
Learning to Gather without Communication

Vladislav Tempez, under supervision of Rachid Guerraoui, Alexandre Maurer
and El Madhi El Mhamdi

Laboratoire de Programmation Distribuée, Ecole Polytechnique Fédérale de Lausanne

The work was done during an intership from June 6th to August 12ith

Abstract. Reinforcement learning is a powerful and flexible machine
learning paradigm, inspired by animal learning. It is based on a simple
penalty and reward feedback from the environment and has proven useful
to solve difficult AI problems.
Whilst reinforcement learning was mostly used to tackle single agent
problems, this paper uses it for the first time in a distributed multi-agent
setting to solve the gathering problem: several agents (social animals,
swarming robots...) must gather around a same position, which is not
determined in advance.
More specifically, we present the first experimental evidence that the
gathering problem can be solved by fully distributed reinforcement learn-
ing without communication in a partially observable environment. We de-
sign approximations for environment perceptions that reduce the learn-
ing space and make the behavior robust. Each agent learns independently
via Q-learning. We also explore the scalability of the learned behavior in
terms of number of agents, and its robustness.

1 Introduction

Collective behavior such as shoaling and schooling in fishes, herding in mammals
or flocking in birds, are striking examples of complex patterns emerging from
distributed behaviors. Computer Science and more specifically Artificial Intel-
ligence investigated the emerging behaviors in such multi-agent systems [35].
These systems are appealing for their robustness and adaptability [29]. How-
ever, their distributed nature makes it difficult to determine the actual algorithm
controlling each agent [26], and thus to implement it and leverage it in various
contexts.

A solution is to use machine learning [39] to capture the desired behavior.
Machine learning allows a program to automatically extract a model from a data
set or from its interactions with the environment: one does not need to explicitly
specify the algorithm controlling the agents. Reinforcement learning [43, 40] is
the specific machine learning paradigm that enables to obtain a desired behav-
ior with the simplest feedback from the environment. In short, reinforcement
learning consists, for the program, in receiving rewards and penalties from the
environment, and learning which behavior leads to rewards and which behavior
leads to penalties.



2

Here, we study the fundamental problem of gathering [13, 4, 15, 3]: several
agents must gather around a same position which is not determined in advance.
Agents can “see” each other, but are not allowed to directly communicate with
signals or messages. So far, this problem has been solved with explicit algorithms
(i.e., a human explicitly writes an algorithm, and one shows that it works).
However, the question whether the agents can learn to gather with only simple
rewards and penalties from the environment remained open.

In this paper, we present the first experimental evidence that the answer to
this question is affirmative: agents can indeed learn a gathering behavior. From
an arbitrary position, they form a group around a same position in finite time.
The system controlling these agents is fully decentralized and embodied in each
agent. Communication is not allowed and agents can only obtain the position
of other agents relatively to their own. The agents are rewarded for being in a
group and penalized for being isolated.

For presentation simplicity, we show that agents can learn to gather on a
one-dimensional ring (this model can be extended to higher dimension spaces by
applying the approach independently on each dimension). A technical difficulty
lies in the “combinatorial explosion” of the number of states (induced by the
fact that there is not one, but many agents). To overcome this difficulty, the
agents approximate the environment by grouping close positions into clusters:
each agent only perceives an approximation of the distribution of other agents in
each cluster. This enables to keep the learning space constant (i.e., independent
of the number of agents and the size of the ring). We show that, surprinsingly,
the agents manage to gather almost perfectly despite this rough approximation.

We then consider the problem of increasing the number of agents. A natural
belief would be that the agents have to re-learn to gather in this case. Inter-
estingly, we show that the learned behavior can directly apply to a much larger
number of agents – namely, if agents have learned to gather in groups of 10, we
show that they immediately know how to gather in groups of up to 100. Aside
from saving learning time, the interest of this approach is that such a group of
100 agents is inherently and deeply robust (fault-tolerant), because it can tol-
erate the loss of up to 90 agents. We also compare the learned behavior with a
deterministic algorithm that moves towards the barycenter of the agents, and
show that the learned behavior has the same performances as that deterministic
behavior.

Our source code for all simulations, data generation and display is available
in [1], together with the implementation of the learning process.

The paper is organized as follows. In Section 2, we give a state of the art of
reinforcement learning in multi-agent systems w.r.t. the gathering problem. In
Section 3, we present the Q-learning technique, then a precise formulation of the
gathering problem in a Q-learning framework. In particular, we describe which
states and actions are used to model the gathering problem in Q-learning. In
Section 4, we explicit the numerical parameters used to implement our model.
For pedagogical reasons, we first present results for a default setting; then, we



3

show that the learned behaviors can be reused with more agents. In Section 5,
we summarize our results and discuss possible extensions of this work.

2 State of the art

Reinforcement learning [40, 21] consists in taking simple feedback from the envi-
ronment to guide learning. The general idea is to associate rewards and penalties
to past situations in order to learn how to act in future ones. The principle dif-
fers from that of supervised learning [17, 21] by the nature of the feedback. In
supervised learning, an agent is taught how to perform precisely on several ex-
amples. In reinforcement learning, the agent only gets an appreciation feedback
from the environment. For instance, in dog training, dogs are rewarded when
doing correct actions and punished when behaving badly. The advantage here
is the possibility to have a feedback in situations where the correct behavior
is unknown. Several successful AI approaches use reinforcement learning, one
spectacular example being the performance of AlphaGo [38] defeating the world
Go champion Lee Sedol.

So far, reinforcement learning has mainly been used in situations with only
one learning agent (single-agent systems), with important results [19, 16, 18, 23,
30, 37]. Multi-agent systems involve numerous independent agents interacting
with each other. Many works on multi-agent reinforcement learning consider
problems where only 2 or 3 agents are involved [6, 8, 14, 28, 34, 42, 45]. Some deal
with competitive games (e.g. zero-sum games) [2], where agents are rewarded
at the expense of others. Other tackle collaborative problems, but the reward is
global and centralized [41].

In general, communication mechanisms are used to share information among
agents [9, 24, 25, 32, 36, 46, 47] in order to increase the learning speed. Still, in
some cases, communication between independent agents is difficult, impossible,
or at least very costly [44, 5]. In these situations, it might be useful to devise a
learning process that does not rely on communication.

Yet, so far, very few approaches considered a genuinely distributed setting
where each agent is rewarded individually, and where agents do not commu-
nicate. In [31], the problem and the constraints are similar to our work, but
the rewards are given for taking an action instead of reaching a state. Conse-
quently, the final behavior is predetermined by the model itself. In [10], even if
the constraints are similar (cooperative task, no communication and individual
rewards), the problem tackled is fundamentally different: the task only requires
the cooperation of agents by groups of two (not of all agents simultaneously).

3 Model

3.1 Q-learning

As recalled in the previous section, the goal of reinforcement learning is to make
agents learn a behavior from reward-based feedback. In this paper, we work with



4

a widely used reinforcement learning technique called Q-learning [43, 40, 45, 24,
11, 16].

Q-learning was initially devised for single agent problems. Here, we consider
a multi-agent system where each agent has it own learning process. We describe
in the following the learning model of one agent taken independently.

Let A be a set of actions, and let S be a set of states (representing all the
situations in which the agent can be). The sets A and S contain a finite number
of elements. In each state s, the agent may chose between different actions a ∈ A.
Each action a leads to a state s′, in which the agent receives either a positive
reward, a negative reward or no reward at all. The objective of Q-learning is to
compute the cumulative expected reward for each state.

Let π : S → A be the policy function of an agent – i.e., a function returning
an action to take in each state.

Let Xπ,s0
t be the state in which the agent is after t steps, starting from state

s0 and following the policy π. In particular, Xπ,s
0 = s.

Let r : S → R be the reward function associating a reward to each state.
The cumulative expected reward over a period I = J0, NK of state s is∑

t∈I
E(γtr(Xπ,s

t ))

where γ ∈ [0, 1] is a discount parameter modulating the importance of long term
rewards. The long term rewards become more and more important when γ is
close to 1.

When predicting the transition from one step to another (by taking a given
action) is difficult or impossible, it is useful to compute a cumulative expected
reward of a couple (s, a).

Under the assumption that each couple (s, a) is visited an infinite number
of time, it is possible to estimate without bias the expected cumulative reward
by sampling [43]. We denote it Q(s, a), and also call it Q-value. The following
formula is an update rule to compute an estimator of the Q-value.

Qt+1(s, a) = (1− η)Qt(s, a) + η(r(Xt+1) + γmax
a′

(Qt(s, a
′)))

If action a is taken in state s at step t.

Qt+1(s
′, a′) = Qt(s

′, a′)

otherwise.
Here, η is a parameter called the learning rate that modulates the importance

of new rewards over old knowledge. Qt is the estimate of the cumulative expected
reward after t samples.

A complementary approach to get better estimations of Q-values with fewer
samples is to use eligibility trace [27, 40]. The idea is to keep trace of older
couples (s, a) until a reward is given, and to propagate a discounted reward to
the couples (s, a) that led to the reward several steps later.



5

An ε-greedy policy π is a stochastic policy such that: (1) with probability
(1−ε), π(s) = a where (s, a) yields the highest expected cumulative reward from
state s, and (2) with probability ε, a random action is chosen in A. The parameter
ε is called the explore rate and modulates the trade-off between exploration of
new and unknown states (to obtain new information) and exploitation of current
information (to sample valuable states more precisely and thus be rewarded).

3.2 Setting

We consider a ring topology. This is a simple topology for a bounded space
that avoids non-realistic borders effects. There are n positions {0, . . . , n − 1}.
∀k ∈ {0, . . . , n− 2}, positions k and k+ 1 are adjacent, and positions n− 1 and
0 are also adjacent. Each agent has a given position on the ring. This space has
only one dimension, but our results may be extended to higher dimension spaces
by applying the approach independently on each dimension.

The time is divided into discrete steps 1, 2, 3, . . .. At the beginning of a given
step t, an agent is at a given position. The possible actions are: go left (i.e.
increase position), go right (i.e. decrease position) or do not move.

The current state of each agent is determined by the relative positions of other
agents. However, we cannot associate a state to each combination of position
of other agents, because of “combinatorial explosion”. Thus, in order to limit
the maximal number of states, each agents perceives an approximation of the
positions of other agents. Besides, a state must not depend of the number of
agents, in order to have a scalable model and to tolerate the loss of agents.

Thus, our state model is the following. The space is divided into groups of
close positions called sectors. Each agent does not perceive the exact number of
agents per sector, but the fraction of the total population in each sector. A state
is given by the knowledge of the fractions of the total population in each sector
with a precision of 10% (i.e. the possible values are multiples of 10%, rounded
so that the sum of the fractions equals 100%).

The delimitation of the sectors is not absolute but relative to the position of
each agent: each agent has its own sector delimitation centered around itself.

The number of sectors is set to 6. The first sector is centered around the agent
position (its size corresponds to the size of the neighborhood where we expect
the other agents to gather). This sectors is the Central sector. The agents in
the central sector of a given agent are called its neighbors. Two more sectors are
adjacent to the central sector, the Near Right and Near Left sectors. The Far
left and Far Right are a second layer after the near sectors. Finally, the Opposite
sector is the sector diametrically opposed to the Central one. The exact size of
each sector is a parameter of the problem, as well as the number of agents and
the number of positions.

An example of sectors delimitation is given in Figure 1, for a ring of size 13.



6

Fig. 1. Default sector delimitation (on a ring of size 13). The Central sector contains
3 positions centered around 0 (i.e., the position of the current agent). Near sectors
contain two positions each, adjacent to the Central sector. Same for Far sectors and
the Opposite sector.

3.3 Rewards

Each agent is rewarded if it has a large enough number of neighbors (i.e., more
than a certain fraction of the total population is in its central sector). Each agent
is penalized if it has not enough neighbors (i.e., less than a certain fraction of
the population is in its central sector). These threshold values are parameters of
the problem (see 4.1).

3.4 Learning process

The learning phase is organized as follows:

– The initial positions of agents are random, following a uniform distribution.
– At each step, each agent decides where to go with an ε-greedy policy.
– When all the decisions are taken, all the agents move simultaneously.
– After moving, they consider their environment, get rewards and update their
Q-values with respect to these rewards.

– The learning phase is subdivided in cycles of several steps. At the end of
each cycle, the position of agents is reset to random positions. This ensure
that the environment is diverse enough to learn a robust behavior. After
position reset, the agents can move again for another cycle.

The duration of a cycle is set proportional to the size of the ring (e.g. 5 times the
size of the ring) in order to give enough time to the agents to gather: this time
depends on the distance they have to travel, and this distance depends on the
size of the ring. To update Q-values, Q-learning with eligibility traces is used.
Eligibility traces are reset at the end of each cycle, and each time, a reward is
given to an agent.



7

3.5 Problem

Intuitively, the goal is to make the agents learn a gathering behavior, that is:
within a reasonable time in a same cycle, the agents become (and remain) reason-
ably close to each other. This criteria is voluntarily informal, and its satisfaction
will be evaluated with several metrics in the next section.

More precisely, the problem consists in computing, for each agent, a value
Q(s, a) for each couple state-action (s, a). This value indicates which action a
to take in state s in order to increase the likelihood of obtaining a reward. Our
objective is to verify experimentally that the Q-values learned in this fashion
lead to an efficient gathering of the agents.

4 Results

4.1 Parameters of the model

The default settings of the model are the following.

– A ring size of 13.
– A population size of 10 agents.
– A sector division such as described in Figure 1.
– The neighbors of an agents at position k are the agents at position k − 1 or
k + 1.

– A group is existing if at least one agent has more than 80% of the population
as neighbors.

– An agent is given a reward if the fraction of neighbors is more than 80% of
the population, and a penalty if it is 10% or less.

– The reward for being in the group has a value 100, and the penalty for being
isolated has a value -5.

– An exploration rate ε = 0.1.
– A learning rate η = 0.1.
– A discount factor γ = 0.95.
– A cycle duration of 5 times the size of the ring, i.e. 65 steps.
– A learning phase duration of 75000 cycles.

4.2 Experimental results

To assess the quality of the learned behavior, we compute several metrics. We
first consider the time needed to form a group from random initial positions, and
see how it evolves during the learning phase. Then, to ensure that groups are
not only formed but also maintained, we observe the evolution of the number of
neighbors among the population. To evaluate the learning qualitatively, we look
at the exact behavior of agents at the beginning and end of the learning phase.

Time to form a group. Figure 2 shows the time that agents need to
gather and form the first group (i.e., at least one agent is rewarded), starting



8

0 10 20 30 40 50 60 70
Time in thousands of cycles

0

10

20

30

40

50

60

T
im

e
 t

o
 c

re
a
te

 t
h
e
 f

ir
st

 g
ro

u
p

Time for group creation.

Fig. 2. Time needed to form a group from
random initial position for 10 agents on a
ring of size 13. Each point is an average
over 75 cycles.

0 10 20 30 40 50 60 70
Time in thousands of cycles

0

20

40

60

80

100

M
a
x
im

u
m

 a
n
d
 m

in
im

u
m

 n
u
m

b
e
r 

o
f 

n
e
ig

h
b
o
rs

 a
m

o
n
g
 a

g
e
n
ts

Existence of group.

Fig. 3. Maximum and minimum num-
ber of neighbors, during learning, for 10
agents on a ring of size 13. Maximum is
black squares and minimum is white tri-
angles. The dashed line is the minimum
number of neighbors needed to be consid-
ered in the group (i.e. 80% of the total
number of agents). Each point is an aver-
age over 75 cycles (4875 steps), including
time before creation of the first group.

0 10 20 30 40 50 60
Time in iterations

2

4

6

8

10

12

P
o
si

ti
o
n
 o

n
 t

h
e
 r

in
g

First cycle.

0 10 20 30 40 50 60
Time in iterations

0

2

4

6

8

10

12

P
o
si

ti
o
n
 o

n
 t

h
e
 r

in
g

Last cycle.

Fig. 4. Evolution over time of the number of neighbors at each position of the ring
during a cycle. Larger dots represent a higher number of neighbors. Positions where
agents are considered to be in the group are in black, others in white.



9

from random initial positions. We observe that this time decreases during the
learning phase and stabilizes around 5 steps.

Figure 3 shows the minimal and maximal number of neighbors over all agents.
When the maximal number of neighbors is above 80%, it means that a group
exists. When the minimal number of neighbors is above 10%, it means that no
agent is isolated; when it is above 80%, it means that all agents are in the group.
We observe that the agents learn, not only to gather, but also to maintain the
group and avoid being isolated. Indeed, the maximum number of neighbors is
higher than 80% of the total number of agents, and the minimum is higher than
10%. We also observe that the minimum number of neighbors is close to 80% at
the end of the learning phase. It means that all the agents are in the group most
of the time.

Note that these average values include the iterations starting from the be-
ginning of each cycle, where the agents are not yet gathered (i.e. around 10
iterations at the end of the learning phase).

Qualitative evolution. Figure 4 contains two plots that show the quali-
tative evolution of the learning for two cycles, at the beginning and end of the
learning phase.

In the first figure (beginning of the learning phase), we observe that the agents
are quite uniformly distributed: the circles are white and small, indicating few
neighbors and no significant group formation.

In the second figure (end of the learning phase), we observe that the agents
converge to a same position, forming a group in approximately 7 steps. The
large black circle indicate that at least 80% of the total number of agents are
neighbors of the position, i.e. that a group exists. We can see that this group is
maintained after its formation until the end of the cycle. We also observe that
the group itself is slowly moving during the cycle, while being maintained. We
notice that there are very few agents outside the group after its formation.

4.3 Scalability and comparison with a deterministic algorithm

In the section, we explore the scalability and robustness properties of the afore-
mentioned learning scheme. We show that the agents that have learned Q-values
with default parameters in 75 000 cycles are able to gather with more agents
without any new learning: we can take several agents that have learned in groups
of 10 until we obtain a group of 100.

In a second time, we compare this behavior with a deterministic gathering
algorithm (i.e., where the behavior in known in advance and not learned).

– First, we compare the learned behavior to an algorithm that uses the exact
and absolute positions of all the agents (by opposition to relative positions
and approximations used during learning). With this algorithm, agents al-
ways move towards the barycenter [12, 33] of all the agents. As this algorithm
has an exact view on the environment, the performances are better (but not
way better).



10

– We then make a fairer and more meaningful comparison with an algorithm
that uses the same perceptions as the learning algorithm. With an equally
constrained perception of the environment, we get results that are similar to
the learned algorithm (the learned algorithm even slightly better in terms of
“time to form a group”).

Note that, since the agents have already learned a behavior, there is no more
“progression” visible on the plots.

0.0 0.2 0.4 0.6 0.8 1.0
Time in thousands of cycles

0

10

20

30

40

50

60

T
im

e
 t

o
 c

re
a
te

 t
h
e
 f

ir
st

 g
ro

u
p

Time for group creation.

Fig. 5. Time needed to form a group from
random initial positions for 100 agents on
a ring of size 13 (learned behavior). Aver-
age is 10.4 steps, median is 10.0 steps and
standard deviation is 5.1.

0.0 0.2 0.4 0.6 0.8 1.0
Time in thousands of cycles

0

10

20

30

40

50

60

T
im

e
 t

o
 c

re
a
te

 t
h
e
 f

ir
st

 g
ro

u
p

Time for group creation.

Fig. 6. Time needed to form a group from
random initial positions for 100 agents on
a ring of size 13 (Q-deterministic algo-
rithm). Average is 12.1 steps, median is
11.0 steps and standard deviation is 4.9.

Time to create a group for 100 agents. On Figure 5, we can see the
time needed to form a group for 100 agents on a ring of size 13. Compared to
the case with 10 agents, the time needed to form a group including 80% of the
population is higher (around 10 steps in average). But the agents are still able
to gather in a short time (the worst case is no more than 50 steps) most of the
time: 997 times over 1000.

Number of neighbors for 100 agents. On Figure 7, we observe that
the maximum number of neighbors is higher than 80% most of the time, which
means that a group exists most of the time. We also observe that the minimum
number of neighbors is often low. This means that a few agents, even if not
isolated, are unable to join the main group.

Performances of the deterministic algorithm. We observe that the de-
terministic algorithm is better than the learned behavior. In average, the agents
gather in 5 steps with a standard deviation of 0.6. Moreover, the maximum and
minimum number of neighbors are very high (average: resp. 96% and 91%). How-
ever, these good results are only possible because this algorithm uses the exact
and absolute positions of other agents.

Fairer comparison. To make a fairer comparison between deterministic al-
gorithm an learned behavior, we try to impose to the deterministic algorithm the



11

0.0 0.2 0.4 0.6 0.8 1.0
Time in thousands of cycles

0

20

40

60

80

100

M
a
x
im

u
m

 a
n
d
 m

in
im

u
m

 n
u
m

b
e
r 

o
f 

n
e
ig

h
b
o
rs

 a
m

o
n
g
 a

g
e
n
ts

Existence of group.

Fig. 7. Maximum and minimum number
of neighbors for 100 agents on a ring
of size 13 (learned behavior). Maximum
is black squares and minimum is white
triangles (learned behavior). The dashed
line is the minimum number of neighbors
needed to be considered in the group.
Each point is an average over a cycle
(65 steps). Average is 40.4%, median is
16.3% and standard deviation is 31.0% for
min neighbor. Average is 87.1%, median is
86.0% and standard deviation is 5.1% for
max neighbor.

0.0 0.2 0.4 0.6 0.8 1.0
Time in thousands of cycles

0

20

40

60

80

100

M
a
x
im

u
m

 a
n
d
 m

in
im

u
m

 n
u
m

b
e
r 

o
f 

n
e
ig

h
b
o
rs

 a
m

o
n
g
 a

g
e
n
ts

Existence of group.

Fig. 8. Maximum and minimum number
of neighbors for 100 agents on a ring of
size 13 (Q-deterministic algorithm). Max-
imum is black squares and minimum is
white triangles. The dashed line is the
minimum number of neighbors needed to
be considered in the group. Each point is
an average over a cycle (65 steps). Average
is 27.8%, median is 27.8% and standard
deviation is 2.3% for min neighbor. Aver-
age is 79.9%, median is 80.0% and stan-
dard deviation is 2.3% for max neighbor.



12

same constraints that were imposed to the learning algorithm: relative position,
sector approximation and action choice with Q-values. To do so, we compute
Q-values with the help of the deterministic algorithm. Each agent decide how to
act according to the deterministic algorithm, and Q-values are computed along
the sequence of actions determined by the deterministic algorithm. It allows each
agent to compute Q-values for couples (s, a) of states and actions. We call this
algorithm the Q-deterministic algorithm: the desired behavior is known in ad-
vance, but we imposes the same perception constraints to the agents than the
learned behavior.

In Figure 6, we observe that the time needed to form a group has the same
distribution for Q-deterministic than for the learned behavior in Figure 5. The
average time is even slightly better for the learned behavior (10 steps) than for
the Q-deterministic algorithm (12 steps). However, the standard deviation is
slightly higher for learned behavior (5.1) than for the Q-deterministic algorithm
(4.9).

In Figure 6, we represent the distribution of the number of neighbors. Here
again, we observe that the distribution is better for the learned behavior (Fig-
ure 7) than for the Q-deterministic algorithm (Figure 8): the average of the
maximum number neighbors is better (87% versus 80%) as well as the average
of the minimum number of neighbors (40% versus 28%)1. However, the distri-
bution of the number of neighbors is more sparse for the learned behavior.

5 Conclusion

In this paper, we showed for the first time that it was possible for independent
agents to learn a gathering behavior without communications via Q-learning. We
implemented Q-learning on independent and non-communicating agents evolv-
ing on a one-dimensional ring topology. We designed approximations for envi-
ronment and other agents perceptions in order to reduce the size of the learning
space and make the behavior independent of the number of agents. We obtained
an efficient and fast gathering behavior from random initial positions for 10
agents on a ring of size 13. After learning, the agents gather quickly (around 5
steps in average) and then maintain the cohesion of the group. Moreover, this
learned behavior is scalable: it was possible to use it on 100 agents gathering on a
ring of size 13 with no further learning. The quality of the gathering behavior for
100 agents is not as good as for 10 agents, but the average time to gather remains
good (around 10 steps in average) and the worst time is less than 50 steps. More-
over, the learned behavior is a bit better than a deterministic algorithm equally
constrained. This scalability, combined to the perception approximations, also
allows robustness: the agent are capable of gathering independently of the num-
ber of other agents, if this number is between 10 and 100. The learned behavior
is robust in the sense that a system starting with 100 agents can tolerate the
loss of up to 90 agents. Overall, this work shows that Q-learning can be used
1 Many white triangles are between 60% and 80% on Figure 7, which explains the
higher average value.



13

in multi-agent, non fully observable environments without communication with
other agents.

In order to extend this work, it might be interesting to investigate how this
multi-agent behavior emerges from the individual behavior of each agent, the
difference of behavior between agents, and to quantify the importance of diversity
in the behavior of agents.

Another track to continue this work would be to devise a way for agents
to design or learn their own approximations of their environment. This could
be done through unsupervised learning [20], or with the help of the reward
feedback from the environment (or by a combination of both). This automatic
design of the perception approximation could allow to systematically find a good
compromise between the reduction of the learning space and the capacity to
perceive meaningful differences and learn complex tasks. Neural networks may
be a good modular framework to model these approximations functions.

A major challenge would be to find a way to reuse the behavior learned
with the old approximation, instead of re-learning the behavior from scratch
whenever a change occurs in the approximation. The relative dynamics of the
two timescales (one for the evolution of the approximation, and one for the
evolution of the behavior) would also be of a particular importance.

References

1. Source code for the simulation of this paper.
https://github.com/LearningToGatherWithoutCommunication/Ring, 2016.

2. O. Abul, F. Polat, and R. Alhajj. Multiagent reinforcement learning using function
approximation. IEEE Trans. Syst., Man, Cybern. C, 30(4):485–497, 2000.

3. Noa Agmon and David Peleg. Fault-tolerant gathering algorithms for autonomous
mobile robots. SIAM Journal on Computing, 36(1):56–82, 2006.

4. Hideki Ando, Yoshinobu Oasa, Ichiro Suzuki, and Masafumi Yamashita. Dis-
tributed memoryless point convergence algorithm for mobile robots with limited
visibility. IEEE Transactions on Robotics and Automation, 15(5):818–828, 1999.

5. Ronald C Arkin. Cooperation without communication: Multiagent schema-based
robot navigation. Journal of Robotic Systems, 9(3):351–364, 1992.

6. Mostafa D. Awheda and Howard M. Schwartz. Exponential moving average
based multiagent reinforcement learning algorithms. Artificial Intelligence Review,
45(3):299–332, oct 2015.

7. Bruno Bouzy and Marc Métivier. Multi-agent learning experiments on repeated
matrix games. In Proceedings of the 27 th International Conference on Machine
Learning,, 2010.

8. Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo. Swarm
robotics: a review from the swarm engineering perspective. Swarm Intell, 7(1):1–41,
jan 2013.

9. Olivier Buffet, Alain Dutech, and François Charpillet. Shaping multi-agent systems
with gradient reinforcement learning. Auton Agent Multi-Agent Syst, 15(2):197–
220, jan 2007.

10. L. Busoniu, R. Babuska, and B. De Schutter. A comprehensive survey of multiagent
reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), 38(2):156–172, mar 2008.



14

11. Benjamin Charlier. Necessary and sufficient condition for the existence of a fréchet
mean on the circle. ESAIM: Probability and Statistics, 17:635–649, 2013.

12. Mark Cieliebak, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Solving
the robots gathering problem. In International Colloquium on Automata, Lan-
guages, and Programming, pages 1181–1196. Springer, 2003.

13. Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in
cooperative multiagent systems. AAAI/IAAI, (s 746):752, 1998.

14. Jurek Czyzowicz, Leszek Gasieniec, and Andrzej Pelc. Gathering few fat mobile
robots in the plane. Theoretical Computer Science, 410(6):481–499, 2009.

15. David J. Finton. When do differences matter? on-line feature extraction through
cognitive economy. Cognitive Systems Research, 6(4):263–281, dec 2005.

16. Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical
learning, volume 1. Springer series in statistics Springer, Berlin, 2001.

17. Matthew R. Glickman and Katia Sycara. Evolutionary search, stochastic policies
with memory and reinforcement learning with hidden state. 1995.

18. Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard Lewis, and Xiaoshi Wang.
Deep learning for real-time atari game play using offline monte-carlo tree search
planning. 2014.

19. Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Unsupervised learning.
In The elements of statistical learning, pages 485–585. Springer, 2009.

20. Simon Haykin. Neural Networks and Learning Machines Third Edition. 2008.
21. T. Horiuchi, A. Fujino, O. Katai, and T. Sawaragi. Fuzzy interpolation-based q-

learning with profit sharing plan scheme. In Proceedings of 6th International Fuzzy
Systems Conference. Institute of Electrical & Electronics Engineers (IEEE), 1997.

22. Soummya Kar, José M. F. Moura, and H. Vincent Poor. Qd-learning: A collabo-
rative distributed strategy for multi-agent reinforcement learning through consen-
sus+ innovations. IEEE Transactions on Signal Processing, 61(7):1848–1862, apr
2013.

23. Hung Manh La, Ronny Lim, and Weihua Sheng. Multirobot cooperative learn-
ing for predator avoidance. IEEE Transactions on Control Systems Technology,
23(1):52–63, jan 2015.

24. Edward A Lee. The problem with threads. Computer, 39(5):33–42, 2006.
25. John Loch and Satinder P Singh. Using eligibility traces to find the best mem-

oryless policy in partially observable markov decision processes. In ICML, pages
323–331, 1998.

26. Liam Charles MacDermed. Value methods for efficiently solving stochastic games
of complete and incomplete information. 2014.

27. Tamás Máhr, Jordan Srour, Mathijs De Weerdt, and Rob Zuidwijk. Can agents
measure up? a comparative study of an agent-based and on-line optimization ap-
proach for a drayage problem with uncertainty. Transportation Research Part C:
Emerging Technologies, 18(1):99–119, 2010.

28. Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, and Ioannis
Antonoglou. Playing atari with deep reinforcement learning. 2013.

29. Koichiro Morihiro, Teijiro Isokawa, Haruhiko Nishimura, and Nobuyuki Matsui.
Characteristics of flocking behavior model by reinforcement learning scheme. In
2006 SICE-ICASE International Joint Conference. Institute of Electrical & Elec-
tronics Engineers (IEEE), 2006.

30. Jean Oh. Multiagent social learning in large repeated games. 2009.
31. Xavier Pennec. Probabilities and statistics on riemannian manifolds: Basic tools

for geometric measurements. In NSIP, pages 194–198. Citeseer, 1999.



15

32. HL Prasad, Prashanth LA, and Shalabh Bhatnagar. Two-timescale algorithms for
learning nash equilibria in general-sum stochastic games. In Proceedings of the
2015 International Conference on Autonomous Agents and Multiagent Systems,
pages 1371–1379. International Foundation for Autonomous Agents and Multiagent
Systems, 2015.

33. Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral model.
ACM SIGGRAPH Computer Graphics, 21(4):25–34, aug 1987.

34. Hussein Saad, Amr Mohamed, and Tamer ElBatt. Cooperative q-learning tech-
niques for distributed online power allocation in femtocell networks. Wirel. Com-
mun. Mob. Comput., 15(15):1929–1944, feb 2014.

35. John Schulman, Sergey Levine, Philipp Moritz, Michael Jordan, and Pieter Abbeel.
Trust region policy optimization. 2015.

36. David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks
and tree search. Nature, 529(7587):484–489, 2016.

37. Herbert A Simon. Why should machines learn? In Machine learning, pages 25–37.
Springer, 1983.

38. R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction. IEEE
Trans. Neural Netw., 9(5):1054–1054, sep 1998.

39. Ming Tan. Multi-agent reinforcement learning: Independent vs cooperative and
agents. 1993.

40. Ben-Nian Wang, Yang Gao, Zhao-Qian Chen, Jun-Yuan Xie, and Shi-Fu Chen. A
two-layered multi-agent reinforcement learning model and algorithm. Journal of
Network and Computer Applications, 30(4):1366–1376, nov 2007. Competitive.

41. Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-
4):279–292, 1992.

42. Ping Xuan, Victor Lesser, and Shlomo Zilberstein. Communication in multi-agent
markov decision processes. In MultiAgent Systems, 2000. Proceedings. Fourth In-
ternational Conference on, pages 467–468. IEEE, 2000.

43. Zhen Zhang, Dongbin Zhao, Junwei Gao, Dongqing Wang, and Yujie Dai. FMRQ-
a multiagent reinforcement learning algorithm for fully cooperative tasks. IEEE
Trans. Cybern., pages 1–13, 2016.

44. Qiao Zhang Xiaomeng Zhang Junming Wei Zhiguo Shi, Jun Tu. The improved
and q-learning algorithm and based on pheromone and mechanism and for swarm
and robot system. 2013.

45. Mortaza Zolfpour-Arokhlo, Ali Selamat, Siti Zaiton Mohd Hashim, and Hossein
Afkhami. Modeling of route planning system based on q value-based dynamic
programming with multi-agent reinforcement learning algorithms. Engineering
Applications of Artificial Intelligence, 29:163–177, mar 2014.


