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Abstract: The use of high-level synthesis tools (HLS) - use of the C language to
generate architectures - is a big step forward in terms of productivity, especially for
programming FPGAs. However, it introduces the restriction to only use the data-types
and operators given by the C language. It has been shown many times that
application-specific arithmetic provides large benefits. We want to bring such
optimization to HLS. In this work, we propose a source-to-source compiler can transform
a C source code to a functionally equivalent code, but optimized by using

non-standard /application specific operators. Our case study is targeting summations that
we retrieve in a source code using a pragma, and then replace with the specialized
operators. Using these transformations, the quality of the circuits produced by HLS tools
is improved in speed, resource consumption and accuracy.
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1 Introduction

When one wants to perform a numerical computation on a general purpose processor, a
trade-off has to be made between computation speed and resource consumption (memory
usage, silicon needed, energy consumption, etc.). For example, to increase computation
speed by exposing more parallelism, the resource usage will greatly increase by using more
cores. On the other hand, to reduce resource consumption one may have to use a processor
with a lower frequency a fewer number of cores.

To increase computation speed while limiting resource usage, one may chose to use
a hardware accelerator. One of the most popular options to improve computation speed
while being energy-efficient is to use a Graphics Processor Unit (GPU). Other hardware
accelerators are emerging due to the recent focus on energy saving, such as co-processors
like the the Intel Xeon Phi [19].

Accuracy in the performance/cost trade-off

Numerical computations generally operates on real numbers. These are often represented
as floating-point numbers due to the ease of use of such a format. However floating-point
units cost a lot of silicon area and energy consumption. Another variable to take into
consideration in this trade-off is the accuracy of the computation. Managing the accuracy
can result in altering speed or resource consumption. To clarify what we mean by accuracy,
we recall that the accuracy of a value is the number of correct bits of that value, and
precision of a value is the number of bits in which it is represented. For example, a number
that requires to be accurate to 1072 (which translates to 10 bits to be represented) can be
encoded in a simple precision floating point format. In that case, the floating point format
offers 24 bits of precision but the data it contains only has an accuracy of 10 bits.

Here are a few examples of how managing accuracy can act in this trade-off by using
an intermediate representation that has increased accuracy:

e One could use double precision instead of simple precision during the computation,
at the cost of performance.

e There exists some dedicated libraries to boost accuracy such as MPFR [12] that
allows the user to have an arbitrary number of bits for every variable, at the cost of
performance.

e One can also chose to alter the accuracy of the computation to increase computation
speed [3].

e One could use a fixed-point representation to improve computation speed and reduce
resource usage. However, using a fixed-point format requires much more program-
ming work to achieve the desired accuracy. There exists some software to auto-
matically transform a program into its fixed-point equivalent, such as ID.Fix [26].



These tools require some fixed-point format knowledge as the program needs to be
annotated with pragmas containing the desired formats.

Limitations of general purpose hardware

General purpose processors and accelerators do not offer the possibility to use a custom
precision. In some cases, reducing the precision can result in the same accuracy and could
be exploited to improve computation speed and reduce resource consumption. Using a
floating-point format gives the user the ease of having a single format for all his real
values. But this format, defined by the IEEE-754 standard [1] has flaws that we will be
discussing in Section 2.

As the floating-point standard is used in every general purpose processors, new formats
were proposed to avoid the current limitations. Kulisch et al. [22] described a large floating-
point format that uses 4288 bits to cover to entire range of double precision of the current
IEEE-754 floating-point values. Gustafson [15] proposed a new way of computing floating
point numbers with a new format called the unums. It is based on dynamic adjustment
of the number of bits required to store the floating-point number. It is also capable of
annotate a number to store the fact that it might not be exact and lies in an interval to
be able to provide a more accurate final result. Both these methods require processors
manufacturers to completely change their standards which is not likely to happen.

Using custom application specific hardware

In order to achieve both performance and accuracy, one may then chose to design one’s
own hardware accelerator. The user is then able to adjust the custom circuit to the
application requirements and use a custom format. Such a design could be implemented
on a Field Programmable Gate Array (FPGA), which is a memory-based integrated circuit
whose functionality can be modified after manufacturing. This hardware can increase the
program performance and is very energy-efficient compared to a software implementation.

Originally FPGAs capacity (size of the design they can load) was limited and only
made possible small designs (in terms of logic gates). Most early works on FPGAs targeted
integer-based programs. Indeed, floating-point hardware operators are up to a factor of 30
larger that integer operators. However, the capacity of FPGAs has now reached a sufficient
size to consider them as an alternative for floating-point computations. Moreover, they
offer much more freedom in implementing floating-point computation than the previously
mentionned (fixed hardware) accelerators. A purpose of the present work is to exploit this
freedom.

Hardware design flow and High-level synthesis

A problem when designing an application-specific accelerator, is that it requires deep knowl-
edge in circuit design. Programmers tends to be more comfortable with software languages



such as C or Java than Hardware Description Languages (HDL). Using a HDL, such as
VHDL, is very error prone and often results in a very long design time. In order to make
hardware design more accessible, a new range of tools were created, called High-Level Syn-
thesis (HLS) tools (VivadoHLS [18], GAUT [5], LegUp [4], Catapult C [14] among others).
The goal of such tools is to allow the programmer provide a behavioral description (e.g C
source code) of a component, and transform it to a circuit description. Typical compiler
syntactic transformations cannot be applied because several constraints are not taken into
consideration with high-level languages (e.g clock frequency, delay of a memory access).
Therefore, these tools perform many analyses before returning a hardware description.
They were not used until recently as they were not efficient, often resulting in bloated de-
signs. Recent improvements on the internal heuristics ended up in making them effective.
In this work, we only consider HLS tools for targeting FPGAs.

C standard driven hardware generation

A problem with HLS tools is that they are made for hardware conception but takes a C
program as an input. However, the C language offers very limited number of data types with
different sizes. This does not match with hardware design where the users want to have
some custom variable width. Therefore, HLS tools introduced some dedicated libraries to
support interger values with a custom number of bits. Such a support does not exists for
floating point numbers that will always be 32 or 64 bits long, even if it is not needed in the
context of the application. Furthermore, most compilers such as GCC follows the C99 or
C11 standard for floating-point operations. Therefore, the transformations that they can
apply are limited to improving computation speed without modifying the accuracy of the
result. This tends to greatly reduce the number of transformations available. Plus they
cannot perform any optimization that improves the accuracy of the result. For floating
points programs, VivadoHLS also follows the C99 standard [17] as the resulting design will
produce the exact same result as if it was computed using GCC for example. This is a
limitation that should not exists as it is in contradiction with the flexible hardware it is
aiming.

At the cost of silicon area, one could perform better computation speed while being
consistent with the C99 standard. Kapre and DeHon [20] implemented a accumulator
that increases performance speed while following the C99 standard for a large overhead
in terms of silicon. In some cases, the C99 standard can be followed but optimised in an
application specific way. For example, De Dinechin and Didier [6] proposed a very efficient
(C99 compliant) division of a floating point number by a small integer. It uses very little
resource but is highly specific to applications that need such a division.

The other way around is to relax the semantic of C and the C99/IEEE-754 standard.
This is what we do in this work, we consider the C language to express mathematical
formulas. Indeed, a program performing a+b+c+d would be interpreted as ((a +b) +¢) +d
using the C99 standard. We just consider it as a sum of four variables that can be performed



in any order, just as the real numbers specification.

Application specific operators we focus on

In this work, we focus on floating-point reductions (accumulations, sums of product). A
reduction is an associative and commutative computation which reduces a set of input val-
ues into a reduction location. Listing 1 provides the simplest example of reduction, where
sum is the reduction location. Mathematically, such a reduction can be executed in any
order, as the addition is associative and commutative. On the contrary, floating-point sum-
mations are not commutative, due to floating-point representation. Such a transformation
on a floating-point reduction might introduce a large distortion of the result. Therefore, it
cannot be executed in parallel (e.g tree-based addition), and must be serialized to ensure
the semantic of the program [20].

Listing 1: Simple reduction

float sum = O;
for (i=1; i<5; i++){
sum+=A[i];

}

Hardware accelerators generation can be application specific. Therefore, beyond perfor-
mance increase, the accuracy of floating-point computations can be tuned. Indeed, there
is no need in following the IEEE-754 standard floating-point representation used in mi-
croprocessors, one could use custom format. Improving FPGA hardware accelerators for
floating-point computations, through both performance and accuracy is a current research
topic [8, 23|, as well as optimizing HLS tools [13, 2]. This work aims at merging both
worlds.

Internship motivation

Our work aims at bringing together HLS benefits, such as the abstraction given to the pro-
grammer, and low-level FPGA-specific optimization. As HLS tools lack optimization for
floating-point operations, we want to provide a source-to-source tool that transforms a re-
duction loop-nest into a code that the HLS tools will synthesize efficiently. Our compilation
flow is given in Figure 1.

As our approach lies on two tools - FloPoCo and GeCoS - we will first present them in
Section 2. We will then describe in details the operators that we implemented, with the
experimental results in Section 3. In Section 4, we describe our source-to-source transfor-
mations. Finally, we show a case study on convolutional neural networks (Section 5), and
then conclude.
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2 Context

As FPGAs architecture are different from other platforms, we first describe the structure
of FPGAs. We then go in more details about the floating-point format before describing
the tools we used.

2.1 Field Programmable Gate Arrays

An FPGA is made of Look-Up Tables (LUTSs), which compute logic operations. The LUTs
have « inputs and one output, on most recent FPGAs a = 6 (o = 3 in Figure 2). The
designer then needs to keep in mind that algorithms relying on the 2% values have efficient
implementations in FPGAs. Indeed, values are scattered in chunks of « bits or less to fit
in LUTs.

Depending on the vendor, one or several LUTs are gathered into cells. These cells
are all connected through a programmable interconnect. This architecture is depicted in
Figure 2.

Two neighbor cells benefit from a fast connection dedicated to carry propagation. This
connection is faster than communication through the FPGA interconnect. It is shown in
Figure 3 (here an Altera chip, Xilinx ones are equivalent) where we can see a carry_in
signal coming from another cell, and a carry_out signal that goes toward next cell. This
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particularity makes some classical optimization irrelevant for FPGAs. For example, this
fast carry propagation makes a simple carry-ripple addition to be faster than most fast
adders used for VLSI oriented architectures.

FPGAs also contains Digital Signal Processing (DSP) blocks. These embed for example
fixed-point multipliers. Most recent FPGAs also embed floating point multipliers, typically
18 x 18 bits multipliers.

In order to program an FPGA, one have to design it’s custom circuit through the
use of a HDL. This HDL is then synthesized using dedicated softwares such as Vivado
or Quartus II. Once the HDL is registered as syntactically correct, it is transformed to a
logic gates representation (RTL). The RTL is optimized to remove unused hardware. It
then has to be placed on the FPGA. Therefore a place and route phase solves an Integer
Linear Programming (ILP) problem to try to put every operators as close as possible to
the others. Once the ILP solved, a bitstream is created and given to the FPGA so that it
configures itself respecting the original VHDL specification.

As the structure of FPGAs is radically different from a processor architecture, many
optimization can be made for taking benefit from it.

2.2 Floating-point specification and limitations

The value of a floating-point number is then (—1)° x 1.m x 2(¢=%) where b is a constant
called the floating point bias. Every operation over floating-point values has a specification
that IEEE-754 compilers and processors has to follow. This standard makes floating-point
computation consistent but has flaws. For example, the sum operation is non-associative,



even if the real sum is. Indeed, if we consider the computation of (small + big) — big, the
result is going to be 0. This, because the result of small + big returns big as the mantissa
cannot contain enough bits for containing the exact result of small + big. On the other
side, the result of small + (big — big) is going to be small.

We recall that a floating-point number is represented by three fields as depicted in
Figure 6, a sign, an exponent and a mantissa (also called significand). The number of
bits of the exponent and mantissa changes whether it is a 32 bit or 64 bit floating point
representation. This is set by the IEEE-754 standard [1].

The mantissa gives the fractional part of the final number. An implicit 1 has to be
added in front of the mantissa. This because the standard requires the numbers to be
normalized with a leading 1. This leading one is thus removed and remains implicit.

In order to recover the floating-point number, one has to retreive 1.m, where m is the
mantissa. This number will have to be signed and shifted. The sign is given by computing
(—1)*, where s is the sign. A bias was added to the exponent, so the retrieved exponent
need to be removed that bias. The bias is a constant that has a different value for simple
and double precision. The final number is then returned as (—1)% x 1.m x 26~ where e
is the exponent and b is the floating point bias.

There are some exceptions where the floating point number is not computed as above:

e When the exponent reaches the maximum value and the mantissa is filled with zeros:
The floating-point value represents the infinity

e When the exponent reaches the maximum value and the mantissa contains bits other
than zeros: This stands that the value hold is Not A Number (NaN)

e When the exponent reaches the minimum value and the mantissa is filled with zeros:
The flaoting point value is 0.0

e When the exponent reached the minimum value and the mantissa contains bits other
than zeros: The number is a subnormal

Subnormals are special floating-point numbers that have been introduced to fill the gap
between the minimum positive floating-point value and the maximum negative floating-
point value. Indeed, the format was not very accurate for numbers around zero. Figure
4 shows the representable floating-point values around zero (with a shorter mantissa and
exponent for the sake of clarity). We can clearly see these gaps on both sides of 0.0. When
a floating-point number has an exponent that reaches the minimum value, and the the
mantissa is not filled with zeros, the former implicit 1 is replaced by an implicit 0. The
subnormal number is then computed as (—1)® x 0.m. Figure 5 now shows the floating-point
numbers around zero when extended with subnormals.

A slight change in the operations order might change the result accuracy. For the
simplicity of the explanation, let us consider decimals with 7-digit significand numbers.
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We don’t necessarily have (a + b) + ¢ = a + (b + ¢), for example, with a = 1234.567,
b = 45.67834 and ¢ = 0.0004, then:

(at+b)+c=
( 1234.567
+ 45.67834) + c
= 1280.24534 + ¢ // but 1280.24534 is rounded to 1280.245 (7 digits)
= 1280.245
+ 0.0004
1280.2454 // rounded to 1280.245
1280.245

Whereas:

a+(b+c)
a + (45.67834
+ 0.0004)
a + 45.67874
1234.567
+ 45.67874
= 1280.24574 // rounded to 1280.246
= 1280.246 // not equal to (a+b)+c

This format need special care if we want to achieve accurate floating point computing.

S EXP MANTISSA

Figure 6: Representation of a floating-point number



2.3 Application specific arithmetic in FloPoCo

When using an HLS tool, one can generate an architecture for a specific program/opera-
tion. There is no need in following the IEEE-754 standard for floating point computation.
Therefore, the internal format can be tuned to the program’s need.

FloPoCo [7] is a generator of arithmetic cores for FPGAs. It generates operators
that are radically different that what can be found in general purpose processors. These
operators are parametrized in precision so as to fit the application needs, but no more.
They have an internal representation that is generated given some program specification.

Complex operators tuned for the target

FloPoCo uses all the FPGAs optimization in order to benefit the most from its architecture.
It can generate operators such as constant multipliers that removes the use of a large
floating point multiplier. It can also generate divisors by small constants that are table
based instead of using a lot of resource to create a floating-point divisor. It uses operator
fusion to generate more complex operators. FloPoCo allows the users to manage complex
operators that are parametrized in exponent and significand size, always last bit accurate,
automatically optimized for Altera’s and Xilix’stargets. The operators are also pipelined
to frequencies close to the maximum practical on these FPGAs.

FloPoCo generates these operators as VHDL blocks. The user then needs to integrate it
to their own VHDL design. This involves manipulating low level code and can be tedious.

As we want the users not to manipulate such low level code, we want to make FloPoCo’s
knowledge available to HLS users. Therefore we need to transform their high-level C code
so that the HLS tool generates a VHDL description that has the same behavior as FloPoCo’s
operators.

2.4 GeCoS, a source-to-source framework

Among all the source-to-source compiler frameworks available we chose GeCoS [11]. It is
able to take a C/C++ code as an input and translate it to its own intermediate representation.
It can then generate the corresponding C/C++ code. Many features allow the user to
navigate through the intermediate representation in order to analyze or modify it. It
also contains transformations to unroll a loop when the corresponding pragma is inserted.
GeCoS is a compiler infrastructure entirely written in Java. It follows the model-driven
engineering design principles. It is then easily extendable. One can create a Java plug-
in to modify either the front-end, the intermediate representation or the back end of the
compiler.

We can then create a GeCoS plug-in in order to apply our transformations on the
intermediate representation. In the next section, we will describe some application specific
operators for FPGAs and their corresponding VivadoHLS implementations. We will also
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compare their performance with FloPoCo’s operators in terms of latency, LUT usage and
accuracy.

3 VivadoHLS implementation of application specific arith-
metic operators

As we are implementing some FloPoCo operators into their corresponding C code, we first
describe these operators before showing our C implementation. We then compare our
results with FloPoCo and more standard implementations.

3.1 Application specific version of Kulisch’s accumulator

We will describe the FloPoCo’s specialized accumulator that performs an accurate com-
putation for a low LUT usage and little latency. We will then show how to get a similar

10
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operator from VivadoHLS, while described in a C source code. Finally, we will compare
our operator generated by VivadoHLS to more naive implementations of accumulators.

3.1.1 FloPoCo’s accumulator

The accumulator described in this section is an extension of the accumulator proposed by
de Dinechin et al. [9]. Its purpose of it is to have a configurable internal representation
in order to control accuracy. The support of denormals have been added to the original
version. Such an accumulator is described in Figure 7b (top).

The internal representation of the accumulator is using a fixed-point format. The
fixed-point format is represented by two values:

e MSB /4 which is the weight of the most significant bit of the accumulator. For example,
if the accumulator maximum value is set to 1E6, then MSB4 = [loga(1E6)] = 20.

e L.SB 4 which is the weight of the least significant bit of the accumulator. For example,
if the accumulator accuracy is set to 1E — 15, then LSB4 = |loga(1E — 15)| = —50.

The accumulator width w, is then computed as MSB4 — LSB4 + 1 = 71 bits in this
axample. This kind of notation for fixed-point format is shown in Figure 8. For the sake
of simplicity, we used MSB4 = 7 and LSB 4 = —8 on this example. The circles represents
bits of the number. The “virtual” point is placed between the bits with weight 0 and -1.

Float-to-fixed conversion

The accumulator takes a floating-point value as input. This number has to be converted
into the fixed-point representation of the accumulator. It is decomposed into 1 bit of sign,
wg bits of exponent and wp bits of mantissa. The leading 1 or 0 is then added to the
mantissa. The decimal and fraction parts of the mantissa and the accumulator has to be
aligned so that the “points” match.

To do so, we first place the extended mantissa at the left of the accumulator, so that
their most significant bits match. This is shown in figure 9 where ¢mp represents the implicit
bit and the | is the “point”. As the user provided MSB 4, we know that the mantissa cannot
be be shifted to the left, otherwise it would mean that the maximum value was reached. In
order to align the “points”, the extended mantissa has to be shifted by MSB4 — 1 — exps

11
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where exps is the exponent from which we removed the floating-point bias. The resulting
number (using MSB 4 — LSB 4 bits) is then XORed to match the fixed-point representation
of the accumulator. It is then ready to be accumulated.

Note that, as shown in Figure 7b (top), the user can provide another variable called
MaxMSB x which represents the maximum value of the inputs. Whereas MSB 4 represents
the maximum value of the all accumulation. This reduces the above mentioned shifter by
a few bits so that the number to add to the accumulator is only MaxMSBx — LSB 4 bits
instead of MSB 4 — LSB 4 bits.

Fixed-point summation

As the input number has been converted to its fixed-point representation, the sum has to
be a fixed-point summation. Therefore, it does not require the logic overhead of a floating-
point sum. A simple bit-to-bit adder is used. The fixed-point adder has a 1-cycle latency
whereas the floating-point adder requires 7 cycles.

Fixed-to-float conversion

The value of the accumulator can be retrieved in its fixed-point format and be converted
to a floating-point value using a software conversion. As the goal of our transformations is
to remain invisible to the user, we perform a hardware conversion instead. The hardware
bloc that we used is depicted in figure 7b (bottom).

The value of the accumulator is first XORed to fit with the floating-point representation.
We then perform a leading zero count (LZC) to find the most significant bit (MSB) of the
accumulation. This bit will be the implicit bit of the resulting mantissa. The result is
then shifted by LSB4 + MSB4 — LZC — 1 — wy into a w; bit wide variable which is the
mantissa. This way, the wy bits remaining are exactly the wy bits that are right after the
MSB. The exponent is computed as MSBy — LZC + FPBIAS where FPBIAS represents
the floating-point bias. The sign is directly extracted from the negated accumulator value.

Note that no rounding is done, the mantissa is truncated. Several rounding could
be applied here to get a IEEE-754 rounding such as round to the nearest, tie to even.
As we went away from the IEEE-754 standard during the computation and improved
accuracy, there is no need to introduce more logic to do this rounding. We could apply

12



a simpler rounding through, where we add 1 to the right bit of the least significant bit
before truncating. This would give a more accurate result in most cases, but it not not
implemented for the moment.

This accumulator takes a float as an input and provides a float as an output. The rest
of the computation can remain in the floating-point format whereas ID.Fix for example
would make the whole program to be in fixed-point arithmetic. Thus, it would lose the
ease of use of the floating-point format and might not be as accurate.

3.1.2 Implementation of the accumulator for VivadoHLS

As VivadoHLS generates a floating-point adder when a sum of floating-point values is
encountered, we need to specify this operator at bit level in C. The accumulator can be
split into three part:

o A float-to-fixed conversion
e A fixed point sum

o A fixed-to-float conversion

Listing 2: Float to accumulable conversion

typedef union {
uint32_t i;
float f£f;
} bitwise_cast;
ap_int <MAXMSBx-LSBA+1> FP_to_accumulable(float a) {
bitwise_cast var;
var.f = a;
ap_uint <32> in = var.ap;
ap_uint <MANTISSA+1> mantissa = in.range (22, 0);
mantissa [MANTISSA] = 1;
ap_uint <EXP> exp_u = in.range (30, 23);
ap_uint<1> sign = in[31];
ap_int <EXP> exp_s = (ap_int<8>)exp_u - FP_BIAS;

ap_uint <MAXMSBx -LSBA-MANTISSA> zeros = 0;
ap_uint <MAXMSBx-LSBA+1> shift_buffer = mantissa.concat (zeros);
uint32_t shift_val = MAXSMBx - 1 - exp_s;
ap_int <MAXMSBx-LSBA+1> current_shifted_value = shift_buffer >> shift_val;
if (sign == 1)
return “current_shifted_value + 1;
else
return current_shifted_value;

13



The float-to-fixed conversion code for VivadoHLS is given in Listing 2. We used a type
union, denoted by bitwise_cast to swap between the floating-point and integer formats.
The i field of this union contains the unsigned integer value of the bits of field f.

For the sake of explanation and modularity, we used integer variables instead of hard-
coding bit width of every wire. As we are using VivadoHLS, we are taking advantage of
Xilinx’s ap_int library which allows to manipulate data at bit level. Here is a list of the
variables used:

e MAXMSBx: Weight of the most significant bit of every input.

e LSBA: Weight of the least significant bit of the accumulator. This is the accuracy of
the output fixed point format. This value is negative if there are fractional bits. We
consider that for the fractional part of a fixed point number, the bits are denoted
with a negative sign.

e MANTISSA: Number of bits of the floating-point mantissa (23).
e EXP: Number of bits of the floating-point exponent (8).

e FP_BIAS: The floating-point exponent bias.

We used a few operations of this library, which are:

e Bit field declarations. A ap_int<N> variable is a field of N bits. The format specifies
it is signed in case of an extension to a larger format. In order to get the same
unsigned field of bits one would have to declare it as a ap_uint<N> variable.

e The method range (uint32_t start, uint32_t end). It allows to retrieve bits from
index start to bit index end from the ap_int variable it is applied to.

e The method concat(ap-int variable). It allows to concatenate the variable at
the end of the variable the method is applied to.

e A syntax shortcut to retrieve or set a single bit. The library allows to access ap_int
variables the same way one would do with arrays to retrieve a single bit.

An accumulable value is a fixed point value that has the same amount of fractional
bits as the accumulator does. Also it has to have a lower or equal number of bits than the
accumulator. That way when aligning the bits on the right side, as depicted in Figure 10,
the sum can be computed with aligned points.

The output format of our function FP_to_accumulable is then a field of bits of size
MAXMSBx-LSBA+1 bits. The format is chosen signed in order to preserve the sign of the
result when extending the format to be able to perform the sum with the accumulator. It
has LSBA bits for the fractional part (same as the accumulator), and MAXMSBx+1 bits for
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Figure 10: Fixed point accumulation

2MAXMSBX can be

the decimal part. The decimal part has one more bit than MAXMSBx so that
reached.

The first thing we do is to store the float input into our union type in order to retrieve
the bits into a ap_uint bit field. We then retrieve the sign, exponent and mantissa using
the range methods. We also set the implicit 1 for the mantissa. In case of a 0, it doesn’t
matter to add this implicit one, because the mantissa is going to be fully flushed during
the shift operation because of a very little exponent. A future optimization would be not
to flush it to zero if the accumulator accuracy is larger than the floating-point exponent
range.

We then instantiate a variable that will contain the shifted value that we call shift _buffer.
To prepare the mantissa shifting in order to align “points”, we place the mantissa to the
left of the shift _buffer and fill the rest of the bits with zeros as shown in Figure 9.

The shift buffer is then shifted by a value depending on the float exponent. The
final check is to verify if the float number was positive or negative. If it was negative, it
has to be negated to fit the fixed point representation.

The fixed-point sum can be performed directly with a + operator between two fixed
point numbers.
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Listing 3: Fixed-point to floating-point conversion

float fixed-to-float(ap_int<MSBA+1-LSBA> acc)

ap_int <MSBA+1-LSBA> tmp;
ap_uint<1> s;
if (acc[MSBA-LSBA] == 1) {

tmp = -acc;

s = 1;
} elsed{

s = 0;

tmp = acc;
}
uint32_t lzc = tmp.countLeadingZeros();
ap_uint<8> exp = MSBA - 1 + FP_BIAS - 1lzc;
ap_uint <23> mant = tmp >> MSBA - LSBA - MANTISSA - lzc;
ap_uint<31> ret_without_sign = exp.concat (mant);
ap_uint <32> ret = s.concat(ret_without_sign);
bitwise_cast bits_to_fp;
bits_to_fp.ap = ret;
return bits_to_fp.f;

Finally, the fixed-to-float operation must be performed to retrieve the floating-point
value of the accumulator. The implementation of this operation is given in Listing 3. The
accumulator is given as an input, and the sign of it is retrieved. If case of a negative value,
the accumulator is negated to fit in the floating-point representation. The leading zero
count (1zc) is performed using the countLeadingZeros method from the ap_int library.
Using the 1zc, the exponent and mantissa are computed. The sign, exponent and mantissa
are then concatenated using the concat method also given by the ap_int library. Using
the same union as in Listing 9, the bit field is returned as as float.

3.1.3 Experimentation

Objective

Besides checking the correctness of our implementation, this experimentation aimed at
verifying that the generated hardware was indeed what we expected. We want our imple-
mentation to fulfill two main objectives, other than having improved accuracy:

e We want it to have a latency close to the one from FloPoCo
e We want LUT usage to be as close as FloPoCo’s

In order to verify the above mentioned points, we used a simple floating point accumu-
lation. Such an accumulation is depicted in Listing 4. As this accumulation is manipulating
floating-points values, VivadoHLS is not able to reorder the operations and will wait for an
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iteration to end before computing the next one. This introduces delays between iterations.
As our implementation is not working on floating-point values anymore, VivadoHLS is
going to be able to perform more aggressive optimization. Thus we avoid waiting between
iterations.

Experimental setup

We decide to compare our results with an equivalent to the naive float accumulations. If
the loop is unrolled, VivadoHLS is going to achieve more parallelism and reduce overall
latency. We unrolled the loop by a factor 7, as it is the latency of a floating point adder on
our target FPGA (Kintex 7). This code is shown in Listing 5. This is not C99 equivalent,
but is a trade-off to get a better computation speed at the cost of resource consumption.
This code cannot be generated from a tool as it requires data knowledge. In order to
improve accuracy, one may chose to perform the calculation using the double format for
the inner computation. Thus we compared our results with a naive double accumulation,
and it’s unrolled equivalent.

The accumulation operates during 99995 iterations. This number was chosen in order
to be a large value, close to 100000, while being a multiple of 7 (the unroll factor). This
is not in our advantage but to get the best out of the unrolled version. It provides the
unrolled code not to use control over the iteration domain boundaries, and remove some
control.

Listing 5: Unrolled float accumulation

#define N 99995
float accumulation(float in[N]){
float acc= 0;
Listing 4: Naive float accumulation float p0=0,pl1=0,p2=0,p3=0,
p4=0,p5=0,p6=0;
for (int i=0; i<N; i+=7){
pO+=in[i];
pl+=in[i+1];
p2+=in[i+2];
p3+=in[i+3];
p4+=in[i+4];
p5+=in[i+5];
p6+=in[i+6];
}
acc = pO+pl+p2+p3+p4+p5+p6;
return acc;

}

#define N 99995
float accumulation(float in[N]) {
float acc = 0;
for (int i=0; i<N; i++){
acc+=in[i];
}
return acc;

}

Note that for the addition on Kintex 7, the latency of a double adder is also of 7 cycles,
so the unrolled double accumulation is unrolled by a factor 7. Muller et al. [24] proposed
to use cos values to perform an error evaluation for the accumulation. Therefore, our
input values are (float) cos(i) where i is the input array’s index so that the accumulation
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performs the computation of > cos(i). Every LUT usage number and latency of the design

are given by generating VHDLZ from C synthesis using VivadoHLS followed by place and
route from Vivado v2015.4, build 1412921.

To compare the quality of the result, we compute the relative difference between the
result R computed for all the different programs, and the exact result R computed using

MPFR [12]. To measure the number of correct bits of the result we compute (— log, R;RR).
In the case of this study case, the returned result is a float. The maximum accuracy is
then of 24 bits, the size of the IEEE-754 float mantissa.

Finally, the parameters that we chose for our accumulator are:

e MSBA = 17. Indeed, as we are adding cos(i) 99995 times, an upper bound is 99995,
which can be encoded in 17 bits.

e MAXMSBx = 1. For the same reason as for MSBA, at every step, the maximum
input will be 1, which can be encoded in 1 bit.

e LSBA =-50. This is an arbitrary precision that we chose. The accumulator will then
be accurate until the 50th fractional bit.

The corresponding implementation is shown in Listing 6. It uses the previously presented
blocks.

Listing 6: Our implementation of the accumulation for Vi-
vadoHLS

#define N 99995

float Accumulation(float in[N]) {
float acc = 0;
ap_int <68> long_accumulator = 0;

for(int i=0; i<N; i++) {
long_accumulator += FP_to_accumulable(in[i]);

}

acc = fixed-to-float(long_accumulator);
return acc;

Performance and accuracy results

The results we obtained are described in Table 1. As expected, VivadoHLS is not perform-
ing any optimization on the naive examples, and the latency of one iteration is 7 cycles.
When unrolling the loop, VivadoHLS is using almost 4 times more LUTs for floats, and 3
times more for doubles. VivadoHLS uses DSPs for both float and double format whereas

18



Naive | Unrolled Naive Unrolled Our FloPoCo’s

Acc Acc Acc Acc Code Operator
(float) (float) | (double) | (double)
LUTs 266 907 801 2193 736 719
DSPs 2 4 3 6 0 0

Latency | 699 966 | 142 880 | 699 966 | 142 830 | 100 000 100 001
Accuracy || 17 bits | 17 bits 24 bits 24 bits | 24 bits

Table 1: Comparison between the different accumulators

it does not for our approach, just as FloPoCo’s operators. The unrolled versions improves
latency over naive versions. Nervertheless, our approach gets even betters latencies for a
reasonable LUT usage. Also, we achieve maximum accuracy for the float format. The
internal representation of the double, unrolled double and our approach have a higher ac-
curacy than 24 bits. However, the float format caps the accuracy to 24 bits. Our results
are very close to FloPoCo’s ones, both in terms of LUTs usage, DPSs and latency.

We have shown through this example that VivadoHLS is able to generate a design
comparable to FloPoCo’s operators. In the next section, we will describe how we imple-
mented another FloPoCo operator, the multiplication, and how we combined it with the
accumulator to get a sum of product operator.

3.2 Sum-of-product

We will describe the FloPoCo’s specialized sum-of-product operator that performs an ac-
curate computation for a low LUT usage and little latency. We will then show how to get a
similar operator from VivadoHLS, while described in a C source code just as in the previous
section. Finally, we will compare our generated operator with more naive implementations
of sums of products.

3.2.1 Floating-point multiplier and its combination with the accumulator

The floating-point multiplier described in this section is a part of the FloPoCo framework
[9]. We detail here a variation of it as shown in Figure 7a. It computes the product of
two numbers in a floating-point format with w, bits of exponent and wy bits of mantissa.
The exponents are scanned to detect if a 0 or a subnormal is detected. In both cases the
multiplier returns 0. Otherwise, the exponents are added and the mantissas multiplied.
The result’s sign is simply a XOR, operation between the two input signs.

The output of this multiplier is not a standard float as it is made of w, 4+ 1 bits
of exponent and 2 x wy + 2 bits of mantissa. We do not round the result as we want
improved accuracy. Note that this multiplier returns the exact result of a floating-point
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product, except when one entry is a subnormal. A further optimization would be to handle
subnormals without flushing them to 0.

In order to perform a sum-of-product, we need to make the multiplier’s output fit into
the accumulator’s input. As the accumulator can be tuned for any size of exponent and
mantissa, we just have to change its input size to fit the large exponent and mantissa size
of the multiplier.

The combination of these two operators gives us a sum-of-product operator that ac-
cumulates exact results from the products. We will now see how to write it using the C
language in order for VivadoHLS to generate the expected design.

3.2.2 Implementation of the sum-of-product for VivadoHLS

The implementation of the multiplier in C for VivadoHLS in given in Listing 7. It takes two
floating-point inputs and convert them into bits field using the union defined in Listing 9.
The signs, exponents and mantissas are retrieved using the range method from the ap_int
library. The implicit bits of the mantissas are set to one, because in case of a subnormal or
a zero, the result is going to be 0 anyway because of the shifting. In the case of no zeros nor
subnormals, the mantissas are multiplied and the exponents computed. Finally, all parts
are concatenated using the concat method. The result holds in 2*MANTISSA+2+EXP+1+1,
indeed:

e The product of two MANTISSA+1 bits variables holds in 2*MANTISSA+2 bits
e The sum of two EXP bits variables holds in EXP+1 bits

e The XOR of two 1 bit variables holds in 1 bit
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Listing 7: Accurate floating-point product for VivadoHLS

ap_uint <2*MANTISSA+2+EXP+1+1> product(float inl, float in2){
bitwise_cast varl,var2;
varl.f=inl;
var2.f=in2;
ap_uint <32> a=varl.i;
ap_uint <32> b=var2.i;

exponent_u exp_a = a.range (MANTISSA+EXP-1,MANTISSA);
exponent_u exp_b = b.range (MANTISSA+EXP-1,MANTISSA);
mantissa m_a = a.range (MANTISSA-1, 0);

mantissa m_b = b.range (MANTISSA-1, 0);
m_a[MANTISSA]=1;

m_b[MANTISSA]=1;

sign s_a = a[MANTISSA+EXP];

sign s_b = b[MANTISSA+EXP];

sign ret_s = s_a"s_b;

ap_int <EXP+1> ret_exp;
ap_uint <2*MANTISSA+2> m_product;
if (exp_a == 0 || exp_b == 0){
ret_exp = 0;
m_product = O;

}

elseq{
m_product = ((ap_uint<2*MANTISSA+2>) m_a)*((ap_uint <2*MANTISSA+2>) m_b);
ret_exp = exp_a + exp_b - 2xFP_BIAS;

}

ap_uint <2*MANTISSA+2+EXP+1> ret_without_sign = ret_exp.concat(m_product);
product_output ret = ret_s.concat(ret_without_sign);

return ret;

As the floating point to accumulable operator used to take a float as an entry and now
needs to take a 2*MANTISSA+2+EXP+1+1 bits fields variable, we created a new one which
is made to be placed after a product. It is shown in Listing 8. The only changes made
to the FP_to_accumulable from Listing 9 is the input format and the bits selections using
the range methods.
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Listing 8: Floating point to accumulable after product

ap_int <MAXMSBx -LSBA+1> Mult_to_accumulable (ap_uint <2*MANTISSA+2+EXP+1+1>in){
ap_int <EXP+1> exp_s;
ap_uint <2*MANTISSA+2> m;
ap_uint<1i> s;
ap_int <MAXMSBx-LSBA+1> current_shifted_value;

m = in.range (MANTISSA+MANTISSA+1, 0);
exp_s = in.range (2xMANTISSA+2+EXP ,2*MANTISSA+2);

s = in[2*MANTISSA+2+EXP+1];

ap_uint <MAXMSBx-LSBA+1> shift_buffer;
ap_uint <MAXMSBx -LSBA-(2*MANTISSA+1)> zeros = O0;
shift_buffer = m.concat(zeros);

uint32_t shift_val = MAXMSBx-1 - exp_s-1;
current_shifted_value = shift_buffer>>shift_val;

if(s==1){
return (“current_shifted_value)+1;

}
elseq
return current_shifted_value;

3.2.3 Experimentation
Objective

As the experiment made in Section 3.1.3, this experiment was done to check the correct-
ness of our implementation and to verify that the generated hardware is indeed what we
expected. Our goal is to obtain a latency close to what FloPoCo can offer for an equivalent
LUT usage.

Experimental setup

The naive implementation of a sum of product is depicted in Listing 9. When using this
source code, VivadoHLS is not able to perform any arithmetic optimization as it needs
to respect the C semantic and the IEEE-754 standard. Therefore a loop iteration needs
to be completed before the next one can start in order to respect inter-iteration RAW
dependencies. This implementation can also make several rounding errors:

e When computing the product of in1[i]#*in2[i] the result is rounded and stored
into a float
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e When computing the sum, the result is rounded again

In order to increase computation speed and reduce the latency of the design, one may chose
to unroll the loop. As the latency of a product followed by a sum is 10 cycles on Kintex
7, we decided to implement another version of the naive program by unrolling the loop by
a factor 10. This is not equivalent to the original C semantic of the naive program but it
allows us to greatly reduce the latency of the design. Such a program is shown in Listing
10

Listing 10: Unrolled float sum of product

#define N 130000
float sumOfProduct(float ini[N],
float in2[N]1){

float sum = 0;
float p0=0, p1=0,p2=0,p3=0,p4=0,
Listing 9: Naive float accumulation p5=0, p6=0,p7=0,p8=0,p9=0;

for(int i = 0; i<N; i+=10){

pO+=in1[il*in2[i];

pl+=ini1[i+1]*in2[i+1];
p2+=inl1[i+2]*in2[i+2];
p3+=inl1 [i+3]*in2[i+3];
p4+=inl1 [i+4]*in2[i+4];
pS+=inl1 [i+5]*in2[i+5];
p6+=inl1[i+6]1*in2[i+6];
p7+=inl1 [1i+7]*in2[i+7];
p8+=inl1 [i+8]*in2[i+8];
p9+=inl1 [1i+9]*in2 [i+9];

#define N 130000
float sumOfProduct(float ini1[N],
float in2[N]){
float sum = 0;
for (int i=0; i<N; i++){
sum+=ini1 [i]*in2[i];
}

return sum;

}
sum = pO+pl+p2+p3+pd+
p5+p6+p7+p8+p9;
return sum;
}

For the same reason as in Section 3.1.3, we also compare our implementation to these
two programs when using a double internal format for increased accuracy. Note that the
latency of a product followed by a sum is 13 cycles on a Kintex 7 when using the double
format. Therefor, the unrolled implementation of the sum of product using a double
internal format is unrolled by a factor of 13. The number of iterations performed is set to
130000 as it is a large number that is a multiple of 10 and 13. This way, we don’t have
to add any control flow in the loop body to prevent from getting out of the bounds of the
array.

The input values that we used were cos(i) and cos(i + 0.5) were 4 is the input array’s
index so that the sum of product computes > cos(i) x cos(i+0.5). This example is a varia-

T
tion of what was proposed in [24] to test the accuracy of an accumulator. The parameters
that we used for our accumulator are then chosen according to the input values as follows:
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e MSBA = 17. Indeed we are multiplying cos(7) by cos(i 4+ 0.5) which is bounded by 1.
And we add then 130000 times so the maximum value of the accumulator is bounded
by 130000 which can be encoded in 17 bits.

e MAXMSBx = 1. Indeed, each input is bounded by 1 (product of two cosines).

e LSBA=-50. This is an arbitrary precision that we chose, just as in Section 3.1.3.

The resulting code that we propose is shown in Listing 11. It uses the above mentioned
C for VivadoHLS implementations.

Listing 11: Our implementation of the sum of product for VivadoHLS

#define N 130000

float sumOfProduct(float ini1[N], float in2[N]) {
float sum = 0;
ap_int <68> long_accumulator = 0;

for (int i=0; i<N; i++) {
long_accumulator += Mult_to_accumulable(product(inl1[i], in2[i]));

}

acc = fixed-to-float(long_accumulator);
return acc;

Performance and accuracy results

The results we obtained are described in Table 2. The latency of the non unrolled versions
are as expected very high because of VivadoHLS not being able to perform any optimiza-
tion. The unrolled versions performs lower latencies at a cost of a way higher LUT usage.
We can see that our approach offers a very little latency, such as FloPoCo’s one. We are
very close to FloPoCo’s operators in terms of LUT usage.

We have shown through two examples with the accumulation and the sum of product
that VivadoHLS is able to generate specialized floating-point operators. The cost for
being able to obtain such operators is to rewrite the program in a more detailed way, by
changing the internal representation. The generated designs have improved the accuracy
when specialized for a specific application. Even if we improved accuracy and latency, we
did not followed the C semantic nor the IEEE-754 floating-point standard. This will be
discussed in next section.

4 GeCoS source-to-source transformations

Now that we showed that VivadoHLS is able to generate specialized operators of similar
quality to FloPoCo’s ones, we want to provide a tool that transforms the naive imple-
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Naive Unrolled Naive Unrolled Our FloPoCo’s
Code Code Code Code Code Operator
(float) (float) (double) | (double)
LUTs 313 1552 881 3727 868 693
DSPs 5) 5 14 14 2 2
Latency | 1 300 001 | 182 045 | 1430 001 | 195 046 | 130 006 130 006
Accuracy 16 bits 21 bits 24 bits 24 bits | 24 bits

Table 2: Comparison between the different sums of products

mentations into the code that we wrote. We focused on two operators, the accumulation
and the sum of product. These operators applies to reductions, which can be automati-
cally detected within a source code in many cases [25, 10]. We chose not to detect these
automatically to let to user decide which part of his code is to be optimized.

Compiler directive

We ask the user to use a compiler directive such as a pragma to specify the accumulation
targeted. Plus, this gives us the possibility to ask the user to insert some application
specific information such as the range of the manipulated data. The C implementation of
reductions comes with the use of a for loop (or a while loop), therefore, our pragma must
be used on a loop. To illustrate our pragma, we wrote it in for the naive accumulation
of Listing 4. The resulting code is depicted in Listing 12. The pragma must contain the
following informations:

e The keyword FPacc so that we can detect that this pragma is for using our transfor-
mations.

e The name of the variable in which the accumulation is performed. This is done using
the keyword VAR followed by the name of the variable. In this case, the accumulation
variable is acc.

e The maximum value that can be reached by the accumulator through the use of the
MaxAcc keyword. This value is used to determine the weight of MSB 4.

e The desired accuracy of the accumulator using the epsilon keyword. This value is
used to determine the weight of LSB 4.

e Optional: The maximum value of the inputs of the accumulator in the MaxInput
field. This value is used to determine the weight of MaxMSBx.
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Listing 12: Hlustration of the use of a pragma within the naive accumu-
lation

#define N 99995
float accumulation(float in[N]) {
float acc = 0;
#pragma FPacc VAR=acc MaxAcc=99995 epsilon=1E-15 MaxInput=1
for (int i=0; i<N; i++){
acc+=in[i];
}

return acc;

The values that we gave in this pragma are the ones that we would have used for the
example of Section 3.1.3. Indeed, if the desired accuracy is up to 1E — 15, then the weight
of the LSB4 is [logy(1E — 15)] = —50. The values of MaxAcc and MaxInput are explained
in Section 3.1.3.

GeCos extension

In order to parse the source code and to generate our modified version of it, we used the
GeCoS [11] source-to-source compiler. As GeCoS is built upon model driven engineering,
it is easily extensible. Indeed one can modify the front-end to extend the C language
or even to create his own language. One can also apply transformations to the Internal
Representation (IR) of GeCoS in order to have a generated code that is different from the
input. Also, any back-end can be written to extend the supported list of languages. GeCoS
can be extended as above by using Java plug-ins.

What we want to achieve is to apply transformations on the IR so that the core of the
loop marked with a pragma is going to be modified with our implementation. In a first part
we present the basics transformations that we performed before explaining more general
transformations.

4.1 Basic pattern recognition

To illustrate our transformations, Figure 11a shows the Direct Acyclic Graph (DAG) of
the body of the loop from Listing 12. The DAG shows that the value of in[i] is added
to the value of acc and stored into acc. This is the pattern that we want to transform for
the accumulation. If such a pattern is detected in the DAG of the body of the loop, then
the FP_to_accumulable and fixed-to-float functions are instantiated. Within the DAG
the variable acc is replaced with the variable long_accumulator, which is instantiated in
a fixed-point format. A call to the function FP_to_accumulable is inserted between the
value to be accumulated and the + node. The new DAG associated to the for loop is shown
in Figure 11b.
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FP_to_accumulable(...)

long_accumulator

long_accumulator

(a) Before transformations (b) After transformations

Figure 11: DAG of the loop body from Listing 12

Just after the for block, the variable acc is assigned the value of the function
fixed-to-float () applied to long accumulator. The code generated from this IR is the
one from Listing 6.

Similarly, we want to apply transformations for sums of products. The only difference in
the pattern we look for is the presence of a x node in place of the value to be accumulated.
The DAG corresponding to the body of the loop from Listing 9 is given in Figure 12a. We
can see on the graph that the product of in1[i] and in2[i] is accumulated to the variable
sum. When we find this pattern, we instantiate the function product from Listing 7 and
Mult_to_accumulable from Listing 8. We then replace the x node by a call to product
which is then given to Mult_to_accumulable. The resulting DAG is shown in Figure 12b.
The conversion of the accumulator from fixed to floating-point is also done outside the for
loop by calling the fixed-to-float function.

As these patterns relies on very specific conditions, such as a single accumulation /sum-
of-product statement within a for loop, we extended our transformations to a more general
context.
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Figure 12: DAG of the loop body from Listing 9

4.2 DAG exploration

In order to support a larger class of programs, we implemented a DAG exploration method.
This program extends the pattern recognition detailed above. To illustrate what the al-
gorithm does, we take a sample program shown in Listing 13. This programs performs a
reduction into the variable sum. It does both sums and a sum of product. When retrieving
the DAG associated to the loop body, we obtain the DAG from figure 14a. Even if the
program performs an accumulation, the corresponding pattern is not present in the graph.
Indeed, the GeCoS IR puts the sum variable to accumulate upper in the DAG than just
above the very bottom node.
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Listing 13: Simple reduction with multiple accumulation statements

#define N 100000
float computeSum(float in1[N],
float in2[N1){

float sum = 0;
#pragma FPacc VAR=sum MaxAcc=100000 epsilon=1e-15 MaxInput=1
for (int i=1; i<N-1; i++){
sum+=ini1 [i]*in2[i-1];
sum+=ini1[i];
sum+=in2 [i+1];
}

return sum;

To address this problem, we perform a first pass on the DAG. If the DAG represents
an accumulation, the sum variable that needs to be accumulated is switched with the input
from the next node. This next node is checked to be a + node as otherwise the DAG would
not represent an accumulation. To illustrate this transformation, the pattern from Figure
13a is modified to the pattern from Figure 13b. The transformation is performed until we
obtain a DAG that looks like the one from Figure 12a. Indeed, we want the result of sum
to be the sum of sum and something else. We call this pass the normalization pass.

It is important to note that by doing these transformations, we did not followed the
IEEE-754 standard for floating-points. Indeed (a + b) 4 ¢ is not equivalent to a + (b + ¢)
for floating-point values. We used the DAG of the C program to represent a mathematical
computation and did not stick to the C semantic. As we used a fixed-point representation
instead, the + operator is associative.

After performing this normalization pass on the DAG from Figure 14a, we obtained the
new DAG showed in Figure 14b. This new DAG is ready to be applied our transformations.

Our analysis is a bottom-up transformation. First of all, we check that the structure
of the bottom of the DAG is in the shape of an accumulation, like what we obtain from
our normalization pass. We then run from the bottom + node to higher source nodes. The
source nodes from a + node can be from different types:

e The sum node. This node is ignored and the analysis continues.
e A + node. The analysis is recursively launched on that node.

e A X node. The node is replaced by a call to the product function that is given to a
call to Mult-to-accumulable.

e Any other node. A call to FP_to_accumulable is inserted.

Performing this algorithm on the DAG from Figure 14b we obtain the new DAG shown
in Figure 15. This algorithm is performed for every bloc within the for bloc annotated
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(a) Pattern to transform (b) Pattern transformed

Figure 13: DAG transformation to make our analysis (from 13a to 13b)

with our pragma. When every DAG as been transformed, the corresponding C code is
generated.

We have been able to provide a tool to generate automatically our transformations.
Through the use of a pragma, every user is able to obtain FPGA specific floating-point
operators, without any knowledge on using fixed-point arithmetic. The use of the pragma
allowed us to recover some program specific informations that are necessary to tune our
generated operators. The transformed code can be given to VivadoHLS without any change
and will hopefully result in lower latency, area usage with higher accuracy.

5 A case study : Deep convolutional neural networks

In order to get a real-life example to test our transformations, we performed a case study on
the matrix convolution. It is a big part of the computation for image recognition algorithms.
The matrix convolution is widely used in convolutional neural networks (CNN) applied to
image recognition. CNNs are made of two major steps:

e The forward propagation. It consists in applying transformations (e.g convolution)
to the input image a given number of times.

e The backward propagation. This is the learning step were the algorithm goes back
through all the layers of the forward propagation to estimate the error and update
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(a) Before transformations (b) After normalization

Figure 14: DAG of the loop body from Listing 9

its values (e.g values of the convolution matrix).

As CNNs tends to have more and more computation layers [16, 21], one may want to
create a hardware accelerator. Therefore we used our tool on the matrix convolution.

The matrix convolution algorithm consists in computing points of a matrix condidering
their neighbours. The algorithm takes a matrix as an entry wich is the image to transform
and a convolution matrix, wich is a way smaller matrix (usualy 3 x 3 or 5 x 5) that gives
weight to the neighbours cells. Figure 16 provides an example of a matrix convolution.
We can see that to compute a point in the new matrix, we take the corresponding point
in the original matrix as well as its neighbours. We take as many neighbours as the
size of the convolution matrix. The value of the resulting point is computed as follows:
(0x4)+(0x0)+(0x0)+(0x0)+(1x0)+(Lx0)+(0x0)+ (1 x0)+(2x —4) =-8.

These weights can be bounded as they are constants of an application. Plus, the values
of the cells of the matrix are normalized before the begining of the convolition to a value
between —1 and 1.
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inl[] in2[]
product(...)
FP_to_accumulable...) FP_to_accumulable(...) FP_to_accumulable_for_mult(...)

long_accumulator

long_accumulator

Figure 15: DAG of the loop body from Listing 9 after transformations

The C code of such a program is depicted in Listing 14 for an image of size 150 x 150
pixels. It performs 150 x 150 accumulations. Each accumulation contains 5 x 5 products
as this is the filter size. The filter we used for our experiment is the following;:

00 -1 00
00 -1 00
00 4 00
00 -1 00
00 -1 00

This filter is widely used as it allows to perform an edge detection of images. Many
optimisations can be applied to such a filter as it contains many zeros. However, this
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Source pixel

Convolution kernel

New pixel value (destination pixel)

Figure 16: Matrix convolution algorithm

filter is going to be modified during the learning stages, making these zeros very small
values next to zero. We do not show such a matrix has it depends on the algorithm,
the input image, etc. Given all these informations, we can build our pragma to tune our
operator in an application specific way. The maximum value that an accumulator can take
is(—1x—-1)4+(-1x—-1)+(4x1)+(-1x—=1)+ (=1 x —1) = 8. The maximum input at
each iteration is then 4 x 1 = 4. We can set the parameters of our pragma to:

e MaxAcc =8
e MaxInput =4
e epsilon = 1E-15 (arbitrary precision)

We compared the results of VivadoHLS when using the code of Listing 14 with the code
we generated from that same code. The values of the input matrix are defined as cos(i + j)
where ¢ is the line index and j is the column index of the matrix. These values are chosen
to be reproductible random values between —1 and 1.
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Naive Our
Implementation Code
LUTs 465 711
DSPs 5 2
Latency 4 802 102 2 559 752
Accuracy 18 bits 23 bits

Table 3: Comparison between the naive matrix convolution and our generated code

Listing 14: Matrix convolution

#define FILTER_SIZE b5
#define WIDTH 150
#define HEIGHT 150

void image_convolution(float filter [FILTER_SIZE][FILTER_SIZE],
float image [WIDTH] [HEIGHTI],
float result [WIDTH] [HEIGHT]){
for (int i = 0; i < HEIGHT; i++) {
for (int j = 0; j <= WIDTH; j++) {
float sum = 0;
#pragma FPacc VAR=sum MaxAcc=8 MaxInput=4 epsilon=1E-15
for (int w = 0; w < FILTER_SIZE; w++) {
if (HEIGHT - i < FILTER_SIZE) break;
for (int z = 0; z < FILTER_SIZE; z++) {
if (WIDTH - j < FILTER_SIZE) break;
sum += imagel[w + i]l[z + j] * filter([w]l[z];

¥
}
if (i < HEIGHT && j < WIDTH)
result[i][j] = sum;
}
}
¥

Table 3 shows the LUT usage, DPS usage, Latency and accuracy of the baseline code
(Listing 14) and our generated code. Our LUT usage is a bit higher for a lower DSP usage.
However the latency we acheive is almost divided by 2. The accuracy comparison is based
on the lowest accuracy achieved given all the values of the output matrix. The exact result
was obtained by computing the result using the MPFR library with 10000 bits of precision.

We have shown through this experiment that our tool provides good results in terms
of area needed on chip, latency and accuracy for very little work. The use of a pragma
provides a code that can be directly given to VivadoHLS for such improvements.
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6 Conclusion

We have shown that HLS tools are able to generate efficient designs for handling floating
point computations. They can achieve such results by using an application specific inter-
mediate format. Hence, not having to follow the IEEE-754 standard and its limitations.
We have been able to identify which C code is giving the best results in terms of latency,
area needed on chip and accuracy. This proof of concept made us believe that merging
application specific arithmetic with HLS was possible.

We also provided a tool that generates these operators in a given C program through
the use of a pragma and some application specific informations. This information is domain
knowledge such as the interval in which the variable lies. The main goal was to make the
users access such optimization without writing VHDL nor having a large knowledge over
the fixed point format. Our tool then transforms loop nests of summations to highly tune
the floating point operators. The resulting code is an extension of the C language that is
compatible with VivadoHLS.

This work focused on one single operation (the reduction), but there are a large number
of specialized floating-point operators available in the literature. Just as compilers performs
optimisations such as removing a multiplication by 1, we could be able to produce a
multiplier by a constant when it is detected a compile time. This an example of operator
specialisation that is not useful in a software compiler context. Therefore, it is specific to
compiling to hardware. Other examples includes constant divisors/multipliers, squarers,
etc. [8]. Also, software compilers tries to match patterns (that corresponds to operators)
to a program DAG whereas we could create the operators given the patterns that we find.
This an example of operator fusion that is not applicable in a software compiler context.
The long term objective of this work is to explore these new opportunities.

There are a few short term objectives such as:

e We only provide support for VivadoHLS. Many HLS tools are available and a support
to the most used one can also be a possible future work. As we want such arithmetic
optimization to be used by the largest number of users, targeting a largest amount
of platforms might help.

e Our accuracy comparisons were made using hand-written MPFR equivalent code. The
results from MPFR where exact and it was to our mind, the best way to compare
the quality of our results.

However, this code is handwritten and we could implement a source-to-source GeCoS
plug-in that transforms any HLS friendly C code to its MPFR equivalent. This would
provide the user a full software that can compare the original accuracy of his program
to both the transformed program and the exact result.

e In the spirit of ease of use offered to the programmer, further user interface opti-
mization could be applied. In many cases, we might be able to know in advance
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the number of iterations of a loop nest. This could help us find a boundary of the
accumulator in the case that the programmer only provides the maximum value of
every entry. However, as this technique is not applicable in all cases, we could just
notify through the use of a warning that the accumulator value might exceed the
maximum value provided by the user.

Our approach has the advantage of being used in a very local way. We only opti-
mize a floating-point operator that is used multiple times within a loop. The ID.Fix
approach transforms the whole floating-point variables to a fixed-point format. Being able
to transform a such a little part of the program and letting the user the ease of use of the
floating-point format elsewhere seems to be a plus to us.

One of the most questionable side of our approach is that we used the C language to
depict mathematical formulas. This makes us not following the C99 standard and thus
it might not be what the programmer had in mind. The architecture of tools such as
GeCoS might give us the opportunity to create our own domain-specific programming lan-
guage. This language would evolve with the supported mathematical operators. It would
ensure the programmer that his mathematical formula would be translated to hardware
using state-of-the-art HLS tool and their optimization while embedding highly optimized
operators.

We truly believe that high-level synthesis and arithmetic optimization can interleave.
Hence give the programmer the ease of use and the application specific optimization of his
operators.
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