
Automatically proving concurrent programs
running on weak memory

08/27/13

Tristan CHARRIER

Rapport de stage de 2e année du Magistère informatique et
télécommunications, ENS Cachan/Bretagne et Université Rennes 1

Stage effectué du 15 mai 2013 au 31 juillet 2013

Advisor : Jade ALGLAVE (UCL)

Abstract :

Keywords : weak memory, Hoare logic, concurrency.

Introduction

Multi-core processors are ubiquitous in computers nowadays: in fact, it is now impossible to
enhance the frequency of processors because of heat problems, so it is mandatory to increase
the number of cores for better performances. Yet, subtle behaviors occur in such processors,
as showed in [1]. Internal optimizations within these processors make them shady to the
programmer. Therefore, rigorous models are needed to treat these problems formally. Jade
Alglave, in her papers [2] [?], has created a formal model using graphs to show these behav-
iors. This model was dealing with executions witnesses, defining whether they were correct
or not by defining acyclicity constraints on the graph generated by the execution witness.

The next step in the research was to define a logic to make the checking more systematic.
The PPLV team is currently developing one: the lace logic. This logic, strongly inspired from
Hoare logic, consists on carrying more information on assertions to show subtle behaviors in
weak memory programs .

To explain the contribution of the internship, we will explain in a first time what the
general idea of the logic is, with some examples to show the hardness of the problem, then
we will explain the logic itself, and finally we will describe the checker, explaining what
problems were hard in its implementation, and showing some tests.

1 Weak memory: computational hardness

1.1 A small example

The way of programming usually known is sequential programming : the program is executed
instruction by instruction, and two instructions shouldn’t be switched. Here, we consider
concurrent computing, where several programs, called threads, are running and can share
accesses to memory slots (reads and writes), symbolized by variables. They have internal
memory, called registers, which cannot be shared with other threads. In this report, the
registers are shown with the letter ’r’ followed by a number and variables are everything
else. For instance, let us consider this small program :

1 i n i t i a l s t a t e : x = y = 0
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−
3 Thread 0 | Thread 1
4 (a) x := 1 ; | (c) y := 1
5 (b) r1 := y | (d) r2 := x

In sequential reasoning (it means here that (a) must be before (b) and (c) before (d)),
there are three possibilities for (r1, r2) at the end of the program :

• (1,1), by doing (a) → (b) → (c) → (d) for example

1

• (1,0), by doing (c) → (d) → (a) → (b)

• (0,1), by doing (a) → (b) → (c) → (d))

(r1, r2) = (0, 0) shouldn’t be possible, because it would mean that we have done (d)
before (a), therefore, because we are in sequential reasoning, we should have done (c), so
after executing (b), the couple (r1, r2) shoud have been (0,1).

The major issue is that in weak memory, this statement is false : (0,0) is observed in
this program. This can be interpreted by the fact that a write isn’t instantaneous : when
the program does x := 1, the value 1 isn’t affected directly, it is buffered, so a read to this
location can produce a 0 or a 1.

A very complex question arises from this example : how to program correctly if there are
random effects like this one ? In fact, in Power-PC architecture, which is the one studied in
the PPLV team, the programer can implement some tricks to deal with these issues : it is
the mecanism of barriers. The barriers forbid some optimizations in the PPC (Power-PC)
architecture, in this report, we will focus on two :

• lwsync barrier: it imposes current writes to be stored into memory and not just
buffered.

• isync barrier: it forbid forward-computing in branching: for example, let us consider
the command if x = 0 then C1 else C2. Without ths isync, the processor can begin
to execute C1 before evaluating the condition x = 0. It is an optimization to avoid
loosing time. If x 6= 0, the processor gives up on evaluating C1, and evaluates C2. But
there is a major issue if C1 contains writes to variables : it can make the program false.
The isync barrier is useful to avoid forward-looking of the processor in this case : we
have to evaluate x = 0 before doing anything else with this barrier.

For instance, let us take the previous example with an lwsync :

1 i n i t i a l s t a t e : x = y = 0
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−
3 Thread 0 | Thread 1
4 (a) x := 1 ; | (d) y := 1
5 (b) lwsync |
6 (c) r1 := y | (e) r2 := x

Because of the lwsync, (x, y) = (0, 0) becomes impossible: to do (c), x must be associated
to 1 and if (e) was executed, y must be 1 too, therefore (0,0) is strictly impossible.

2

We can use too an other trick, called dependencies, to impose read orders: in fact, in a
thread, the reads, r := e, can be reordered for optimization issue. The effect of a program
can seem very random then, but we can command an order, by doing this :

1 (a) r1 := 0 ;
2 (b) r0 := r1 xor r1
3 (c) r2 := 1 + r0

Basically, at the end of this program, r1 = r0 = 0 and r1 = 1, but by doing this, we
have made a dependency between r2 and r0, therefore (c) must be after (b). With same
reasoning, (b) must be after (a). With the trick of (b), we have make the (c) line come af-
ter (a) in the execution. It will me summarized as a single command in the rest of the report:

1 (a) r1 := 0 ;
2 (c) r2 := 1 dep r1

To introduce what we do in the logic used in the internship, we have to introduce a
reasoning about these programs : the rely/guarantee paradigm.

1.2 Rely/guarantee paradigm

It is very hard to make a reasoning with all the threads at once, the idea, explained in [3],
is to consider interferences between threads while doing a proof thread by thread: it is the
rely/guarantee paradigm. Here, the only memory shared by threads is variables, to the only
type of commands that can generate interferences are writes : v := e.

Let us consider the previous example again :

1 i n i t i a l s t a t e : x = y = 0
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−
3 Thread 0 | Thread 1
4 (a) x := 1 ; | (d) y := 1
5 (b) lwsync |
6 (c) r1 := y | (e) r2 := x

The only two commands that can generate interferences in that case are x := 1 and
y := 1. To do a correct proof of this program, we need to consider this interference : it
would be highly undesirable if an assertion in the proof of thread 0 becomes false because of
the fact that we have y := 1 in thread 1.

3

To explain this concept of interference, we have to define two notions properly : the
strongest precondition in sequential case of an assignment, and stability of a formula.

Strongest precondition in sequential case of an assignment Let f be a formula,
and x := e an assignment. Then the strongest precondition after executing x := e with
precondition f is sp(f, x := e) = ∃x′f [x← x′] ∧ (x = e[x← x′] where x′ is a fresh variable.
The same relation holds with r := e.

The interference of the assignment is then symbolized by the notion of stability : a for-
mula is stable against the interference if after executing the assignment, the formula still
holds. This is a rigorous definition.

Stability A formula ϕ is stable against (f, x := e) where f is the precondition of x := e
if and only if sp(ϕ ∧ f, x := e) ⇒ ϕ, which is the same than saying the Hoare triplet
{ϕ ∧ f}x := e{ϕ} is valid.

The interference of the assignment x := e is modeled here by the set of formulas which
are stable or not against (f, x := e). The way to define f will be refined later, but for now,
we’ll consider a simple case.

Let us take a small example : (true, x := 1). The formula x = 0 is not stable against
this interference because

sp(true ∧ x = 0, x := 1) = sp(x = 0, x := 1)
= ∃x′(x = 0)[x← x′] ∧ x = 1[x← x′]
= ∃x′x′ = 0 ∧ x = 1

which is equivalent to x = 1. But it is false to say that x = 1 ⇒ x = 0, so x = 0 is not
stable against (true, x := 1).

On the contrary, the formula x = 0∨ x = 1 is stable against (true, x := 1), because with
the same reasoning, sp(x = 0 ∨ x = 1 ∧ true, x := 1) ≡ x = 1 which implies x = 0 ∨ x = 1.

In each thread, we define what we call a guarantee, which contains at least all the inter-
ferences of the thread. Each thread must be then stable at each step against guarantees of
other threads. But it is not sufficient: interferences within the thread can occur, with other
writes. These interferences are contained in the rely , which is intern in a thread. In fact,
we will not consider just formulas in the proof, but formulas and their relies.

Formally, the guarantee and the rely are set of interference (f, x := e), lists in the checker.
Let us consider this example :

1 i n i t i a l s t a t e : x = y = 0
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−
3 Thread 0 | Thread 1
4 (a) x := 1 ; | (d) y := 1

4

5 (b) z := 2 |
6 (c) r1 := y | (e) r2 := x

A guarantee for thread 0 must contain (f, x := 1) with f implied by the initial state here,
so x = y = 0 ⇒ f . In thread 0, an assertion can have interferences because of x := 1 and
z := 2, so we need to put relies that contain these interferences.

The last notion we need for the relies is the intersection:

Rely intersection Let R1 = {(fx1 , x := e)} and R2 = {(fy2 , y := e′)} two relies, then
R1 ∩ R2 = {(fx1 ∧ fx2 , x := e)} with the convention fxi

= false if there x := e does not
appear in Ri

2 Lace logic

As we have seen in the previous section, weak memory makes the programmer deal with
heavy computational issues. A logic is in development in the PPLV team, let us explain
what this logic consist on.

2.1 Definitions

To understand properly how this logic works, we need in a first step to define some notions.
To begin, this is the syntax of programs :

Program syntax A program is defined by
C ::== x := r (write from a register)

| x := r dep r (write with an artificial dependency on a register)
| r := x (read from a variable)
| r := x adep r (read with an artificial dependency on a register)
| r := Op(r) (read from an operation on the registers)
| C;C (sequence)
| if (b) {C} (where b is a condition on the registers)
| if (b) {C} else {C}
| while (b) {C}
| lwsync (memory barrier)
| isync (branching barrier)
| sync (absolute barrier)

On this program, we want to check assertions on the form of Hoare triplets for each
thread, {A}C{B}, where C is a program. let us define properly what is a Hoare triplet. To
begin, we have to explain what A and B are here. As we have seen before, we have to carry

5

much information to cover all the behaviors we want to show. That’s why A and B are not
assertions, but what we call here CDMP components. In the next definition, the couples
(f,R) are such that f is a formula and R a rely as seen before.

CDMP component A CDMP component is a 4-uple where:

• C (Conditionnal) is a couple (f,R). It stores all the information we have about the if
or while previously done.

• D (Declarations) is a function r 7→ (f,R) where r is a register. It stores assertions
about the registers in the program, and is symbolized by a list of couple (r, (f,R)) in
the proof checker.

• M (Memory) is a function v 7→ (f,R) where v is a variable. It is similar to D, but for
variables.

• P (Propagation) is a special line: it is a function v 7→ (f,R) where v is a variable, and
stores information about the propagation of the variable in the program.

It is these components we manipulate in the programs. But it not sufficient to implement
the rely/guarantee paradigm, because we don’t have any guarantee. Each thread contains
two more information : initial information I (common to all threads), and a guarantee G.
Here, we manipulate then proof of the form (I,G, {A}C{B}).

We have to define how to declare a Hoare triplet valid.

Hoare triplet and validity A Hoare triplet (I,G, {A}C{B}) is valid if and only if :

• ∀f which appears in A, I ⇒ f

• ∀ assignment x := e appearing in the program, the interference of this assignment
appears in the guarantee. (what the interference is will be explained after)

• sp(A,C) ⇒ B, it means that the CDMP component obtained as result of C with
precondition A implies every component in B

sp is the strongest postcondition of the program C, we will define it in the following
subsections.

The formalism of this logic being quite heavy, so we will use drawings to explain it in.
We have then to explain some conventions in the drawing. Here is an example:

6

C Dr1 Dr2 Dr3 Mx PxMy Py

r1 := r1 + 2 ∗ r3

fC
RC

fr1
Rr1

g2
R′

2

f ′
r1

R′
r1

fr2
Rr2

fr3
Rr3

f ′′
r3

R′′
r3

f ′
r3

R′
r3

fx
Rx

fx
Rx

fy
Ry

fy
Ry

g2 ⇐ sp(f ′
r1
∧ f ′

r3
, r1 := r1 + 2 ∗ r3)

R′
2 = R′

r1
∩R′

r3

In a CDMP component, C, D and M are in black and P in red because of his special role.
The content of the component is in blue for C, D and M and in red for P.

In the C line, the circle means that we have to delete information about r1 in fC , which
is done by replacing fC by ∃r1fC . We have to do the same for Dr2 , Mx, My, Px, Py.

The horizontal bar in Dr1 symbolize that we give up on this information, we don’t need
it anymore.

In Dr3 , we have a separation of the line in two, it is what we call a fork. The fork rule is
:

Fork rule If (f,R) is forked in (f ′, R′) and (f ′′, R′′) then the following statements must
apply:

• f ⇒ f ′

• f ⇒ f ′′

• R = R′ ∩R′′

What is at the bottom of the drawing is additionnal constraints the proof need to verify
in order to be correct. Now that everything is defined, we will explain the logic.

2.2 Reads and writes

To understand these rules, we take back the previous example :

1 i n i t i a l s t a t e : x = y = 0
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−

7

3 Thread 0 | Thread 1
4 (a) x := 1 ; | (c) y := 1
5 (b) r1 := y | (d) r2 := x

There are two types of commands here : writes (a and c) and reads (b and d). Let us begin
with reads.

C Dr1 Dr2 Dr3 Mx PxMy Py

r1 := 1

fC
RC

fC
RC

fr1
Rr1

g

R′

fr2
Rr2

fr2
Rr2

fr3
Rr3

fr3
Rr3

fx
Rx

fx
Rx

fx
Rx

fx
Rx

fy
Ry

fy
Ry

fy
Ry

fy
Ry

g ⇐ sp(true, r1 := 1)

R′ = ∅

This case is quite simple: for r1 := 1 (more generally, r1 := c with c a constant), we have
to give up on the information for r1, because it won’t be good anymore, and replace it with
the strongest postcondition of true with r1 := 1, in the sense of section I.2. For all the other
lines, the previous information of r1 must be deleted because it doesn’t hold anymore, so we
have to do ∃r1f for all f in other lines than Dr1 .

The second case is r1 := x with x a variable:

C Dr1 Dr2 Dr3 Mx PxMy Py

r1 := x

fC
RC

fC
RC

fr1
Rr1

gr1
R′

r1

fr2
Rr2

fr2
Rr2

fr3
Rr3

fr3
Rr3

fx
Rx

gx
R′

x

fx
Rx

fx
Rx

fy
Ry

fy
Ry

fy
Ry

fy
Ry

gr1 , gx ⇐ sp(fx, r1 := x)

Rx = R′
r1
∩R′

x

8

For this case, we have to add the information on Mx to the strongest postcondition,
because it contains what we need to evaluate the condition.

2.3 Barriers and conditions

3 A checker for this logic

We have a checker for this logic !

3.1 Conventions

3.2 A simple test : message passing

3.3 A more complicated test

Conclusion

Acknowledgments

First of all, I am very grateful to Jade Alglave for welcoming me warmly in the research
team, and being available for all my questions. It was a real pleasure to work in such a nice
environment. I want to thank Richard Bornat and Matthew Parkinson too for their enlight-
enments about the subject, I don’t think I would have managed to realize the internship
properly without all the discussions I had with them. Finally, I wish to thank all the staff
of the UCL, very welcoming and available too and patient.

References

[1] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O
Myreen. x86-tso: a rigorous and usable programmer’s model for x86 multiprocessors.
Communications of the ACM, 53(7):89–97, 2010.

[2] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. Fences in weak memory
models (extended version). Formal Methods in System Design, 40(2):170–205, 2012.

[3] Viktor Vafeiadis. Modular fine-grained concurrency verification. Technical Report
UCAM-CL-TR-726, University of Cambridge, Computer Laboratory, July 2008.

9

