡ y3 ≡ 0 mod 2 and y2 ≡ 1 mod 2 : we consider ω := x(1 + j) + (1 + j)y. As it is of
the form xα+ αy for some α ∈ B(Z), it belongs to Λx→y. Besides, we have

ω = −(x2 + y2) + (x1 − x3 + y1 + y3)i+ (x2 + y2)j + (x1 + x3 − y1 + y3)k

and we remark that all the coe�cients of ω are odd, so ω
2 ∈ B(Z). Thus λ := ω

2 belongs to
Λx→y. Moreover, if we go back to the de�nition of the norm, expand everything, and take
into account the parity conditions on the xi's and yi's, we see that :

N(ω) ≡ 4 mod 8

hence 2 - N(λ).

(iii) It works as in case (ii), starting from ω := x(1 + k) + (1 + k)y.

Thus, we covered all the possibilities for y when x is such that x1 and x2 are odd and x3 is even.
The other cases for the parity of the coe�cients of x can be done by similar arguments. The case
d ≡ 2 mod 4 is also similar. This step 1 is the one that fails when d ≡ 3 mod 8 : in this case we
cannot exclude the possibility that 2 | N(ρ).

• Step 2 : we prove that for all p odd prime, p - N(ρ).

Assume for a contradiction that there exists an odd prime number p such that p | N(ρ). With
the notations of the case (i) in step 1, we have ω0, ω1 ∈ Λx→y. In particular, they belong to
B(Z)Λx→y = B(Z)ρ i.e. ρ is a right divisor of ω0 and ω1 in B(Z). Therefore, it is also a right
divisor of i(ω0 + iω1) = ix − xi. This implies that N(ρ) | N(ix − xi) = 4(x2

2 + x2
3), hence

p | 4(x2
2 + x2

3). As p is an odd prime, we conclude that p | x2
2 + x2

3.
Then, we do the same thing with ω1 replaced by ω′1 := xj + jy (resp. ω′′1 := xk + ky), we
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have j(ω0 + jω′1) = jx − xj (resp. k(ω0 + kω′′1) = kx − xk), and N(ρ) | N(jx − xj) (resp.
N(ρ) | N(kx− xk)). We conclude as above that p | x2

1 + x2
3 (resp. p | x2

1 + x2
2). Thus,

x2
2 + x2

3 ≡ 0 mod p

x2
1 + x2

3 ≡ 0 mod p

x2
1 + x2

2 ≡ 0 mod p

which implies x1 ≡ x2 ≡ x3 ≡ 0 mod p, because the matrix0 1 1
1 0 1
1 1 0


is in GL3(Fp) (its determinant is 2, which is invertible modulo our odd prime p). But then
d = x2

1 + x2
2 + x2

3 ≡ 0 mod p2, contradicting the fact that d is square-free. This �nishes the
proof.

4.4 Siegel's theorem and estimate of the size of R3(d)

In this section, we discuss the following theorem on the size of R3(d).

Theorem 4.4.1. For any ε > 0, we have

d
1
2
−ε �ε |R3(d)| �ε d

1
2

+ε

for all d > 2 admissible and square-free.

The notation �ε is introduced more precisely later in this thesis (see here), since it becomes more
convenient only towards the end of the proof of the main equidistribution theorem. But we can already
explain what it means in this particular statement. Theorem 4.4.1 states that for any ε > 0, there
exist two constants c(ε), C(ε), depending only on ε, such that for all d > 2 admissible and square-free :

C(ε)d
1
2
−ε 6 |R3(d)| 6 c(ε)d

1
2

+ε

The most di�cult estimate is the lower bound, which comes from a famous theorem by Siegel, that
we will quote without proof. This theorem gives a lower bound for the value at 1 of some L-functions
attached to real Dirichlet characters. By Dirichlet class number formula, this gives an estimate of the
behaviour of the class number of Q(

√
−d) with respect to d. Finally, since we proved an exact formula

connecting this class number and the size of R3(d), Siegel's theorem provides in fact an estimate of
the size of R3(d).

Theorem 4.4.2 (Siegel, 1935). For any ε > 0, there exists an ine�ective constant C1(ε) > 0 (de-
pending only on ε) such that for any q > 2, and for every real primitive Dirichlet character modulo q,
we have

L(1, χ) >
C1(ε)

qε
·

Proof. We refer to [Dav80] (and the extended proofs given in [Str08]), or [Kow04].

Remark. The constant implied in the lower bound given in this theorem is ine�ective since it depends
on the existence or not of a real zero close to 1 of Dirichlet L-functions attached to real characters: the
so-called Siegel zero.

Now, let d > 2 be a square-free integer. Dirichlet class number formula (see theorem 2.4.1) applied to
the imaginary quadratic �eld K = Q(

√
−d), tells us that :

|Cl(OK)| = w

2π

√
|D|L(1, χD)
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where w is the number of units in OK , D is the discriminant of K, and χD is the Kronecker symbol.
By the facts gathered in appendix B, χD is a real primitive Dirichlet character modulo |D|, so the
estimate from Siegel's theorem for the value of L(1, χD) applies. Taking into account that D = −d or
−4d (see the beginning of our section 2.1 on imaginary quadratic �elds), we obtain that there exists a
constant C2(ε), depending only on ε, such that for every d > 2, square-free,

|Cl(OK)| > C2(ε)d
1
2
−ε

(where K still denotes Q(
√
−d)).

Finally, we use theorem 4.3.8, which gives us a connection between the class number of Q(
√
−d) and

|R3(d)|. We �nd that for any ε > 0, there exists a constant C(ε), depending only on ε, such that for
all d > 2 admissible and square-free,

|R3(d)| > C(ε)d
1
2
−ε (15)

In particular, |R3(d)| tends to in�nity as d goes to in�nity among the admissible, square-free integers.
But once we know that we have more and more integers points as the radius grows (among the ad-
missible integers, of course), we may ask the question of the distribution of these integers points on
the sphere. Are they evenly distributed ? Or do certain regions of the sphere "attract" more integer
points ? This is the type of questions we are going to discuss in the next section.

One may also ask if we have an interesting upper bound for |R3(d)|, in order to know if the previous
lower bound is the best we can hope for. In fact, the question of the upper bound is more elementary.
In the appendix on L-functions, and more precisely : in proposition A.9, we prove an elementary upper
bound for L(1, χ) when χ is a non-trivial Dirichlet character. It implies that there exists a constant c
such that for all q > 2 and for any non-trivial Dirichlet character modulo q :

L(1, χ) 6 c ln(q)

In particular, for any ε > 0, there exists a constant c(ε), depending only on ε, such that for any q > 2,
and for every real primitive Dirichlet character modulo q, we have :

L(1, χ) 6 c1(ε)qε

Now by the same arguments as above, we can deduce that for any ε > 0, there exists a constant c(ε),
depending only on ε, such that for all d > 2 admissible and square-free,

|R3(d)| 6 c(ε)d
1
2

+ε (16)

Combining (15) and (16), we obtain that the growth of |R3(d)| (among the admissible, square-free
values of d) is approximately the same as

√
d.

57



5. Equidistribution of the integer points on the discrete sphere

The �rst equidistribution result regarding the integer points on spheres was proved by Linnik in the
late 50's, using dynamical ideals.

Theorem 5.0.1 (Linnik). As d → +∞ among the admissible, square-free, integers satisfying d ≡
±1 mod 5, the set {

x√
d
, x ∈ R3(d)

}
⊆ S2

becomes equiditributed on the unit sphere S2 with respect to the Lebesgue probability measure.

This means that if we denote by red∞ the scaling map

red∞ : R3(d) → S2

x 7→ 1√
d
x

then the number of elements of R3(d) falling inside some subset Ω ⊆ S2, divided by the total number
of points in R3(d), converges as d goes to +∞, to the area of Ω (with the notion of area given by the
renormalized Lebesgue measure on S2, so that area(S2) = 1). In other words

|red−1
∞ (Ω)|
|R3(d)|

−→
d→+∞

area(Ω)

where the limit is taken among the integers d satisfying the conditions in the theorem. In fact, the
condition d ≡ ±1 mod 5 is the Linnik condition at the prime 5, it is equivalent to the statement "the
prime 5 is split in Q(

√
−d)" (thanks to proposition 2.1.8). This condition can be replaced by Linnik's

condition at any arbitrary prime p > 3 : then the limit must be taken among the d's such that p is split
in Q(

√
−d). This condition will ensure that the trajectories we de�ne on R3(d) are "interesting", in

the sense that they will visit many SO3(Z)-orbits of R3(d). Indeed, we are going to de�ne trajectories

on R3(d) in a way that lifts the action of the subgroup [p]Z of Cl
(
OQ(

√
−d)

)
on R̃3(d)+, where p is a

prime ideal above p. But if p is inert, then [p] is the trivial element of Cl
(
OQ(

√
−d)

)
, and if p is totally

rami�ed, then [p] is an element of order 2 in the class group. In both cases, the action of [p]Z is rather
simple at the level of SO3(Z)+-orbits. We want the trajectories to reach more orbits, and this is why
there is this Linnik's condition.

In the article [EMV10], the authors mention the fact that removing this condition was considered a
very di�cult problem. It is only thirty years after the work of Linnik that this question was solved,
by a totally di�erent approach, by Duke (see [Duk88]), and independently by Fomenko and Golubeva
(see [FG90]). I did not have time to read about their proofs, since the aim of this master thesis was to
understand Linnik's original method, but let me give a few keywords for readers interested in learning
more about this. In Duke's approach, the idea is to use a Weyl criterion adapted to the equidistribution
problem. The Weyl sums that appear are Fourier coe�cients of half-integral weight modular forms.
Then, proving the equidistribution result is equivalent to proving non-trivial bounds for these Fourier
coe�cients.

To illustrate the ideas of the ergodic method with less technicalities, we will focus on a discrete analogue
of theorem 5.0.1. Namely, we will look at the distribution of the congruences of the points in R3(d).
For q an integer coprime with d, let us denote by R3(d, q) the sphere modulo q :

R3(d, q) :=
{

(x, y, z) ∈ (Z/qZ)3 , x2 + y2 + z2 = d
}

We will discuss the proof of the following theorem.

Theorem 5.0.2 (Linnik). Let q be a �xed integer, coprime with 30. As d→ +∞ among the admissible,
square-free integers satisfying d ≡ ±1 mod 5 and gcd(d, q) = 1, the set

{x mod q, x ∈ R3(d)} ⊆ R3(d, q)
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becomes equidistributed on R3(d, q), with respect to the uniform measure.

In other words, if we denote by redq : R3(d)→ R3(d, q) the reduction modulo q of the three coordinates,
the theorem asserts that for all x ∈ R3(d, q),

|red−1
q (x)|

|R3(d)|
∼

d→+∞

1

|R3(d, q)|

Once again, the condition d ≡ ±1 mod 5 is Linnik's condition at 5, but the same theorem holds for any
prime p > 3, replacing the condition "q coprime with 30" by "q coprime with 6p", and "d ≡ ±1 mod 5"
by "d such that p splits in Q(

√
−d)". In fact, we will explain the proof of a re�nement of this theorem,

which asserts that this equidistribution is "almost uniform" in x.

More precisely, for any x ∈ R3(d, q), denote by devd(x) the deviation at x :

devd(x) :=
|red−1

q (x)|
|R3(d)|

|R3(d, q)| − 1

Theorem 5.0.2 is then equivalent to : for all x ∈ R3(d, q), devd(x) −→
d→+∞

0. We will discuss the

following re�nement :

Theorem 5.0.3 ([EMV10], Theorem 1.8). Fix ν, δ > 0 and suppose that q 6 d
1
2
−ν and gcd(q, 30) = 1.

Then the fraction of x ∈ R3(d, q) for which |devd(x)| > δ :

|{x ∈ R3(d, q), |devd(x)| > δ}|
|R3(d, q)|

tends to zero as d→ +∞ (with d ≡ ±1 mod 5, admissible, square-free).

In this theorem, one can also replace Linnik's condition at 5 by the condition at any �xed prime p > 3
(this is what we will do).

Let us sketch the main ideas of the proof :

• Let us denote by p and p′ the ideals above p in the ring of integers of K = Q(
√
−d). Consider

the subgroup [p]Z of Cl(OK). This subgroup acts on R̃3(d)+. The �rst step consists in lifting
this action to an action of [p]Z on R3(d). This is the aim of section 5.1.

• Once we have an action of [p]Z on R3(d), we attach to each point x ∈ R3(d) a trajectory on
R3(d) : it is roughly de�ned as the sequence of points ([p]ix)i∈Z (but in fact, we need to keep
track of the transition matrices which allow us to go from one point of the trajectory to the next
one, so a trajectory consists of a little bit more data than just the sequence of its points).

• Then, we endow R3(d, q) with a graph structure, and we de�ne trajectories on R3(d, q) by
reducing modulo q the trajectories on R3(d), while keeping track of the transition matrices.

• Finally, we prove theorem 5.0.3 by contradiction. If we assume that the result does not hold, then
many points of R3(d) (essentially all of them) will give rise to trajectories on R3(d, q) which will
be exceptional, in the sense that they will satisfy a large deviation inequality. Then, we prove
that this implies that many non-backtracking walks on the graph R3(d, q) will be exceptional.
But the fact that R3(d, q) is an expander will ensure that the number of exceptional walks must
actually be rather small. Thus, we will get a contradiction because we will �nd that too many
walks satisfy the large deviation inequality.
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5.1 Lifting the action of [p]Z to R3(d)

In section 4.2, we de�ned an action of the class group of Q(
√
−d) on R̃3(d)+ when d is square-free

and admissible. We considered this quotient R̃3(d)+ of R3(d) merely because for any q ∈ B(Z), the
left-ideal B(Z)q is the same as B(Z)εq for any ε ∈ B(Z)×. Taking a quotient of R3(d) was a way to
get an action which does not depend on the choice of a generator of an ideal in B(Z). However, if we
allow ourselves to choose arbitrarily a generator, we will be able to lift the action to R3(d). Although
it is less canonical to work with R3(d) instead of R̃3(d)+ (arbitrary choices are made), this will give
rise to trajectories on R3(d), and the study of these trajectories is the core of the ergodic method we
aim to present here.

Let d be an admissible square-free integer, and let K be Q(
√
−d). Let p > 3 be a rational prime which

is split in K. Write
pOK = pp′

Then we have the following proposition :

Proposition 5.1.1. For any x ∈ R3(d) (viewed as a trace-free quaternion), there exists z ∈ B(Z),
unique modulo multiplication on the left by an element of B(Z)× such that B(Z)ιx(p) = B(Z)z. Besides,
N(z) = p.

Proof. As p ⊆ OK , we have ιx(p) ⊆ ιx(OK) = Ox = B(Z) ∩ Q(x) (see lemma 4.2.1). In particular
B(Z)ιx(p) ⊆ B(Z), so it is a left-ideal of B(Z). By corollary 3.1.5, There exists z ∈ B(Z) such that
B(Z)ιx(p) = B(Z)z. Moreover if z′ ∈ B(Z) is such that B(Z)z = B(Z)z′, then N(z) | N(z′) and
N(z′) | N(z), hence N(z) = N(z′). Now, z′ ∈ B(Z)z′ = B(Z)z, so we can write z′ = εz for some
ε ∈ B(Z). Taking the norms in this equality gives us N(ε) = 1 i.e. ε ∈ B(Z)×. This shows the �rst
part of the statement.

Let us prove that N(z) = p. We have :

B(Z)ιx(pOK) = B(Z)ιx(p)ιx(OK) = (B(Z)Ox)p = B(Z)p

Since pOK = pp′ ⊂ p, B(Z)ιx(pOK) ⊆ B(Z)ιx(p), hence B(Z)p ⊆ B(Z)z. This implies that N(z)
divides N(p) = p2, so N(z) ∈ {1, p, p2}.

• If N(z) = 1, then B(Z)z = B(Z) = B(Z)ιx(OK). Thus B(Z)ιx(p) = B(Z)ιx(OK). By lemma
4.3.1 we would get that p = OK , which is a contradiction.

• If N(z) = p2, then we use the inclusion B(Z)p ⊆ B(Z)z to �nd u ∈ B(Z) such that p = uz. Taking
the norms leads to N(u) = 1 i.e. u ∈ B(Z)×. Then B(Z)p = B(Z)z, wich implies p = pOK (again
by lemma 4.3.1) : contradiction.

This proves that N(z) = p.

Let us denote by Hp the set {z ∈ B(Z), N(z) = p} and by H̃p the quotient B(Z)×\Hp (the set of orbits
for the action of B(Z)× on Hp by left multiplication). We denote by [z] the orbit of z, so in other
words we have

[z] =
{
εz, ε ∈ B(Z)×

}
and H̃p = {[z], z ∈ Hp}.

The above proposition tells us that for all x ∈ R3(d), there exists a unique [z] ∈ H̃p such that
B(Z)ιx(p) = B(Z)z′ for any z′ ∈ [z]. At this point, what we did in the previous section was to de�ne
the image of [x] ∈ R̃3(d)+ under the action of [p] ∈ Cl(OK) as [y] = [zxz−1]. The advantage is that
this image [y] does not depend on the choice of a representative for the orbit [z] ∈ H̃p. But a drawback
is that it does not give a unique point in R3(d) as the image of x, but rather a set of points. However,
if we choose an arbitrary representative set of the quotient H̃p, say {z1, . . . , zp+1} (we will explain
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why |H̃p| = p + 1), this will allow us to de�ne a real image of x in R3(d). Indeed, it su�ces to take
the unique i such that B(Z)ιx(p) = B(Z)zi, and then de�ne y := zixz

−1
i . Then by de�nition, the

equivalence class of y in R̃3(d)+ corresponds to the action of [p] on [x], so in this sense, we can say
that we lift the previous action of [p]Z on R̃3(d)+ to an "action" on R3(d).

Remark. We put the word action between quotes because we think of y = zixz
−1
i as the point of R3(d)

obtained by the action of [p] on x, but we do not claim that this de�nes a real group action of [p]Z on
R3(d). For instance, if the representative set {z1, . . . , zp+1} is not stable under taking the inverse, the
equality [p].[p′].x = x may not hold for some x in R3(d).

Now our aim is to explain how we choose a set of representatives for H̃p. This set is easier to describe
in terms of matrices, so that is why we try to interpret the elements z ∈ Hp in terms of their matrix
γz ∈ SO3(Q) (the matrix of the conjugation by z).

De�nition 5.1.2. Let us denote byMp the set of rotations "with denominator p" :

Mp := {M ∈ SO3(Q) | pM ∈M3(Z) but M /∈M3(Z)}

Since SO3(Z) = SO3(Q) ∩M3(Z), we have

Mp = {M ∈ SO3(Q) | pM ∈M3(Z)} \ SO3(Z)

Lemma 5.1.3. The map z 7→ γz (see the section 4.1 on geometric aspects of quaternions) induces
a map from Hp to Mp. In other words, the rotation corresponding to the conjugation by a Hurwitz
quaternion of norm p is a matrix with denominator p.

Proof. This can be seen as a consequence of the following fact on Hurwitz quaternions :
if z is a Hurwitz quaternion such that all its coe�cients in the basis (1, i, j, k) are in Z + 1

2 , we can
always �nd a unit ε in B(Z)× such that εz has coe�cients in Z.
This is proved in [Hin08], chapter III for instance.

Indeed, let us take z ∈ Hp (a Hurwitz quaternion of norm p), and let ε ∈ B(Z)× be such that εz
has coe�cients in Z. Then γεz = γεγz, and we know from proposition 4.1.10 that γε is an element of
SO3(Z)+. Therefore, if we prove that γεz ∈Mp, we will get that γz = γ−1

ε γεz ∈Mp. Indeed, γε is just
a permutation matrix with eventual signs, so it will not create denominators. Thus, we are reduced to
the case where z is a quaternion of norm p with coe�cients in Z. In this case, as z−1 = z

N(z) = z
p , it is

clear from the formula

γz(x) = zx
z

p

that the matrix γz satis�es the condition pγz ∈ M3(Z). It remains to check that γz /∈ SO3(Z). But
if γz ∈ SO3(Z), then since SO3(Z) = SO3(Z)+ t γ1+iSO3(Z)+ and SO3(Z)+ is the image of B(Z)×,
we would �nd an element v ∈ B(Z)× t (1 + i)B(Z)× such that γz = γv (see proposition 4.1.10 and
corollary 4.1.11). Then there exists λ ∈ Q× such that z = λv. Let us write λ = a/b with a, b two
coprime integers. Then if we take the norm in the equality z = λv we obtain b2N(z) = a2N(v), hence
b2 | N(v). As v ∈ B(Z)× t (1 + i)B(Z)×, its norm is either 1 or 2, which implies that b2 = 1. We
deduce that N(z) = p = a2N(v). As p is square-free, this implies that a2 = 1, but then p = N(v) : this
is a contradiction since N(v) ∈ {1, 2}, and p is an odd prime. This �nishes to prove that γz ∈Mp.
Thus, z 7→ γz induces a map from Hp toMp : the rotation corresponding to a Hurwitz quaternion of
norm p is a matrix with denominator p.

Now, SO3(Z) acts onMp by left multiplication, and we denote by M̃p the quotient SO3(Z)\Mp.

Proposition 5.1.4. The map z 7→ γz induces a bijection between H̃p and M̃p.

Proof. • The previous lemma tells us that z 7→ γz de�nes a map from Hp toMp. Now, we compose
this map with the surjection mapping a matrix to its class modulo the action of SO3(Z). We
obtain

ϕ : Hp → M̃p

z 7→ SO3(Z)γz
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The aim is to prove that this map is surjective, and that ϕ(z) = ϕ(z′) if and only if there exists
ε ∈ B(Z)× such that z′ = εz.

• If z, z′ ∈ Hp are such that ϕ(z) = ϕ(z′) then there exists δ ∈ SO3(Z) = SO3(Z)+ t γ1+iSO3(Z)+

such that γz′ = δγz. In other words, there exists v ∈ B(Z)× t (1 + i)B(Z)× such that γz′ = γvγz.
This implies that there exists λ ∈ Q× such that z′ = λvz.

� If we assume that v ∈ (1 + i)B(Z)×, then N(v) = 2, so when we take the norms we obtain
p = 2λ2p, hence λ = ± 1√

2
: this is a contradiction since

√
2 /∈ Q.

� Thus, we are necessarily in the case where v ∈ B(Z)×. Then if we take the norms we obtain
λ2 = 1, so λ ∈ {±1} and this gives the conclusion : z′ = ±vz with v (and also −v) in
B(Z)×.

Conversely, if z′ = vz for some v ∈ B(Z)×, then γz′ = γvγz and γv ∈ SO3(Z) by proposition
4.1.10. Thus, SO3(Z)γz′ = SO3(Z)γz.

• Let us prove the surjectivity. We want to prove that for any M ∈ Mp, the orbit SO3(Z)M
contains a matrix γx for some x ∈ Hp.
Let M ∈Mp. In particular, M ∈ SO3(Q), so proposition 4.1.5 tells us that we can �nd x ∈ B×

(a non-zero element of B(Q)) such that M = γx. Moreover, for all λ ∈ Q×, γλx = γx, so we can
kill all the eventual denominators in the coe�cients of x, and assume that x has coe�cients in
Z. For the same reason, we can divide by the greatest common divisors of all the coe�cients of
x, and still get that the corresponding rotation is the same. Thus, we can write M = γx where
x = a+ bi+ cj + dk is a quaternion with a, b, c, d ∈ Z and gcd(a, b, c, d) = 1.

Then we can compute the matrix of γx : it su�ces to write xix−1, xjx−1, xkx−1 in the basis
i, j, k (recall that x−1 = x

N(x)). We obtain

γx =
1

N(x)

a2 + b2 − c2 − d2 2(bc− ad) 2(ac+ bd)
2(ad+ bc) a2 + c2 − b2 − d2 2(cd− ab)
2(bd− ac) 2(ab+ cd) a2 + d2 − c2 − b2


Since γx = M ∈Mp, the matrix pγx has coe�cients in Z. Therefore :

Tr(pγx) = p
3a2 − b2 − c2 − d2

N(x)
=

4pa2

N(x)
− p ∈ Z

hence :
4pa2

N(x)
∈ Z. (17)

Now, looking at the coe�cient (1, 1) of the matrix, we also have that

p
a2 + b2 − c2 − d2

N(x)

must be an integer. But it is equal to

2p(a2 + b2)

N(x)
− p

so if we multiply by 2 we get that

4pa2

N(x)
+

4pb2

N(x)
− 2p ∈ Z.

As we already know from the computation of the trace, the �rst term is an integer, hence :

4pb2

N(x)
∈ Z. (18)

62



Similar computations with the other diagonal coe�cients of the matrix lead to

4pc2

N(x)
∈ Z and

4pd2

N(x)
∈ Z. (19)

We deduce from (17), (18) and (19) that N(x) | 4p gcd(a2, b2, c2, d2) = 4p. Thus,

N(x) ∈ {1, 2, 4, p, 2p, 4p}

� If N(x) = 1 : then x is a Hurwitz quaternion of norm 1, so it is in B(Z)×, and we know that
in this case the matrix γx is in SO3(Z)+. But this contradicts the fact that γx = M ∈ Mp

since we excluded SO3(Z) from the matrices ofMp.

� If N(x) = 2 : then x′ := (1 + i)x still has coe�cients in Z. Let us write it as

x′ = a′ + b′i+ c′j + d′k.

Then we have N(x′) = (a′)2 + (b′)2 + (c′)2 + (d′)2 = N(1 + i)N(x) = 4. But is is easy to
see that the only way that a sum of four squares can be congruent to zero modulo 4 is
that the four integers have the same parity. Thus, a′, b′, c′ and d′ have the same parity, so
that x′

2 is a Hurwitz quaternion. Besides, it has norm 1, so x′

2 ∈ B(Z)×. We deduce that
γx′

2

∈ SO3(Z)+. But since 2 ∈ Q× = Z(B×), γx′
2

= γx′ = γ1+iγx. Thus,

γx = γ−1
1+iγx′ ∈ SO3(Z)

since both γ1+i and γx′ belong to SO3(Z). This contradicts the fact that γx = M ∈Mp.

� If N(x) = 4 : then a2 + b2 + c2 + d2 = 4, and a, b, c, d are all integers. So we don't have
many possibilities. Either one coe�cient equals ±2 and all the others are zero, or all the
coe�cients equal ±1. In any case, x

2 is a Hurwitz quaternion, and its norm is one, so
x
2 ∈ B(Z)×, hence γx = γx

2
∈ SO3(Z). This contradicts the fact that γx ∈Mp.

Thus, N(x) ∈ {p, 2p, 4p}. Now,

� if N(x) = 4p : then a2 + b2 + c2 + d2 ≡ 0 mod 4, and it is easy to see that this implies that
all the coe�cients have the same parity. Therefore, x2 is a Hurwitz quaternion, and it has
norm p. Since γx = γx

2
we obtain the conclusion because we wrote M as the conjugation

by a Hurwitz quaternion of norm p.

� if N(x) = 2p : In this case, we cannot write M as a γz for some z ∈ Hp, but we are going
to prove that in the orbit SO3(Z)M , there is such a γz. In fact it is the same trick as in
the case N(x) = 2 : we consider x′ := (1 + i)x. This is a quaternion with coe�cients in Z,
and norm 4p (≡ 0 mod 4). Hence all the coe�cients of x′ have the same parity. So x′

2 is a
Hurwitz quaternion of norm p, and

γx′
2

= γx′ = γ1+iγx ∈ SO3(Z)M

� if N(x) = p : then there is nothing to do, M = γx is the rotation associated with a Hurwitz
quaternion of norm p.

Remark. This proof sheds light on an important point : the map z 7→ γz is not surjective from
Hp →Mp. We really need to take the SO3(Z)-orbits to be able to "reach" any element of Mp (up to
multiplication by an element of SO3(Z)). Indeed, the case N(x) = 2p in the proof shows that sometimes,
M ∈Mp cannot be written as γz for some z ∈ Hp, but one needs to take a Hurwitz quaternion of norm
2p instead. However, the orbit SO3(Z)M contains some γz where z ∈ Hp.
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This proposition makes a connection between some subset of matrices with denominator p that we
introduce below and Hurwitz quaternions of norm p. It is very important in order to understand why
this strange set of matrices has a something to do with the action of [p] and [p′] on R̃3(d)+.

De�nition 5.1.5. Let us denote by Ap the set of matrices M ∈Mp such that their reduction modulo
3 is equal to the identity matrix.

Let us stress that since p > 3, it is invertible modulo 3, so it makes sense to look at the reduction
modulo 3 of a matrice with denominator p. For instance, when p = 5, the matrices

A :=
1

5

5 0 0
0 −4 3
0 −3 −4

 and D :=
1

5

5 0 0
0 4 3
0 −3 4


are both inM5 (they are easily seen to be in SO3(Q) and to have denominator 5). However, A ∈ A5

whereas D /∈ A5. Indeed, 5 ≡ −1 mod 3, so when we reduce A and D modulo 3, the factor 1
5 becomes

−1. Hence

A ≡ −

5 0 0
0 −4 3
0 −3 −4

 ≡ −
−1 0 0

0 −1 0
0 0 −1

 ≡ I3 mod 3

whereas

D ≡ −

5 0 0
0 4 3
0 −3 4

 ≡ −
−1 0 0

0 1 0
0 0 1

 6≡ I3 mod 3

In fact, it is not hard to �nd the list of all the elements of A5 : they are matrices of denominator 5, so
we look for matrices of the form

1

5

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3


where the entries ai,j are all integers. Moreover, we look for elements that are in SO3(Q), so each
column must be of norm 1, so if we take into account that we factored by 1

5 , this means that for all
1 6 j 6 3,

a2
1,j + a2

2,j + a2
3,j = 25

But this does not have many solutions in integers ! Up to permutation, we are either in the case
02 +02 +(±5)2 = 25 or in the case 02 +(±3)2 +(±4)2 = 25. Moreover, we cannot have all the columns
with only one non-zero coe�cient equal to ±5 because in this case the matrix obtained is in SO3(Z),
and we excluded these from the de�nition of matrices with denominator 5. Taking into account the
orthogonality conditions between the columns, and the condition modulo 3, we end up with

A5 =
{
A,B,C,A−1, B−1, C−1

}
where A = 1

5

5 0 0
0 −4 3
0 −3 −4

 , B = 1
5

−4 0 3
0 5 0
−3 0 −4

 and C = 1
5

−4 −3 0
3 −4 0
0 0 5

.
Note that Ap is symmetric : if A ∈ Ap then A−1 = tA ∈ Ap.

Lemma 5.1.6. Ap is a set of representatives for M̃p.

Proof. As we already mentioned, 1
p makes sense modulo 3 since p is a prime number strictly larger

than 3. Therefore, we are allowed to consider the reductions modulo 3 of the elements ofMp (because
they are matrices of denominator p). Given a matrix γ ∈Mp, we denote by γ its reduction modulo 3.
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Since γ ∈ SO3(Q), it is easy to prove that γ ∈ SO3(F3) : the group of isometries with determinant 1
of the quadratic space (F3

3, q) where q denotes the "sum of three squares" quadratic form :

q : F3
3 → F3xy
z

 7→ x2 + y2 + z2

The multiplication on the right by γ is a bijection of SO3(F3), so there exists a unique matrix M
(depending on γ) such that Mγ = I3 (the identity element of SO3(F3)).
Now, we remark that the reduction modulo 3

SO3(Z)→ SO3(F3)

is an isomorphism, because the matrices of SO3(Z) have coe�cients in {0, 1,−1}. Therefore, the unique
M that we found before corresponds to a unique element of SO3(Z), that we still denote by M (it is
exactly the same matrix, except that we do not think of the coe�cients −1, 0 and 1 as elements of
Z/3Z but as elements of Z). Then Mγ ∈ SO3(Z)γ and reduces to the identity modulo 3 : it belongs
to Ap. This proves that for all γ ∈ Mp, there exists a unique element of Ap in the orbit SO3(Z)γ.
Hence Ap is a set of representatives for M̃p.

It is in terms of these matrices that we are going to de�ne trajectories on R3(d).

5.2 De�nition of the trajectories on R3(d)

Given a point x ∈ R3(d), we are going to de�ne in two di�erent ways a trajectory on R3(d) attached
to x. The �rst de�nition relies on a proposition of [EMV10] that we were not able to prove completely.
However, this �rst approach gives rise to trajectories which are non-backtracking by de�nition, and this
property is needed in the proof of our main theorem. On the other hand, we will give another way to
de�ne trajectories, which relies more explicitly on the "action" of [p]Z on R3(d). These two de�nitions
coincide, but this fact seems very di�cult to prove without going through the "adelization" part of
the article we are studying. Understanding this point will be our aim in the following weeks or months.

�5.2.1 A �rst de�nition

The following proposition will allow us to de�ne trajectories in a very elementary way. Indeed, one only
needs to know the de�nition of the matrices in Ap (see de�nition 5.1.5), so if we take the statement as
a blackbox, it really seems like a magical set of rotation matrices, which happen to have nice properties
with respect to the integer points on the sphere.

Proposition 5.2.1 ([EMV10], proposition 2.5). Suppose that p > 3 is a prime number which is split
in Q(

√
−d). Then for all x ∈ R3(d), there are exactly two matrices w ∈ Ap such that wx ∈ R3(d).

In the next paragraph on the alternative de�nition of the trajectories, we prove that for all x ∈ Ap,
there are at least two matrices as in this proposition. But we were not able to prove that there are at
most two.

Now, let x ∈ R3(d). Thanks to this proposition, there are exactly two matrices in Ap, say w0, w1, such
that w1x ∈ R3(d) and w−1

0 x ∈ R3(d). We de�ne

x1 := w1x and x−1 := w−1
0 x

Then starting from x1, the same proposition tells us that there are two matrices mapping x1 to a point
which is still in R3(d). But we already know that w−1

1 is one of these two matrices, since w−1
1 x1 = x.

So we denote by w2 the other one, and de�ne

x2 := w2x1
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In other words, we take the unique matrix in Ap which maps x1 to an integer point and which does
not make us backtrack.

In this way, we can apply proposition 5.2.1 at each step, and de�ne a sequence of integer points (xi)i∈Z.
This sequence can be represented by the starting point x =: x0, and a sequence (wi)i∈Z of matrices in
Ap such that wi+1 6= w−1

i . The i-th point of the trajectory is de�ned inductively by the rule

xi+1 = wi+1xi

Since (wi)i∈Z satis�es the property wi+1 6= w−1
i , we say that it is a reduced word in the alphabet Ap.

In terms of the trajectory, this means that it is not backtracking. Let us stress that with this de�nition
of the trajectories, the fact that we obtain non-backtracking trajectories is immediate, it just comes
from the way we choose the element of Ap to de�ne the next point.

�5.2.2 A second way to de�ne trajectories

Let x = (x, y, z) ∈ R3(d). As before, we identify x with the quaternion xi + yj + zk ∈ B(0)(Z). We
know from proposition 5.1.1 that there exists a unique class [α] ∈ H̃p such that B(Z)ιx(p) = B(Z)α̃
for any α̃ in [α]. Under the bijection of proposition 5.1.4, this class [α] corresponds to a unique class
[M ] ∈ M̃p. Since Ap is a set of representatives for M̃p by lemma 5.1.6, the class [M ] is represented
by a unique matrix in Ap, say wx,1. Then we de�ne x1 as wx,1x.

Since wx,1 is in the same SO3(Z)-orbit as γα, our new point x1 is in the same SO3(Z)-orbit as γα(x).
But because α is such that B(Z)ιx(p) = B(Z)α, we know from section 4.2 (more precisely : the argu-
ment is given at equation (13)) that γα(x) ∈ R3(d). Thus, x1 ∈ R3(d).

This is great because at �rst sight it is not obvious that we can �nd a matrix w ∈ Ap such that
wx ∈ R3(d). Indeed, the elements of Ap are in SO3(Q), so we know that wx will still be on the sphere
of radius

√
d, but the fact that the coordinates will remain integers for at least one w did not seem

clear to me without this interpretation in terms of quaternions.

Besides, recall that we de�ned (in a neighbourhood of proposition 4.2.2) [p].[x] as [γα(x)] (here the
brackets around x and γα(x) denote SO3(Z)+-orbits, i.e. elements of R̃3(d)+). Thus, x1 is in the
same SO3(Z)-orbit as (any element of) [p].[x]. We think of it as the point obtained from x after the
"action" of [p].

Similarly, starting from x1, we look for β ∈ Hp such that B(Z)ιx1(p) = B(Z)β, then we de�ne wx,2

as the unique element of Ap which is in the same SO3(Z)-orbit as γβ , and set x2 := wx,2x1. We can
continue this process to de�ne a sequence (xi)i>0 of integer points on the sphere of radius

√
d (where

x0 = x is our starting point).

But we can also go in the other direction, that is : instead of looking at a lift of the action of [p] at
each step, we can look at the e�ect of a lift of the action of [p′] = [p]−1. So, starting from x, we look
for α′ ∈ Hp such that B(Z)ιx(p′) = B(Z)α′, and then denote by w−1

x,0 the unique matrix in Ap which is

in the SO3(Z)-orbit of γα′ . Then we de�ne x−1 as w−1
x,0x. For the same reasons as we evoqued for the

de�nition of x1, this point x−1 is also in R3(d). Note that w−1
x,0 6= wx,1 because B(Z)ιx(p) 6= B(Z)ιx(p′)

(this follows from lemma 4.3.1 and the fact that p 6= p′). Indeed, since the left B(Z) ideals are not
equal, their generators are in two di�erent classes of H̃p, so they correspond to two di�erent classes in
M̃p : this implies that they are represented by distinct elements of Ap.

Then we can go on, look for β′ ∈ Hp such that B(Z)ιx−1(p′) = B(Z)β′, then �nd w−1
x,−1 ∈ Ap (unique)

such that γβ′ is SO3(Z)-equivalent to w−1
x,−1, and de�ne x−2 ∈ R3(d) as w−1

x,−1x−1, and so on . . .

Note that we proved a part of proposition 5.2.1 :

66



Proposition 5.2.2. For all x ∈ R3(d), there are at least two matrices w ∈ Ap such that wx ∈ R3(d).

Proof. When de�ning the trajectory (xi)i∈Z in the paragraph above, we proved that the matrices wx,1

and w−1
x,0 are distinct and satisfy the property.

Remark. For i > 0, xi+1 is obtained from xi via the "action" of [p] (because we consider B(Z)ιxi(p)
to de�ne it), and x−(i+1) is de�ned from x−i via the "action" of [p′]. However, it does not seem so

clear that this de�nes a real group action of [p]Z on R3(d). For instance, we should have [p′].[p].x = x,
but the way we de�ned the actions of [p] and [p′] on the points of R3(d) does not seem to allow us to
prove this easily.

Another issue that we have at the moment is that with this de�nition, it does not seem obvious at
all that the trajectories are non-backtracking. Here, we present an attempt to prove this fact, but we
could not conclude. In this attempt, we see that this question is in fact related to the remark above.
We hope that leaving this attempt in this thesis will clarify why there is something not obvious to
prove to see that we really de�ned an action of [p]Z.

Proposition 5.2.3 (The trajectories are non-backtracking). For all i ∈ Z,

wx,i+1 6= w−1
x,i

Attempt. We already proved it for i = 0, but the the way we de�ned the trajectory does not allow us
to repeat exactly the same argument for other values of i. Indeed, for i = 0, we de�ned wx,1 and w−1

x,0

using the actions of [p] and [p′] on the point x, so the fact that they are distinct essentially came from
the fact that B(Z)ιx(p) 6= B(Z)ιx(p′). Now, the issue we have when considering i 6= 0, for instance
i > 0, is that xi−1 is not a priori de�ned from xi via the action of [p′] : it is xi which is de�ned
from xi−1 via the action of [p]. It is not clear that [p′] acts on xi via the inverse of the matrix of Ap
corresponding to the action of [p] on xi−1. More explicitly :

• We construct xi starting from xi−1 by considering the left ideal B(Z)ιxi−1(p), writing it in the
form B(Z)γαi for some Hurwitz quaternion αi of norm p, and then we denote by wx,i the unique
matrix in Ap which is left SO3(Z)-equivalent to γαi . The point xi is then de�ned as wx,ixi−1.

• On the other hand, if we want to de�ne the point obtained from xi via the action of [p′], we follow
the same steps : write B(Z)ιxi(p

′) = B(Z)γα′i , and (w′x,i)
−1 the unique element of Ap which is

left SO3(Z)-equivalent to γα′i . We obtain a new point

x′i−1 := (w′x,i)
−1xi

which belongs to R3(d).

At this point, we would like to prove that w′x,i = wx,i, but for the moment, we have not found
an elementary argument. However, as we will discuss in the next paragraph, our two de�nitions
of trajectories coincide, and with the �rst de�nition, there is nothing to prove, the trajectories are
non-backtracking by de�nition.

Admitting this proposition, this means that we can represent the trajectory (xi)i∈Z as follows : it is
the data of a starting point x = x0, and a word Wx = (wx,i)i∈Z in the alphabet Ap, satisfying :

wx,ixi−1 = xi and wx,i+1 6= w−1
x,i

De�nition 5.2.4. A word (wi)i∈Z in the alphabet Ap satisfying the property wi+1 6= w−1
i is said to be

reduced.

Example : Let us take d := 29, and K = Q(
√
−d). The integer d is admissible and square-free. This

follows from theorem 3.4.2, but since 29 is not very large, we can just try a little bit to �nd several ways
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of writing it as a sum of three squares. For instance we have 29 = 52 + 22 + 02, or 29 = 42 + 32 + 22.
The two prime ideals above 5 in OK are

p := 〈5, 1 +
√
−d〉 and p′ = 〈5, 1−

√
−d〉

(where the brackets mean that we are taking the ideal of OK generated by the two elements inside the
brackets). Now, let us start from some x0 ∈ R3(d), for instance

x0 :=

5
2
0


To de�ne x1, we �rst need to �nd α ∈ B(Z) such that B(Z)ιx0(p) = B(Z)α. But

B(Z)ιx0(p) = B(Z)5 + B(Z)(1 + x0),

hence such a quaternion α must be a right divisor (inside B(Z)) of both 5 and 1 + x0. Besides, we
know that we can look for α in the list

L := {1± 2i, 1± 2j, 1± 2j}

as the latter is a set of representatives for Hurwitz quaternions of norm 5, modulo the action of units.
For all z ∈ L, z is a right divisor of 1 + x0 inside B(Z) if and only if (1 + x0)z−1 ∈ B(Z). So we
just have to compute (1 + x0)z−1 for all z ∈ L, and see which one still belongs to B(Z). After a few
attemps, we obtain :

(1 + x0)(1− 2j) = (1 + 5i+ 2j)(1− 2j)

= 1 + 5i+ 2j − 2j − 10ij − 4j2

= 1 + 5i− 10k + 4

= 5 + 5i− 10k

hence

(1 + x0)(1 + 2j)−1 = (1 + x0)

(
1− 2j

5

)
∈ B(Z).

Thus, α := 1 + 2j satis�es B(Z)ιx0(p) = B(Z)α. Now, let us see which element of A5 is in the same
SO3(Z)-orbit as γα. We have

γα =
1

5

−3 0 4
0 5 0
−4 0 −3


let us mention that there is a possibility to use WolframAlpha to �nd the rotation corresponding to a
given quaternion :
https://www.wolframalpha.com/input/?i=draw+1+%2B0i+%2B2j+%2B0k+as+a+rotation+operator

This matrix γα is easily seen to be in the same SO3(Z)-orbit as the matrix B−1 ∈ A5. Indeed, 0 0 1
0 1 0
−1 0 0

−3 0 4
0 5 0
−4 0 −3

 =

−4 0 −3
0 5 0
3 0 −4


Then we de�ne

x1 := B−1x0 =
1

5

−4 0 −3
0 5 0
3 0 −4

5
2
0

 =

−4
2
3


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Similarly, one can check that B(Z)ιx1(p) = B(Z)(1− 2k), and that γ1−2k is SO3(Z)-equivalent to the
matrix C ∈ A5. Hence :

x2 := Cx1 =
1

5

−4 −3 0
3 −4 0
0 0 5

−4
2
3

 =

 2
−4
3


Similarly, in the other direction, we have B(Z)ιx(p′) = B(Z)(1− 2j) and γ1−2j is in the same SO3(Z)-
orbit as B ∈ A5. Thus, we de�ne

x−1 := Bx =
1

5

−4 0 3
0 5 0
−3 0 −4

5
2
0

 =

−4
2
−3


This way, we obtain the following truncated trajectory :

· · ·

2
5
0


x−3

A7−→

 2
−4
−3


x−2

C−1

7−→

−4
2
−3


x−1

B−1

7−→

5
2
0


x0

B−1

7−→

−4
2
3


x1

C7−→

 2
−4
3


x2

A7−→

2
5
0


x3

· · ·

Remark. We will see that the properties of these trajectories lead to a proof of an equidistribution result.
But one can also �nd another interest to the process described above : �nding new representations as
a sum of three squares. Indeed, when d = 29, it is not di�cult to �nd all the possible representations,
but if d is very large, it can be very long. However, the matrices of Ap can help us to �nd new
representations starting from an initial one. For instance let us consider

d := 32591826 = 56892 + 232 + 4762

Let us denote by x0 :=

5689
23
476

 ∈ R3(d). As d ≡ 1 mod 5, the prime 5 is split in Q(
√
−d), so we know

that there are at least two matrices in A5, say w and w′, such that wx0 ∈ R3(d) and w′x0 ∈ R3(d).
Since |A5| = 6, we just have to do six products of a (3 × 3)-matrix by a column vector, so it is really
economic. We �nd that

A−1x0 =

5689
−304
367

 and Cx0 =

−4565
3395
476


hence two new representations of d as a sum of three squares :

d = 56892 + (−304)2 + 3672 and d = (−4565)2 + 33952 + 4762

In fact, in the article [EMV10], they prove that exactly two elements w ∈ A5 are such that wx0 ∈ R3(d).
What we proved here just explains that there are at least two, corresponding to the actions of [p] and
[p′] (the elements of Cl(OK) corresponding to the two prime ideals above 5), and this is su�cient for
us. If d 6≡ ±1 mod 5, we can replace the prime 5 by another prime p which is split in Q(

√
−d), and

work with Ap instead of A5.

This remark raises an interesting question : can we use these trajectories to �nd all the representations
of d as a sum of three squares ? In other words, will the trajectory reach all the SO3(Z)-orbits of
R3(d) ? This would be great because, as we said, this would be a very e�cient way to �nd representa-
tions as a sum of three squares, since at each step, we just have to do six matrix multiplications, and
we know that two of them will give us a possibly di�erent representation. This question is related to
the question : is the subgroup [p]Z all or almost all of the group Cl(OK) ? This is a "seemingly di�cult
question" according to [EMV10], but apparently, people believe that this happens for in�nitely many
d. So let us just say that it is reasonable to hope that our trajectories will reach all the SO3(Z)-orbits
of R3(d).
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�5.2.3 The two de�nitions of the trajectories coincide

As we will need to combine the properties of our two de�nitions of the trajectories, we admit the
following fact :

It can be shown that the two previous de�nitions of the trajectories on R3(d) coincide. In particular,
the "action" of [p]Z on R3(d) as de�ned in the previous paragraph is a real group action, and the
trajectory de�ned with this point of view is non-backtracking.

This highly non-trivial statement comes from the fact that a �nite version of the graph R3(d) can be
identi�ed with a �nite quotient of the Bruhat-Tits tree of PGL2(Qp) (an explicit (p+ 1)-valent tree).

5.3 The graph structure on R3(d, q)

Let p > 3 be a prime number, et q be an integer coprime with 6p (this condition is used in theorem
5.6.1, but will remain a bit obscure because we do not prove this theorem). Then in particular, q is
coprime with p, so p is invertible modulo q. Thus, we can reduce the elements of Ap modulo q, since
they are matrices of denominator p. Let us denote by γ these reductions modulo q. It is easy to see that
since Ap ⊆ SO3(Q), they act on R3(d, q) : for all x ∈ R3(d, q), for all γ ∈ Ap, γ x ∈ R3(d, q). This
endows R3(d, q) with a structure of a |Ap|-regular undirected graph by joining each vertex x ∈ R3(d, q)
to the vertices γ x, γ ∈ Ap. In fact, it is a multigraph : we allow multiple edges between two vertices
and edges connecting a vertex to itself. Indeed, there might exist two matrices γ1, γ2 ∈ Ap such that
γ1 x = γ2 x =: y. In this case, we will draw one edge corresponding to γ1, and one di�erent edge,
corresponding to γ2, to connect x and y. By an abuse of notation, we will also denote by R3(d, q) this
graph. Since |Ap| is the degree of this graph (that is : the number of edges meeting at each vertex),
it is crucial to know this cardinality in order to have a better understanding of this graph.

Proposition 5.3.1. We have |Ap| = p+ 1.

Proof. David E Speyer's answer on mathover�ow : https://mathoverflow.net/questions/84897/

proofs-of-jacobis-four-square-theorem, and Claude Quitté's answer on Les-Mathématiques.net :
http://www.les-mathematiques.net/phorum/read.php?5,1821586 helped me a lot.

As Ap is a set of representatives for M̃p and |M̃p| = |H̃p| by proposition 5.1.4, we have |Ap| = |H̃p|.
Moreover, any orbit [z] ∈ H̃p is made of 24 elements of Hp because |B(Z)×| = 24. Thus,

Hp = 24|H̃p|.

So |Ap| = p + 1 if and only if |Hp| = 24(p + 1). This reduces the question to counting the Hurwitz
quaternions of norm p.

• Step 1 : for any x ∈ B(Z), the index of the principal ideal xB(Z) inside B(Z) equals N(x)2.

B(Z) is a free Z-module of rank 4, with basis B := (i, j, k, δ) (for example), where δ denotes
1
2(1 + i + j + k). Therefore, we can repeat the arguments of the proof of proposition 1.6.5, and
conclude that the index of xB(Z) inside B(Z) is equal to the absolute value of the determinant
of the multiplication by x (as a Z-linear map from B(Z) to itself). Now, if x = a+ bi+ cj + dk,
one can check that :

xi = (a+ b)i+ (b+ d)j + (b− c)k − 2bδ

xj = (c− d)i+ (a+ c)j + (b+ c)k − 2cδ

xk = (c+ d)i+ (d− b)j + (a+ d)k − 2dδ

xδ = (b+ c)i+ (c+ d)j + (b+ d)k + (a− b− c− d)δ

So the matrix of the multiplication by x in the basis B of B(Z) is the following :
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MatB,B(mx) =


a+ b c− d c+ d b+ c
b+ d a+ c d− b c+ d
b− c b+ c a+ d b+ d
−2b −2c −2d a− b− c− d


The determinant of this matrix is (a2 + b2 + c2 + d2)2, that is : N(x)2. In fact, the computation
is easier if we proceed as follows : B is a Z-basis of B(Z), but it is also a Q-basis of B(Q), so we
can see MatB,B(mx) as the matrix of the multiplication by x (on the left) as an endomorphism
of B(Q). Thus, the determinant of this matrix is the same as the determinant of MatC,C(mx)
where C = (1, i, j, k) is the usual basis of B(Q).

Thanks to this �rst step, we deduce that if z ∈ Hp, then the index of zB(Z) inside B(Z) is equal
to p2. But conversely, if I is a right ideal of B(Z) of index p2, then by corollary 3.1.5 it is of the
form zB(Z) for some z ∈ B(Z), and the latter must have norm p in order to have the correct
index. Therefore, the map z 7→ zB(Z), from Hp to the set of right ideals of B(Z) of index p2, is
well de�ned and surjective. Besides, for a given right ideal zB(Z), there are exactly 24 elements
of Hp mapping to this ideal (they are exactly the elements zε where ε runs over B(Z)×). Hence
|Hp| equals 24 times the number of right ideals of B(Z) of index p2. So |Ap| = p+ 1 if and only
if there are exactly p+ 1 such ideals.

• Step 2 : we reduce to the question of counting ideals in B(Z)/pB(Z).

If z ∈ Hp, then N(z) = zz = p ∈ zB(Z), so pB(Z) ⊆ zB(Z). Hence all the right ideals of B(Z) of
index p2 contain pB(Z). It is well known that the natural surjection map π : B(Z)→ B(Z)/pB(Z)
induces a bijection between right ideals of B(Z) containing pB(Z) and right ideals of B(Z)/pB(Z).
Moreover, this correspondence of ideals preserves the index. Thus, the number of right ideals of
B(Z) of index p2 equals the number of right ideals of B(Z)/pB(Z) of index p2.

• Step 3 : B(Z)/pB(Z) 'M2(Fp).

By the same counting argument as in the proof of proposition 3.2.2, we can �nd u, v ∈ Z such
that u2 + v2 ≡ −1 mod p. Let us de�ne the following four elements ofM2(Fp) :

1 :=

(
1 0
0 1

)
, I :=

(
0 1
−1 0

)
, J :=

(
u v
v −u

)
and K :=

(
v −u
−u −v

)
Then I2 = J2 = K2 = −1 and IJ = −JI = K, JK = −KJ = I and KI = −IK = J . Thanks
to these relations, we can de�ne a ring homomorphism

φ : B(Z)→M2(Fp)

as follows : �rst, we set φ(1) = 1, φ(i) = I, φ(j) = J and φ(k) = K. Then we extend it to all the
elements of B(Z) by linearity : if x = a+ bi+ cj + dk is a Hurwitz quaternion with coe�cients
in Z, there is no issue, we map it to a1 + bI + cJ + dK, but how do we do if x has coe�cients
in Z + 1

2 ? In this case, we just remark that since p is an odd prime, 2 is invertible modulo p,
so we can �nd m ∈ Z whose reduction modulo p is the inverse of the class of 2 mod p. Then, if
x = a

2 + b
2 i+

c
2j+ d

2k where a, b, c, d are odd integers, we de�ne φ(x) as ma1+mbI+mcJ+mdK.
Note that since we are looking at matrices with coe�cients in Fp, this does not depend on the
choice of the integer m satisfying 2m ≡ 1 mod p.

Let us prove that this ring homomorphism is surjective. It su�ces to prove that φ reaches the
four matrices Ei,j of the canonical basis ofM2(Fp). It is even su�cient to prove that φ reaches
the matrices 2Ei,j . Indeed, if z ∈ B(Z) is such that φ(z) = 2Ei,j then it su�ces to take an
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integer m whose reduction modulo p is the inverse of 2 (it exists), and then mz is still in B(Z)
and φ(mz) = mφ(z) = Ei,j . Now we have the following relations :

1− uJ − vK = 2E1,1

I − vJ + uK = 2E1,2

−I − vJ + uK = 2E2,1

1 + uJ + vK = 2E2,2

hence φ(1− uj − vk) = 2E1,1, φ(i− vj + uk) = 2E1,2 . . . This proves that φ is surjective.

Finally, it remains to show that ker(φ) = pB(Z). We have that (1, I, J,K) is a basis of the
Fp-vector space M2(Fp) (because it is made of 4 elements, and generates M2(Fp), as we have
just seen while proving the surjectivity). Therefore, φ(a + bi + cj + dk) = 0 if and only if
a, b, c, d ≡ 0 mod p (with the convention that we replace 1

2 by the class of m modulo p when we
have a Hurwitz quaternion with coe�cients in Z+ 1

2). This is equivalent to a+bi+cj+dk ∈ pB(Z).
Thus, φ induces a ring isomorphism

B(Z)/pB(Z) 'M2(Fp)

• Step 4 : counting right ideals ofM2(Fp).

By the preceding step, we are reduced to the question of counting the right ideals of index p2

inside M2(Fp). By the correspondence explained in the appendix C, these ideals are in one to
one correspondence with the vector subspaces of Fp of index p, that is : the lines in Fp. There
are p+ 1 such lines, hence the conclusion.

Remark. We proved that the number of Hurwitz quaternions of norm p (for p odd prime) is 24(p+1).
This means that the number of solutions to the equation

a2 + b2 + c2 + d2 = p

where a, b, c, d are either all in Z or all in Z + 1
2 is equal to 24(p+ 1). So we are not far from proving

the formula given in theorem 3.0.2 for the number of representations of p as a sum of four squares.

This proposition tells us that R3(d, q) is a (p+ 1)-regular undirected graph : each vertex x ∈ R3(d, q)
has (p+ 1) edges that are incident to it. We say that each vertex has valency (or degree) p+ 1.

Example : Let us take d = 29, p = 5 and q = 7. Since 5 × 3 = 15 ≡ 1 mod 7, we can replace the
coe�cient 1

5 in front of the matrices in A5 by a multiplication by 3 when we compute the reduction
modulo 7. We obtain that the reductions modulo 7 of the matrices in A5 are :

A =

1 0 0
0 2 2
0 −2 2

 , B =

 2 0 2
0 1 0
−2 0 2

 and C =

2 −2 0
2 2 0
0 0 1


and their transpose. The points of R3(d, q) are the (x, y, z) ∈ (Z/qZ)3 such that :

x2 + y2 + z2 ≡ d ≡ 29 ≡ 1 mod 7

Up to permutation of the coordinates, the points of R3(d, q) are :

(5, 2, 0) (4, 3, 2) (1, 0, 0) (6, 0, 0) (2, 2, 0) (5, 5, 0) (3, 3, 2) (4, 4, 2) (5, 3, 3) (5, 4, 3) (5, 4, 4)

(here we identify the elements of Z/7Z with their unique representative in {0, . . . , 6}). With the help
of a computer, we �nd that there are 42 points in R3(d, q).

72



Starting from the point x = (5, 2, 0), let us draw the edges joining it to other vertices of R3(d, q).
These are the points y = γ x for γ ∈ A5. On the �gure below, we put arrows with the matrices that
made us go from x to y, but it is just to clarify. In the end, we forget about these arrows, and view
R3(d, q) as an undirected graph.

Figure 1. The edges joining x = (5, 2, 0) to the γ x, γ ∈ A5.

Then, starting from each of our 6 new vertices, we can draw edges joining them to their images under
the action of the matrices of A5. If we do several extra steps we obtain the following part of the graph
R3(d, q) (but it is hard to represent the whole graph, since it has 42 vertices, each of them with 6
incident edges. . . )
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Figure 2. A part of the graph R3(29, 7).

We just saw that the structure of the graph R3(d, q) depends a lot on the arithmetic properties of the
integers involved. The number of edges meeting at a �xed vertex essentially depends on the number
of ways to write p as a sum of four squares. One may also ask : how many vertices are there ? This is
also an arithmetic question, since we need to understand the number of solutions to the equation

x2 + y2 + z2 = d

in Z/qZ. Heuristically, we can guess that the answer will be roughly q2, because once x and y are �xed
(q2 choices for their values), then either d−x2−y2 is a square modulo q, and in this case there are two
solutions z to the equation above, or d− x2− y2 is not a square modulo q, and in this case there is no
solution. Since there are roughly as many squares as non-squares modulo q, this gives us the conclusion
of this heuristic. However, this argument can be made more rigorous : using the chinese remainder
theorem, we reduce to the case whre q is a power of a prime number, and in this case estimates follow
from classical computations on Gauss sums. This leads to the following result.

Proposition 5.3.2. For any ε > 0, one has

q2−ε �ε |R3(d, q)| �ε q
2+ε

for all q > 2 and for all d coprime with q.

5.4 Trajectories on R3(d, q)

To each point x ∈ R3(d), we want to attach a trajectory on the graph R3(d, q) : a �rst idea could be
to reduce modulo q the coordinates of the points of the trajectory of x on R3(d), as de�ned in section
5.2. So the trajectory associated with x ∈ R3(d) would be the sequence (xi)i∈Z, where xi denotes
redq(xi), and (xi)i∈Z is the trajectory of x = x0 on R3(d). However, if we do that, there is the risk
that "too many" distinct points on R3(d) give rise to the same trajectory, because the congruence
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properties of the xi's will be the same, despite the fact that we started from di�erent trajectories on
R3(d). So in order to get many di�erent trajectories, we also take into account the edge connecting xi
and xi+1. Thus, to each x ∈ R3(d), we attach a marked walk on R3(d, q) consisting of a marked base
point x0 and the choice, for each i, of an edge joining xi to xi+1.

De�nition 5.4.1. With the notations of section 5.2 for the transition matrices, the trajectory of the
point x ∈ R3(d) is

Γx := {x, (wx,i)i∈Z}

By the previous section, we know that the elements of Ap label the edges of our graph R3(d, q).
Therefore, Γx de�nes a walk on R3(d, q) : starting from x0 := x, we go to x1 = wx,1x0 via the edge
labeled wx,1, then we go from x1 to x2 = wx,2x1 via the edge labeled wx,2, and so on. In the other
direction, we de�ne x−1 as w−1

x,0x0, and we draw the walk going from x−1 to x0 via the edge labeled
wx,0, and so on.

Finally, for any integer ` > 1, we de�ne W (`)
x (resp. Γ

(`)
x ) to be the truncated word (resp. truncated

walk) of length 2`. Explicitly :

W
(`)
x = (wx,−`+1, wx,−`+2, . . . , wx,`)

and

Γ
(`)
x = (x, wx,−`+1, wx,−`+2 . . . , wx,`)

Example : We continue in the setting of the previous examples : p = 5, d = 29 and q = 7. Consider
the truncated trajectory on R3(d) from the example in section 5.2 :

· · ·

 2
−4
−3


x−2

C−1

7−→

−4
2
−3


x−1

B−1

7−→

5
2
0


x0

B−1

7−→

−4
2
3


x1

C7−→

 2
−4
3


x2

· · ·

We reduce this trajectory modulo 7 :

· · ·

2
3
4


x−2

C−1

7−→

3
2
4


x−1

B−1

7−→

5
2
0


x0

B−1

7−→

3
2
3


x1

C7−→

2
3
3


x2

· · ·

This gives the following truncated walk Γ
(2)
x :

Figure 3. The truncated walk Γ
(2)
x on the graph R3(29, 7), for x = (5, 2, 0).
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Let us stress that the trajectories arising as Γx cannot be arbitrary walks on the graph R3(d, q).
Indeed, by proposition 5.2.3, the word Wx satis�es the condition wx,i+1 6= w−1

x,i for all i ∈ Z. Thus,
the walk cannot traverse the same edge twice in succession. However, this does not prevent Γx from
going from x to y and then right after from y to x. But it has to use di�erent edges. More informally,
a walker following the trajectory Γx is allowed to go back to a vertex she has already visited, but is
not allowed to backtrack.

De�nition 5.4.2. A non-backtracking marked walk on the graph R3(d, q) is the data (x, (wi)i∈Z) of
a base point x, and a reduced word (wi)i∈Z in the alphabet Ap (see de�nition 5.2.4). The sequence of
vertices visited by the walk can be determined inductively by the rule that xi+1 is the vertex arrived at
by following the edge labeled wi+1 starting from xi.

Example : we make this example mostly to stress an important point : this de�nition includes all
the possible non-backtracking walks on R3(d, q), not only the ones arising as the reduction modulo
q of a trajectory on R3(d). For instance, if we keep the same values as in the previous examples
(d = 29, p = 5 and q = 7), the point (6, 0, 0) belongs to R3(d, q), but it is easy to see that no point of
R3(d) reduces to this point modulo q. However, we can de�ne a non-backtracking marked walk with
marked point x = (6, 0, 0). Consider the (truncated) word (A,B,C,B−1, A,B). It gives rise to the
following truncated walk on R3(d, q) : 3

−2
−4


x−3

A7−→

 3
−5
3


x−2

B7−→

 5
−5
0


x−1

C7−→

6
0
0


x0

B−1

7−→

5
0
5


x1

A7−→

5
3
3


x2

B7−→

 2
3
−4


x3

5.5 Spacing properties of trajectories

As we already mentioned, it is possible that distinct trajectories on R3(d) give rise to the same
trajectories on R3(d, q), at least for a certain time. Indeed, even if we start from two di�erent points

x and x′ in R3(d), they may have the same reduction modulo q, and the truncated words W (`)
x and

W
(`)
x′ may coincide. In this section, we try to develop criteria to measure the closeness of trajectories.

Proposition 5.5.1 (Shadowing Lemma, [EMV10], proposition 2.11). Let x,x′ ∈ R3(d). Let ` > 1.

• The truncated words W
(`)
x and W

(`)
x′ coincide if and only if x ≡ ±x′ mod p`.

• The truncated walks Γ
(`)
x and Γ

(`)
x′ coincide if and only if, in addition, x ≡ x′ mod q.

Let us denote by x.x′ the usual scalar product of these two vectors in Q3. If Γ
(`)
x and Γ

(`)
x′ coincide,

then :
x.x′ ≡ d mod q2 and x.x′ ≡ ±d mod p2`

Proof. We admit the �rst point. It is proved in the article, but in a part entitled "adelization" which
introduces a lot of notions that are new to me, I would need a lot more time to understand this part.
However, let us give a reformulation of the statement, in order to understand what it means, and why
it is di�cult. Let us denote Wx = (wi)i∈Z and Wx′ = (w′i)i∈Z.

For ` = 1, the condition W (`)
x = W

(`)
x′ means that (w0, w1) = (w′0, w

′
1). Equivalently, this means that

when we de�ne the trajectories of x and x′ on R3(d), we take the same matrix w0 ∈ Ap to de�ne x−1

(as w−1
0 x) and x′−1 (as w−1

0 x′ ) and the same matrix w1 ∈ Ap to de�ne x1 (as w1x) and x′1 (as w1x
′).

Therefore, the meaning of the �rst point is that the fact that x and x′ are p-adically close forces us
to choose the same matrices in Ap for a long time, when de�ning the trajectories of these two points
on R3(d). Since matrices in Ap are rotations of Q3, we can also reformulate it as a condition for the
trajectories of x and x′ to be parallel for a long time.
Now, if we go back to section 5.2 to remember how these matrices of Ap are chosen, we see that the
condition W (1)

x = W
(1)
x′ is equivalent to the following equalities of ideals of B(Z) :

B(Z)ιx(p) = B(Z)ιx′(p) and B(Z)ιx(p′) = B(Z)ιx′(p
′)
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(where p and p′ still denote the two ideals above p in Q(
√
−d)). But it does not seem easy to make

a connection between the p-adic closeness of x and x′ and the fact that the ideals of B(Z) associated
with the action of p and p′ on x and x′ are the same.

The second point is clear, since the walks coincide if and only if they have the same marked point and
the same transition matrices. The condition "x ≡ x′ mod q" is exactly the condition "having the same
marked point".

Finally, if the two truncated trajectories are equal, then x ≡ ±x′ mod p` and x ≡ x′ mod q. This
implies that (x − ±x′).(x − ±x′) ≡ 0 mod p2` and (x − x′).(x − x′) ≡ 0 mod q2. If we develop the
�rst congruence, and take into account that x.x = d = x′.x′, we obtain ±2x.x′ ≡ 2d mod p2`. Since
p is an odd prime, we can multiply by the inverse of 2 modulo p, and this gives x.x′ ≡ ±d mod p2`.
Similarly, the second congruence leads to x.x′ ≡ d mod q2. Note that q is also odd because we assumed
q coprime with 6p.

Notation : In order to avoid carrying too many constants we will use the notations "f � g" and
"f � g" in the sequel. These notations are used a lot in analytic number theory, and di�er a little
bit from the notation f = O(g), so let us take some time to make some precisions. We follow the
introduction of [Kow04].

• The notation f = O(g) : we consider a topological space X, and a point x0 ∈ X. Let f and g
be two real valued functions de�ned on a neighbourhood of x0 in X, not necessarily de�ned at
x0. We say that

f = O(g) when x→ x0

if there exists a neighbourhood V of x0 in X and a constant C (depending a priori on x0 and V )
such that |f(x)| 6 Cg(x) for all x ∈ V \ {x0}.

• The notation f � g : we consider two functions f, g de�ned on a set X (not necessarily a
topological space), and with real values. Then we say that :

f � g on Y ⊆ X

if there exists a constant C such that for all x ∈ Y , |f(x)| 6 Cg(x). We will refer to such a
constant C as an implicit constant (because is does not appear when writing f � g). Besides,
C can depend on other parameters (ε, δ for instance), and in this case if we want to stress on
which parameters it depends, we will write f �ε,δ g.

The di�erence is that in the second case, the subset Y must be written explicitly, whereas in the
�rst case, the neighbourhood V is implicit, and could be replaced by a smaller neighbourhood of x0.
The notation O refers to an asymptotic behaviour, whereas the notation f � g can be used for an
equality that holds everywhere where f and g are de�ned. Very often, the subset Y is clear from the
context. For instance when we gave an estimate of |R3(d)| in section 4.4, we could have replaced the
long sentence "for all ε > 0, there exists a constant C(ε), depending only on ε, such that for all d > 2

admissible and square-free, |R3(d)| > C(ε)d
1
2
−ε" (and the analogue statement for the upper bound)

by the more compact notation :

for any ε > 0, d
1
2
−ε �ε |R3(d)| �ε d

1
2

+ε for all d > 2 admissible and square-free.

But in the sequel, we will sometimes omit the set in which d ranges, since in the whole study of our
equidistribution problem, d is assumed to be admissible and square-free.

Proposition 5.5.2 (Linnik's basic Lemma, [EMV10], proposition 2.12). Let e ∈ Z be such that
|e| 6= d. The number of pairs (x,x′) ∈ R3(d)2 with scalar product x.x′ = e is �ε d

ε.
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Proof. We admit this proposition. It is proved in [EMV10], pages 24 and 25, using a construction called
the orthogonal complement construction, which is not hard to understand once one knows about the
action of Cl(OK) on R̃3(d)+. The reason why we admit this lemma is that the second part of the
proof relies on the notion of a quadratic form represented by another quadratic form, and we did not
have time to read more about this vocabulary.

Observe that since x.x = x′.x′ = d, we have |x.x′| 6 d by Cauchy-Schwarz inequality. Hence if |e| > d,
there is no pair (x,x′) ∈ R3(d)2 with scalar product equal to e. Besides, if |e| = d, a pair (x,x′) such
that x.x′ = e satis�es the case of equality in Cauchy-Schwarz inequality, so x′ must be proportional to
x. As they have the same norm, this implies that x = ±x′, and the sign is determined by the sign of
e. This shows that there are |R3(d)| pairs with scalar product equal to d : namely the pairs (x,x), for
x ∈ R3(d), and |R3(d)| pairs with scalar product equal to −d, namely the pairs (x,−x) for x ∈ R3(d).

Corollary 5.5.3. For any ε > 0, one has :∣∣∣{(x,x′) ∈ R3(d)2, Γ
(`)
x = Γ

(`)
x′

}∣∣∣�ε |R3(d)|+ dε
(

1 +
d

q2p2`

)
Proof. We decompose the set with respect to the value of x.x′ :{

(x,x′) ∈ R3(d)2, Γ
(`)
x = Γ

(`)
x′

}
︸ ︷︷ ︸

=:A

=
⊔
e∈Z

{
(x,x′) ∈ R3(d)2, Γ

(`)
x = Γ

(`)
x′ and x.x′ = e

}
︸ ︷︷ ︸

=:Ae

By the previous observation, the sets on the right hand side are empty if |e| > d, hence :

|A| =
∑
|e|6d

|Ae|

Now, we bound the terms where |e| = d by the number of pairs such that x.x′ = e, that is : |R3(d)|.
This gives :

|A| 6 2|R3(d)|+
∑
|e|<d

|Ae|

Besides, by proposition 5.5.1, if x and x′ are such that Γ
(`)
x′ = Γ

(`)
x , then{

x.x′ ≡ d mod q2

x.x′ ≡ ±d mod p(2`)
(20)

So if e does not verify the congruences (20), the set Ae is empty. Thus,

|A| 6 2|R3(d)|+
∑
|e|<d

e≡d mod q2

e≡±d mod p2`

|Ae|

By Linnik's basic lemma (proposition 5.5.2), we have the following estimate : for any ε > 0, |Ae| �ε d
ε.

Hence :

|A| �ε |R3(d)|+ dε
∑
|e|<d

e≡d mod q2

e≡±d mod p2`

1

It remains to count the number of terms of this last sum. Since p and q are coprime, there is a
unique integer satisfying the conditions e ≡ d mod q2 and e ≡ d mod p2` in any interval of integers of
length q2p2`, and the same holds with the condition e ≡ −d mod p2` (this is a reformulation of chinese
remainder theorem). Let us write the euclidean division of d by q2p2` :

d = (q2p2`)m+ b, with m =

⌊
d

q2p2`

⌋
and 0 6 b < q2p2`
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Then the interval {0, . . . , d} is made of m successive intervals of length q2p2`, and a last interval
of length strictly less than q2p2`. Each of these intervals contains at most 2 integers satisfying the
congruences (20). Thus, there are at most 2(m+ 1) integers e such that 0 6 e 6 d, e ≡ d mod q2 and
e ≡ ±d mod p2`. We do the same argument for negative values of e, and conclude that the number
of terms of the sum is bounded by 4(m + 1). As m 6 d

q2p2`
, this number of terms is also bounded by

4
(

1 + d
q2p2`

)
. Since the constants become implicit in the notation "�", we obtain

|A| �ε |R3(d)|+ dε
(

1 +
d

q2p2`

)
as we wanted.

Remark. In the previous statement, if ` is chosen so that q2p2` '
√
d ' |R3(d)|, then the upper bound

is �ε d
1
2

+ε for any ε > 0 (here we use the upper bound for |R3(d)| from section 4.4). In particular,
since

|A| =
∣∣∣{(x,x′) ∈ R3(d)2, Γ

(`)
x = Γ

(`)
x′

}∣∣∣ =
∑

x∈R3(d)

∣∣∣{x′ ∈ R3(d), Γ
(`)
x′ = Γ

(`)
x

}∣∣∣
we have ∑

x∈R3(d)︸ ︷︷ ︸
'
√
d terms

∣∣∣{x′ ∈ R3(d), Γ
(`)
x′ = Γ

(`)
x

}∣∣∣�ε d
1
2

+ε

which implies that the map x 7→ Γ
(`)
x is essentially injective.

5.6 Expander graphs

The theory of expander graphs is a very wide subject, that I did not have time to explore. The
introduction of these notes (which have now become a book), by Emmanuel Kowalski, gives many
points of view and motivations on expander graphs : https://people.math.ethz.ch/~kowalski/

expander-graphs.pdf

We will use the fact that R3(d, q) is an expander :

Theorem 5.6.1. For all q coprime with 6p, the graph R3(d, q) is an expander.

Once again, this statement comes from the fact R3(d, q) can be identi�ed with a �nite quotient of the
Bruhat-Tits tree of PGL2(Qp).

However, we will only use the following consequence of this fact, namely a large deviation inequality
for non-backtracking walks on R3(d, q) :

Corollary 5.6.2. Fix η, ε > 0. For any subset B ⊆ R3(d, q) with |B| > η|R3(d, q)|, the fraction of
non-backtracking walks Γx of length 2` centered at any �xed point x of R3(d, q) which satisfy :∣∣∣∣ |Γx ∩ B|

2`+ 1
− |B|
|R3(d, q)|

∣∣∣∣ > ε

is bounded by c1 exp(−c2`), where c1, c2 are strictly positive constants depending only on ε, η. In other
words, if we denote by Λ` the set of all non-backtracking walks of length 2` (see de�nition 5.4.2), and
by M the subset of Λ` made of the walks satisfying the inequality above, then :

|M |
|Λ`|

6 c1 exp(−c2`).
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In this statement (and everywhere below), |Γx ∩B| denotes the number of indices i ∈ {−`, . . . , `} such
that xi (the i-th point of the walk Γx) belongs to B. So we may interpret the term |Γx ∩ B|/(2`+ 1)
as the fraction of the time that the walk Γx (of length 2`) spends inside the subset B.
On the other hand, if we endow R3(d, q) with the uniform probability measure, the term |B|/|R3(d, q)|
is the probability of B. To put it di�erently, it is the probability that an element x ∈ R3(d, q), taken
at random with uniform distribution, belongs to B.

Since the graph R3(d, q) has good connectivity properties (this is a way to interpret theorem 5.6.1), it
is natural to expect that a typical walk will spend a fraction of the time in B which is approximately
the probability of being in B. Thus, the inequality in the corollary is a large deviation inequality. The
walks satisfying this inequality are "exceptional", and so there should not be many such walks. The
corollary states that the fraction of such walks decays exponentially with `.

5.7 Conclusion of the proof

We can �nally prove theorem 5.0.3. Let p > 3 be a prime number, and let q be an integer coprime
with 6p. Our aim is to prove a re�nement of the fact that the points of R3(d) become equidistributed
in R3(d, q) (with respect to the uniform measure) as d goes to in�nity among the values of d such that
p is split in Q(

√
−d) and d is coprime with q.

More precisely, let us �x ν, δ > 0, and suppose that q2 6 d
1
2
−ν (in our re�nement, q is no longer �xed,

it just has to grow slowly compared to d). Then our aim is to prove that the fraction of x ∈ R3(d, q)
such that

|devd(x)| > δ

tends to zero as d goes to in�nity. As in the statement of the theorem, devd(x) denotes the deviation
at x :

|red−1
q (x)|
|R3(d)|

1
|R3(d,q)|

− 1

that is : the gap between the proportion of the points of R3(d) that reduce to x modulo q, and 1
|R3(d,q)|

(which is the expected asymptotic result if the equidistribution indeed holds).

Let us denote

Bδ := {x ∈ R3(d, q), devd(x) > δ} and B−δ := {x ∈ R3(d, q), devd(x) < −δ}

We want to prove that
| {x ∈ R3(d, q), |devd(x)| > δ} |

|R3(d, q)|
−→
d→+∞

0

As {x ∈ R3(d, q), |devd(x)| > δ} = Bδ t B−δ , it su�ces to show that

|Bδ|
|R3(d, q)|

−→
d→+∞

0 and
|B−δ |

|R3(d, q)|
−→
d→+∞

0

The proof goes the same way for the two limits above, so we just focus on the the �rst one.

Let η > 0. We want to show that for all d large enough, |Bδ| 6 η|R3(d, q)|. Let us assume that
|Bδ| > η|R3(d, q)|, and look for a contradiction for all d large enough.

�5.7.1 Useful lemmas

Lemma 5.7.1. Let B be a subset of R3(d, q) and ` > 1. Then

|red−1
q (B)| = 1

2`+ 1

∑
x∈R3(d)

|Γ(`)
x ∩ B|

where |Γ(`)
x ∩B| denotes the number of i's in {−`, . . . , `} such that the i-th vertex xi of Γx is inside B.
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Proof. Since the action of [p]i on R3(d) permutes R3(d), we have : for all i ∈ {−`, . . . , `},

|red−1
q (B)| =

∑
x∈R3(d)

redq(x)∈B

1 =
∑

x∈R3(d)
redq([p]ix)∈B

1

Now, we sum over i ∈ {−`, . . . , `} and divide by 2`+ 1. This gives :

|red−1
q (B)| = 1

2`+ 1

∑
x∈R3(d)

∑
i∈{−`,...,`}

redq([p]ix)∈B

1 =
1

2`+ 1

∑
x∈R3(d)

|Γ(`)
x ∩ B|

Lemma 5.7.2. If d is large enough, there exists an integer ` > 1 such that :

1

p
|R3(d)| < q2p2` 6 p|R3(d)| (21)

Proof. First, note that it is not restrictive to assume d large enough, since we are looking for a
contradiction when d is large enough. This lemma is where we use the assumption

q2 6 d
1
2
−ν

Thanks to theorem 4.4.1, we know that for any ε > 0, d
1
2
−ε �ε |R3(d)|. Therefore, for ε := ν

2 , there
exists a constant C such that for all d > 2 admissible and square-free,

d
1
2
− ν

2 6 C|R3(d)|.

So for d large enough, we have :

q2 6 d
1
2
−ν <

1

Cp
d

1
2
− ν

2 6
|R3(d)|

p

Thus, q2 < |R3(d)|
p , and this implies the lemma.

Now, we choose ` as in the previous lemma, and we apply lemma 5.7.1 to B = Bδ. We deduce that the

average over R3(d) of |Γ
(`)
x ∩Bδ|
2`+1 satis�es :

1

|R3(d)|
∑

x∈R3(d)

|Γ(`)
x ∩ Bδ|
2`+ 1

=
|red−1

q (Bδ)|
|R3(d)|

Now, for all x ∈ Bδ, we have (by de�nition of Bδ)

|red−1
q (x)|

|R3(d)|
> (1 + δ)

1

|R3(d, q)|
Informally, this means that the points of R3(d) tend to reduce to x modulo q a little bit more often
than what would be the perfect equidistribution behaviour. Now since red−1

q (Bδ) =
⊔

x∈Bδ red−1
q (x),

we deduce that
|red−1

q (Bδ)|
|R3(d)|

> (1 + δ)
|Bδ|

|R3(d, q)|
Hence :

1

|R3(d)|
∑

x∈R3(d)

|Γ(`)
x ∩ Bδ|
2`+ 1

> (1 + δ)
|Bδ|

|R3(d, q)|

But we started this proof by contradiction by assuming |Bδ| > η|R3(d, q)|, so
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1

|R3(d)|
∑

x∈R3(d)

|Γ(`)
x ∩ Bδ|
2`+ 1

>
|Bδ|

|R3(d, q)|
+ δη (22)

We will derive a very basic consequence of this inequality, but since the notations are a bit heavy, we
state what we use in an independent lemma.

Lemma 5.7.3. Let x1, . . . , xn ∈ [0, 1], and let A,B be two positive real numbers. Suppose that

1

n

n∑
i=1

xi > A+B

Then the number of indices i such that xi >
B
2 +A is strictly larger than B

2 n.

Proof. We have
1

n

n∑
i=1

xi =
1

n

∑
16i6n

xi>
B
2

+A

xi +
1

n

∑
16i6n
xi6

B
2

+A

xi

Now, if the number of terms of the �rst sum on the right hand side is less than or equal to B
2 n, then

we have :
1

n

∑
16i6n

xi>
B
2

+A

xi 6
B

2

using the fact that the xi's are less than or equal to 1. Since the second sum is less than or equal to
B
2 +A, we conclude that

1

n

n∑
i=1

xi 6 A+B.

This contradicts the assumption. Thus, the number of indices i such that xi > B
2 +A is strictly larger

than B
2 n.

�5.7.2 Conclusion of the proof

We apply lemma 5.7.3 to our inequality (22), and derive that the number of x ∈ R3(d) such that

|Γ(`)
x ∩ Bδ|
2`+ 1

>
|Bδ|

|R3(d, q)|
+
δη

2
(23)

is strictly larger than δη
2 |R3(d)|. Let us denote by L the set of x's in R3(d) such that the inequality

(23) holds :

L :=

{
x ∈ R3(d),

|Γ(`)
x ∩ Bδ|
2`+ 1

>
|Bδ|

|R3(d, q)|
+
δη

2

}
We just proved that |L| > δη

2 |R3(d)|. Now, we apply the lower bound from theorem 4.4.1 for the size
of R3(d). This gives us : for any ε > 0,

|L| �ε,δ,η d
1
2
−ε

Note that we can interpret (23) as follows :

if x is such that (23) holds, this means that the walk Γ
(`)
x is exceptional in the sense that it spends too

much time in |Bδ|, compared to what we expect to be the typical behaviour of a walk on R3(d, q).
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Indeed, |Γ
(`)
x ∩Bδ|
2`+1 is the amount of time that the walk Γ

(`)
x spends inside Bδ, and we compare it with the

size of |Bδ| inside R3(d, q). It is natural to think that since the graph R3(d, q) has "good connectivity
properties", a typical walk on R3(d, q) will spend half of the time in a subset of R3(d, q) made of
|R3(d,q)|

2 points. The fact that R3(d, q) has "good connectivity properties" follows from theorem 5.6.1,
but we did not have time to explore the wide subject of expander graphs, so this phrase will remain
between quotes.

Thus, we have proved that if we assume for a contradiction that |Bδ| > η|R3(d, q)|, then there are at
least |L| points x in R3(d) whose corresponding trajectory is exceptional in the sense of (23). Moreover,
|L| satis�es : for any ε > 0,

|L| �ε,δ,η d
1
2
−ε

So, informally : essentially all the points in R3(d) give trajectories Γ
(`)
x that are exceptional.

Now, we are going to use corollary 5.5.3 to deduce that many trajectories on R3(d, q) are exceptional,
and in fact, too many : this will contradict the large deviation equality from corollary 5.6.2, and con-
clude the proof.

For the moment, we just know that essentially all the points x in R3(d) give exceptional truncated

walks Γ
(`)
x . But the problem could be that they all give the same truncated walk, so that this would

not give us any information on the number of trajectories with this exceptional behaviour. This is why
it is natural to use corollary 5.5.3 to prove that in fact, di�erent points essentially lead to di�erent
truncated walks.

Notation :

• Let us denote by Λ` the set of non-backtracking marked walks of length 2` on R3(d, q), in the
sense of de�nition 5.4.2.

• Let us denote by M the set of exceptional paths of length 2` on R3(d, q) :

M :=

{
Γ(`) ∈ Λ` such that

|Γ(`) ∩ Bδ|
2`+ 1

>
|Bδ|

|R3(d, q)|
+
δη

2

}

Note that in the set M , some paths may not arise as the trajectory Γ
(`)
x attached to a point of R3(d),

we really take into account all the possible paths in the sense of de�nition 5.4.2.

Lemma 5.7.4. The fact that |L| �ε,δ,η d
1
2
−ε implies that :

|M | �ε,δ,η d
1
2
−ε

Proof. We consider the map
f : L → M

x 7→ Γ
(`)
x

which maps a point in L to its attached truncated walk (which is in M , by de�nition of L). This map
is not injective in general, but if we denote by ∼ the equivalence relation on L de�ned as follows :

x ∼ x′ ⇐⇒ Γ
(`)
x = Γ

(`)
x′

then f induces an injective map
f : L/∼ → M

[x] 7→ Γ
(`)
x

(here we denoted by [x] the equivalence class of x, that is : [x] = {x′ ∈ L, x′ ∼ x}). This implies that

|M | > |L/∼| .
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Therefore, it su�ces to prove that for any ε > 0, |L/∼| �ε,δ,η d
1
2
−ε. Let us take {x1, . . . ,xr} a set of

representatives for L/∼, and let us denote by Xi := [xi] the equivalence class of each of these points.
Note that r = |L/∼| is the quantity we want to bound from below.

We have

d
1
2
−ε �ε,δ,η |L| =

r∑
i=1

|Xi| 6
√
r

√√√√ r∑
i=1

|Xi|2

(where the last inequality follows from Cauchy-Schwarz inequality), hence :

d
1
2
−ε �ε,δ,η

√
r

√√√√ r∑
i=1

|Xi|2 (24)

On the other hand, if we denote by C the number of pairs (x,x′) yielding the same truncated trajectory :

C :=
∣∣∣{(x,x′) ∈ R3(d), Γ

(`)
x = Γ

(`)
x′ }
∣∣∣ ,

corollary 5.5.3 tells us that
C �ε d

1
2

+ε

(more precisely, we use the remark following corollary 5.5.3, and our choice of an integer ` satisfying
(21)).
Now,

C =
∑

x∈R3(d)

∑
x′∈R3(d)

Γ
(`)

x′ =Γ
(`)
x

1 >
∑
x∈L

∑
x′∈L

Γ
(`)

x′ =Γ
(`)
x

1

and ∑
x∈L

∑
x′∈L

Γ
(`)

x′ =Γ
(`)
x

1 =

r∑
i=1

∑
x∈Xi

∑
x′∈L

Γ
(`)

x′ =Γ
(`)
x︸ ︷︷ ︸

|Xi| terms

1

hence : ∑
x∈L

∑
x′∈L

Γ
(`)

x′ =Γ
(`)
x

1 =
r∑
i=1

|Xi|2

Thus,
r∑
i=1

|Xi|2 6 C �ε d
1
2

+ε (25)

Combining (24) and (25), we obtain :

d
1
2
−ε �ε,δ,η

√
r

√√√√ r∑
i=1

|Xi|2 �ε

√
r

√
d

1
2

+ε

which implies
r �ε,δ,η d

1
2
−3ε

Since this holds for any ε > 0, this 3ε is not a problem, and we get the conclusion, because for any
ε > 0,

d
1
2
−ε �ε,δ,η r = |L/∼ | 6 |M |.
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Thus, the number |M | of marked truncated paths Γ(`) on R3(d, q) such that (23) holds satis�es : for
any ε > 0,

|M | �ε,δ,η d
1
2
−ε

But on the other hand, we are going to �nd an upper bound for |M |. The total number of non-
backtracking marked paths of length 2` on the graph R3(d, q) equals

|Λ`| = |R3(d, q)|(p+ 1)p2`−1

(the �rst factor corresponds to the choice of a marked point, the second to the choice of a �rst edge
starting from our marked point, so we have p + 1 = |Ap| choices, and then for all the other edges we
only have p choices since we cannot take the edge which would make us backtrack).
As for any ε > 0, |R3(d, q)| �ε q

2+ε (see proposition 5.3.2) and q2p2` 6 p|R3(d)| (by assumption (21)),
we deduce that

|Λ`| = |R3(d, q)|(p+ 1)p2`−1 �ε d
1
2

+ε (26)

Now, among all those non-backtracking paths of length 2`, the proportion satisfying (23) is at most
c1 exp(−c2`), where c1, c2 > 0 depend only on δ and η (this comes from corollary 5.6.2). Explicitly,
this means that

|M |
|Λ`|

6 c1 exp(−c2`)

As a purely technical consequence, we obtain the following upper bound for |M |

Lemma 5.7.5. There exists τ := τ(δ, η) > 0, depending only on δ and η, such that for any ε > 0,

|M | �ε,δ,η d
1
2

+ε−τ

Proof. see below, in order not to let technicalities overtake the conclusion of the proof.

Thanks to this upper bound, we derive that for any ε > 0,

d
1
2
−ε �ε,δ,η |M | �ε,δ,η d

1
2
−τ+ε

and this gives a contradiction for d large enough. Indeed, if we take ε := τ
3 (for instance), then :

d
1
2
− τ

3 �δ,η |M | �δ,η d
1
2
− 2τ

3

for all d > 2 admissible and square-free. This is impossible for d large enough, and this concludes the
proof.

Remark. We used theorem 4.4.1 to estimate |R3(d)|, and this theorem relied on Siegel's theorem,
where the constant is ine�ective. Thus, this proof does not provide an e�ective equidistribution rate.
With this approach, one does not know from which value of d the fraction of x such that |devd(x)| > δ
falls below η.

Proof of lemma 5.7.5 : Since we chose ` as in equation (21), we have 1
p |R3(d)| < q2p2`. Besides,

d
1
2
−ε �ε |R3(d)|, so we obtain that for any ε > 0, there exists a constant C(ε), depending only on ε,

such that
C(ε)d

1
2
−ε 6 q2p2`

Taking logarithms, this yields :

ln(C(ε)) +

(
1

2
− ε
)

ln(d)− 2 ln(q) 6 2` ln(p)

Now, we use the fact that q2 6 d
1
2
−ν to deduce that 2 ln(q) 6

(
1
2 − ν

)
ln(d). Thus,

ln(C(ε)) +

(
1

2
− ε
)

ln(d)−
(

1

2
− ν
)

ln(d) 6 2` ln(p)
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which implies that

` >
ln(C(ε)) + (ν − ε) ln(d)

2p

Therefore, the inequality
|M |
|Λ`|

6 c1 exp(−c2`)

coming from corollary 5.6.2 implies that

|M | 6 c1 exp

(
−c2

ln(C(ε)) + (ν − ε) ln(d)

2p

)
|Λ`|

Thus, if we put

τ :=
c2ν

2p
> 0

it depends only on δ, η (because c2 only depends on δ and η), and the previous inequality shows that :

|M | �ε,δ,η d
−τdc2ε/(2p)|Λ`|

Finally, we also know from equation (26) that

|Λ`| �ε d
1
2

+ε

hence

|M | �ε,δ,η d
1
2
−τ+

(
c2
2p

+1
)
ε

Since this holds for any ε > 0, we can conclude that for any ε > 0,

|M | �ε,δ,η d
1
2

+ε−τ
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Appendix A.

Classical facts about Dirichlet characters and their L-functions

Our presentation of the facts on Dirichlet characters follows a lot [Kow04].

Given a group G, a character of G is just a group homomorphism from G to C×. We denote by Ĝ the
set of characters :

Ĝ := Homgrp(G,C×)

It is a group for the following law : given ϕ,ψ ∈ Ĝ, de�ne ϕψ as g ∈ G 7→ ϕ(g)ψ(g) (endowed with
this law, Ĝ is a subgroup of the group of functions from G to C×). We call it the dual of G. The
unit element in Ĝ is the so-called trivial character : the character which is constant equal to 1. Note
that even if G is not abelian, Ĝ is always an abelian group. Thus, when G is not abelian, Ĝ is not
isomorphic to G. What is less clear is the fact that when G is a �nite abelian group, G and Ĝ are
isomorphic. We will not prove it in detail here, but let us say a few words about the proof : the idea
is that it is not hard to see that when G is a �nite cyclic group, G ' Ĝ, and then we use the struture
theorem of �nite abelian groups to decompose any such group as a direct product of cyclic groups. Let
us also remark that as long as G is a �nite group, the characters of G take values in the |G|-th roots
of unity in C×.

Characters of �nite abelian groups satisfy orthogonality relations that are very useful in analytic
number theory.

Theorem A.1 (Orthogonality of characters). Let G be a �nite abelian group, with unit element denoted
by e.

(i) For all χ ∈ Ĝ, we have

∑
x∈G

χ(x) =

{
|G| if χ = 1 (i.e. if χ is the trivial character)

0 if χ 6= 1

(ii) For all x ∈ G, we have ∑
χ∈Ĝ

χ(x) =

{
|G| if x = e

0 if x 6= e

The main examples of characters we will encounter are the following :

• One can take the group G to be (Z/nZ,+), and in this case the characters of G are called the
additive characters modulo n

• Another example that will be of interest to us is the case where G is the group of units (Z/nZ)×.
Then a character of G is called a multiplicative character modulo n.

De�nition A.2. Let q be an integer larger than or equal to 1. Given a multiplicative character modulo
q (i.e. a group homomorphism χ : (Z/qZ)× → C×), we de�ned the so-called "Dirichlet character"
attached to χ as follows :

n ∈ Z 7→

{
χ(n mod q) if gcd(n, q) = 1

0 otherwise

In other words, if the reduction of n modulo q is in (Z/qZ)×, then we map n to χ(n mod q), and if not,
we just map n to 0. We will still denote by χ this Dirichlet character, and we say that it is a "Dirichlet
character modulo q". It follows from the de�nition that χ de�nes a completely multiplicative function
on Z :
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∀m,n ∈ Z, χ(mn) = χ(m)χ(n)

and that χ is q-periodic. We say that χ is a real Dirichlet character if it takes values in R.

Remark. Even if we take for χ the trivial multiplicative character modulo q (which is constant equal
to 1), the attached Dirichlet character is not constant, since it takes the value 0 for every integer which
is not prime to q.

If we start from a multiplicative character χ modulo q, we can construct a character modulo dq for
any integer d > 1 as follows :
The natural ring homomorphism Z/dqZ→ Z/qZ induces a group homomorphism between the groups
of units, say ϕ : (Z/dqZ)× → (Z/qZ)×, and then χ′ := χ ◦ϕ de�nes a multiplicative character modulo
dq. We say that χ′ is induced by χ.

De�nition A.3. A multiplicative character χ modulo q is said to be primitive if it is not induced by
a character modulo q′ for some q′ | q a proper divisor of q. Then we say that q is the conductor of χ.

In fact, any Dirichlet character χ is induced by a unique primitive character, say χ′, and we de�ne the
conductor of χ to be the conductor of χ′.

Let us state the following simple corollary of the orthogonality of characters in the context of our
Dirichlet characters (we use this lemma in our proof of Dirichlet class number formula).

Lemma A.4. If χ is a non-trivial Dirichlet character modulo q, and I ⊆ N is an interval of N, then∣∣∣∣∣∑
i∈I

χ(i)

∣∣∣∣∣ 6 ϕ(q)

where ϕ is the Euler's totient function.

Proof. Let us write I = {m,m+ 1, . . . ,m+ n}. Then by orthogonality of characters and the fact that
we extend χ by 0 at the integers not prime to q, we have

m+q−1∑
k=m

χ(k) = 0,

m+2q−1∑
k=m+q

χ(k) = 0, . . .

Therefore, in the sum over I, we can forget all the intervals {m+ jq, . . . ,m+ (j + 1)q − 1} for all
j ∈ N such that m+ (j + 1)q − 1 6 m+ n. Then we are reduced to the case where the length of I is
strictly less than q. And in this case the sum consists of at most ϕ(q) non-zero terms, which all have
absolute value equal to 1.

Now let us give the de�nition and some classical results about the L-functions attached to Dirichlet
characters. The proofs can be found in [Ser70] or [Kow04] for instance.

De�nition A.5. Let q > 1 be an integer, and let χ be a Dirichlet character modulo q. The L-function
associated with χ is the holomorphic function de�ne for s ∈ C such that Re(s) > 1 by :

L(s, χ) :=
+∞∑
n=1

χ(n)

ns

Since for all n ∈ Z, |χ(n)| = 0 or 1, this series is indeed absolutely convergent for any s with Re(s) > 1.

Proposition A.6. These L-functions admit an Euler product expansion : namely, with the notations
of the previous de�nition, one has :

for all s ∈ C such that Re(s) > 1, L(s, χ) =
∏
p

(
1− χ(p)

ps

)−1

where the product ranges over the prime numbers.
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A useful tool in the study of L-functions is the summation by part :

Lemma A.7. Let (an)n>1 be a sequence of complex numbers, and let f : ]0,+∞[→ C be a function
with continuous derivative on ]0,+∞[. For all x > 1, let us denote by A(x) the truncated series with
general term an, that is :

A(x) :=
∑

16n6x

an

Then, for all x > 1 : ∑
16n6x

anf(n) = A(x)f(x)−
∫ x

1
A(t)f ′(t)dt

Moreover, if A(x)f(x) −→
x→+∞

0, and if the series or the integral converges, then

+∞∑
n=1

anf(n) = −
∫ +∞

1
A(t)f ′(t)dt

Proof. See [Kow04], lemme 2.2.1. page 29.

One can use this summation by part, together with lemma A.4 to derive the following important
property :

Proposition A.8. When χ is non-trivial, the series de�ning L(·, χ) converges on the half plane

{s ∈ C | Re(s) > 0}

Proof. See [Kow04], remarque 3.2.6. page 61.

In particular, this proposition allows us to speak about the value of L(1, χ), since the L-function is
well de�ned at 1.

Another consequence of lemma A.7 is the following upper bound for L(1, χ) that we use in section 4.4
to estimate the size of R3(d).

Proposition A.9. Let q > 2, and let χ be a non-trivial Dirichlet character modulo q. Then

|L(1, χ)| 6 ln(q) + 1

Proof. We apply lemma A.7 to f(x) = 1
x and an = χ(n). By lemma A.4, we have that for all x > 1,

|A(x)| 6 ϕ(q). From this, it is easy to check that the assumptions of the last part of lemma A.7 are
satis�ed and to derive the following equality :

+∞∑
n=1

χ(n)

n
= L(1, χ) =

∫ +∞

1

( ∑
16n6t

χ(n)

)
1

t2
dt

Then we split the integral in two parts, one from 1 to q, and the other one from q to +∞. In the �rst
integral, we remark that for all t 6 q, we have∣∣∣∣∣ ∑

16n6t

χ(n)

∣∣∣∣∣ 6 t

and in the second integral we just bound the absolute value of the sum by q. Then

|L(1, χ)| 6
∫ q

1

1

t
dt+ q

∫ +∞

q

1

t2
dt = ln(q) + 1
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Appendix B.

De�nition of the Kronecker symbol

First we recall the de�nition of the Legendre symbol for odd primes. if p is an odd prime number, we

denote by
(
F×p
)2

the set {x2, x ∈ F×p }. Then, for all a ∈ Z, we de�ne the Legendre symbol
(
a
p

)
as

follows :

(
a

p

)
=


+1 if a ∈

(
F×p
)2

−1 if a ∈ F×p \
(
F×p
)2

0 if a = 0 in Fp

(where a denotes the class of a modulo p).

Proposition B.1.
(
·
p

)
is a Dirichlet character modulo p.

It satis�es the famous quadratic reciprocity law :

Theorem B.2 (Quadratic reciprocity law). If p, q are two odd primes, then(
p

q

)(
q

p

)
= (−1)

p−1
2
· q−1

2 and

(
2

p

)
= (−1)

p2−1
8

Proof. There is a nice proof relying on the reduction of quadratic forms over R and over �nite �elds
in [CG17].

We extend the symbol to the denominator 2, but we have to restrict the numerator. Proposition 2.1.8
is our motivation to set these values for

(
D
2

)
.

De�nition B.3. Let D be a discriminant (i.e. D ∈ Z and D ≡ 0, 1 mod 4). We set :

(
D

2

)
=


+1 if D ≡ 1 mod 8

−1 if D ≡ 5 mod 8

0 if D ≡ 0 mod 4

Finally, we extend this symbol for any positive integer n by setting
(
D
1

)
:= 1 and if n > 2 has the

factorization into prime factors n = 2αpα1
1 . . . pαnn(

D

n

)
:=

(
D

2

)α(D
p1

)α1

. . .

(
D

pn

)αn
The symbol

(
D
·
)
is called the Kronecker symbol. We will sometimes denote it by χD. Note that it is

only well de�ned when D is a discriminant, and when n is positive. It can be extended to negative
values of n (see [Hec81]), but we will not need it. By de�nition, the Kronecker symbol is completely
multiplicative, but to see it as a Dirichlet character modulo D, we need to show that the value

(
D
n

)
only depends on the class of n modulo D.

Proposition B.4. If m,n are two positive integers such that n ≡ m mod D, then(
D

m

)
=

(
D

n

)
.

In particular,
(
D
·
)
represents a Dirichlet character modulo D for positive integers n.

Proof. See [Hec81], theorem 137. It is in the proof of this fact that we see that it is important to
assume D ≡ 0, 1 mod 4.

Proposition B.5. If D is a fundamental discriminant, then the Kronecker symbol
(
D
·
)
is a real

primitive Dirichlet character modulo |D|.

Proof. See [Str08] theorem 4.35.
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Appendix C.

A correspondence between right ideals ofMn(K) and subspaces of Kn

Let us give a more detailed explanation of the correspondence between right ideals of M2(Fp) and
subspaces of F2

p that we used in the proof of proposition 5.3.1.

Let K be a �eld, and let n > 1. Let us denote by In(K) the set of right ideals of Mn(K), and by
Vn(K) the set of vector-subspaces of Kn. De�ne

S : In(K) → Vn(K)
I 7→

∑
u∈I Im(u)

and

T : Vn(K) → In(K)
V 7→ {u ∈Mn(K) | Im(u) ⊆ V }

It is easy to see that if V ∈ Vn(K), then T (V ) is indeed a right ideal ofMn(K), so that the map T
is well de�ned. Let us also remark that when I ∈ In(K), we can rewrite S(I) di�erently. Denote by
(e1, . . . , en) the canonical basis of Kn, then

S(I) =
∑
u∈I

Ku(e1) =
∑
u∈I

Ku(e2) = · · ·

Indeed, we have
∑

u∈I Ku(e1) ⊆
∑

u∈I Im(u) = S(I). To prove the converse, it su�ces to prove that
for all u ∈ I, Im(u) ⊆

∑
v∈I Kv(e1). Let y = u(x) ∈ Im(u) for some u ∈ I. Then we can �nd

w ∈ Mn(K) such that w(e1) = x, and then y = (u ◦ w)(e1) ∈
∑

v∈I Kv(e1) since u ◦ w ∈ I because I
is a right ideal ofMn(K).

• We have T ◦ S = idIn(K) : let I ∈ In(K) and let us denote by V := S(I) and I ′ := T (S(I)).
Then if u ∈ I, Im(u) ⊆ V =

∑
v∈I Im(v), so u ∈ T (V ) = I ′. This proves that I ⊆ I ′. Conversely,

if u ∈ I ′, then u′(e1) ∈ V , so we can write it u1(e1) for some u1 ∈ I. Similarly, u′(e2) = u2(e2)
for some u2 ∈ I, and so on. In the end, we can write u′ = u1 ◦E1,1 + u2 ◦E2,2 + · · ·+ unEn,n ∈ I
since I is a right ideal. This proves that I ′ ⊆ I, hence the conclusion.

• We have S ◦T = idVn(K) : let V ∈ Vn(K), and let us denote by I = T (V ) and V ′ = S(T (V )). By
de�nition of I, for all u ∈ I, Im(u) ⊆ V , so V ′ =

∑
u∈I Im(u) ⊆ V . Conversely, if x ∈ V , then

we can consider u ∈ Mn(K) such that u(e1) = x and for all i > 2, u(ei) = 0. Then Im(u) ⊆ V ,
so u ∈ I. Thus, x ∈ Im(u) for some u ∈ I, so x ∈ V ′.

Thanks to these two points, we deduce that T and S are two bijections inverse one to the other. They
give us a one to one correspondence between the right ideals ofMn(K) and the vector-subspaces ofKn.

Moreover, the bijection T raises the index to the power n, that is : if V ⊆ Kn is a sub-vector space of
index d, then I := T (V ) is a right ideal of index dn insideMn(K). Indeed, consider the map

ψ : Mn(K) → (Kn/V )n

u 7→ (u(e1) + V, . . . , u(en) + V )

It is a surjective K-linear map, and its kernel is exactly the set of u ∈ Mn(K) such that Im(u) ⊆ V ,
that is : I. Thus, we have an isomorphism of K-vector spaces :

Mn(K)/I ' (Kn/V )n

and the statement on the index follows from this fact. For instance (and this is what we use in the proof
of proposition 5.3.1), under this correspondence, the right ideals ofM2(Fp) of index p2 correspond to
the vector subspaces of F2

p of index p.
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