Annexe du chapitre 2 - Encodage des entiers

1 Pré-requis

1.1 Division euclidienne

Définition/Propriété 1 (division euclidienne pour les entiers naturels)

Soit $(a, b) \in \mathbb{N} \times \mathbb{N}^*$.

Il existe un unique couple $(q, r) \in \mathbb{N} \times [0..b[$ tel que a = bq + r.

On appelle alors q le **quotient** et r le **reste** dans la division euclidienne de a par b.

On dit aussi que r est le **reste de** a **modulo** b.

Preuve: • Montrons l'existence d'un tel couple (q, r) de manière constructive.

Si b > a, alors le couple (0, a) convient. En effet on a bien $a = 0 \times b + a$ et $a \in [0..b[$.

Sinon, $b \leq a$, et on considère la suite u définie par $u_n = a - nb$ pour tout $n \in \mathbb{N}$. Cette suite à valeurs entières est initialement positive ($u_0 = a \geq 0$), et strictement décroissante puisque b > 0, elle est donc strictement négative à partir d'un certain rang. On note n_0 le rang du premier terme strictement négatif de cette suite.

On a alors $0 > u_{n_0} = a - b \, n_0$ et $0 \le u_{n_0 - 1} = a - b \, (n_0 - 1) = a - b \, n_0 + b$.

On pose $q = n_0 - 1$ et r = a - bq, ainsi on a bien a = bq + r (par construction).

De plus $r = a - b(n_0 - 1)$, soit $r = u_{n_0 - 1} \ge 0$ et $r - b = u_{n_0 - 1} - b = u_{n_0} < 0$ donc r < b.

Ainsi (q, r) est bien un couple de $\mathbb{N} \times [0..b[$ tel que a = b q + r., d'où l'existence.

• Montrons l'unicité du couple reste.

On suppose qu'il existe $(q, r) \in \mathbb{N} \times [0..b[$ et $(q', r') \in \mathbb{N} \times [0..b[$ tels que a = bq + r = bq' + r'.

On a alors b(q - q') = r' - r.

Puisque $r \ge 0$, on en déduit $b(q - q') \le r'$, et puisque r' < b, on en déduit b(q - q') < b.

En divisant par b > 0, on obtient q - q' < 1.

Comme q - q' est entier (en tant que différence entre deux entiers) on en déduit que $q - q' \leq 0$.

Symétriquement, $q' - q \leq 0$, donc q - q' = 0 soit q = q'.

Par suite r = a - bq = a - bq' = r', et finalement on a bien (q, r) = (q', r'), d'où l'unicité.

1.2 Logarithme en base $b \in \mathbb{N} \setminus \{0, 1\}$

Soit $b \in \mathbb{N} \setminus \{0, 1\}$.

Définition 2 ($Logarithme\ en\ base\ b$)

Pour
$$n \in \mathbb{N}$$
, $\log_b(n) = \frac{\ln(n)}{\ln(b)}$, ainsi $b^{\log_b(n)} = (e^{\ln(b)})^{\log_b(n)} = e^{\ln(b)\log_b(n)} = e^{\ln(n)} = n$.

Remarque 3

Si $b' \in \mathbb{N} \setminus \{0, 1\}$, alors $\forall n \in \mathbb{N}$, $\log_b(n) * \log_{b'}(b) = \log_{b'}(n)$.

2 Codage des entiers naturels

Écriture en base $b \in \mathbb{N} \setminus \{0, 1\}$ 2.1

Soit $b \in \mathbb{N} \setminus \{0, 1\}$. On considère l'alphabet $\Sigma = [0..b[$. Les éléments de Σ seront appelés **chiffres**, et les mots sur Σ seront appelés **nombres**.

Définition 4

Soit $a = a_{l-1} a_{l-2} \dots a_1 a_0$ un mot sur Σ de longueur $l \in \mathbb{N}$.

On dira que le mot a est une écriture en base b (à l chiffres) de l'entier $n = \sum_{i=1}^{l-1} a_i b^i$.

Notation 5

$$val_b = \begin{pmatrix} \Sigma^* & \to & \mathbb{N} \\ a_{l-1} a_{l-2} \dots a_1 a_0 & \mapsto & \sum_{i=0}^{l-1} a_i b^i \end{pmatrix}$$

NB: Le mot vide, usuellement noté ε représente alors 0, et ceci vaut pour n'importe quelle base $b \in \mathbb{N} \setminus \{0, 1\}$.

Lemme 6

Soit $l \in \mathbb{N}$.

Le plus grand entier que l'on peut écrire en base b à l chiffres est $b^l - 1$. Conséquemment, un entier $n \in \mathbb{N}$ ne peut pas s'écrire en base b avec strictement moins de $\lceil \log_b(n+1) \rceil$ chiffres.

Preuve: Notons N_l le plus grand entier qu'on peut écrire en base b à l chiffres.

Par définition de l'écriture en base b, on remarque que ce nombre s'écrit avec l fois le plus grand chiffre disponible, c'est-à-dire qu'il s'écrit $\underbrace{b-1\ b-1\ \dots b-1}_{\text{l fois}}$. On a donc

$$N_{l} = \sum_{i=0}^{l-1} (b-1)b^{i} = \sum_{i=0}^{l-1} b^{i+1} - \sum_{i=0}^{l-1} b^{i} = \sum_{i=1}^{l} b^{i} - \sum_{i=0}^{l-1} b^{i} = b^{l} - b^{0} = b^{l} - 1$$

Cela montre le premier point.

Soit $n \in \mathbb{N}$. On note $l = \lceil \log_b(n+1) \rceil$. On considère $l' \in \mathbb{N}$ tel que l' < l. Par définition de la partie entière

supérieure comme étant le plus petit majorant entier, on en déduit que $l' < \log_b(n+1)$). Si n pouvait s'écrire avec l' chiffres, on aurait $n \leq N_{l'}$, soit $n \leq b^{l'} - 1 < b^{\log_b(n+1)} - 1 = (n+1) - 1 = n$, ce qui est absurde. D'où l'impossibilité annoncée.

Remarque 7

Soit $n \in \mathbb{N}$. Soit $k \in \mathbb{N}$. $n \in [b^{k-1}..b^k[\Leftrightarrow n+1 \in]b^{k-1}..b^k] \Leftrightarrow \log_b(n+1) \in]k-1..k] \Leftrightarrow \lceil \log_b(n+1) \rceil = k$

Propriété 8 (existence de l'écriture en base b)

Pour tout $n \in \mathbb{N}$, il existe un nombre $a = a_{lr-1} a_{l-2} \dots a_1 a_0$ qui est l'écriture de n en base b. Plus précisément, tout entier $n \in \mathbb{N}$ admet une écriture en base b à $\lceil \log_b(n+1) \rceil$ chiffres.

Preuve: Montrons par récurrence sur $l \in \mathbb{N}$ la propriété suivante.

 $\mathcal{H}_l: \forall n \in [0..b^l-1], n$ admet une écriture en base b à l chiffres.

• Pour l=0, l'intervalle $[0..b^l-1]$ est réduit à 0, et 0 admet bien une écriture en base b à 0 chiffres : le mot vide. Ainsi \mathcal{H}_0 est vraie.

• Soit $l \in \mathbb{N}$ tel que \mathcal{H}_l est vraie. Montrons que \mathcal{H}_{l+1} aussi. Soit $n \in [0..b^{l+1}-1]$.

Par définition de la division euclidienne, il existe $(q, r) \in \mathbb{N}^2$ tel que $n = b^l q + r$ et $r < b^l$, i.e. $r \in [0..b^l - 1]$. Par \mathcal{H}_l on en déduit que r admet une écriture en base b à l chiffres qu'on note $(a_i)_{i \in [0..l[}$.

On a alors $r = \sum_{i=0}^{l-1} a_i b^i$, et donc $n = q b^l + \sum_{i=0}^{l-1} a_i b^i$.

Puisque $n < b^{l+1}$, on a nécessairement q < b (sinon on aurait $n \geqslant q \, b^l > b \times b^l = b^{l+1}$).

Ainsi en posant $a_l = q$, on a $(a_i)_{i \in [0..l+1[} \in \Sigma^{l+1})$ et $n = a_l b^l + \sum_{i=0}^{l-1} a_i b^i$.

Donc n admet bien une écriture en base b à l+1 chiffres.

D'où \mathcal{H}_{l+1} est vraie.

Propriété 9 (quasi-unicité de l'écriture en base b)

Soit $n \in \mathbb{N}$.

Si $a = a_{l-1} a_{l-2} \dots a_1 a_0$ est une écriture de n en base b, alors pour tout $k \in [0 \dots l-1]$, a_k est le reste modulo b du quotient de n par b^k .

Preuve: Soit $k \in [0..l-1]$.

On a
$$n = \sum_{i=0}^{l-1} a_i b^i = \sum_{i=0}^{k-1} a_i b^i + \sum_{i=k}^{l-1} a_i (b^{i-k} b^k) = \underbrace{\sum_{i=0}^{l-1} a_i b^i}_{:=r_k} + \underbrace{\left(\sum_{i=k}^{l-1} a_i b^{i-k}\right)}_{:=q_k} b^k.$$

On note $r_k = \sum_{i=0}^{k-1} a_i b^i$. On a $r_k \in \mathbb{N}$ et puisque $\forall i \in [0..l-1], a_i \in [0..b[$, on a aussi

$$r_k \leqslant \sum_{i=0}^{k-1} (b-1) b^i = \sum_{i=0}^{k-1} b^{i+1} - \sum_{i=0}^{k-1} b^i = b^k - 1 < b^k$$

On note $q_k = \sum_{i=1}^{l-1} a_i b^{i-k}$.

Pour tout $i \in [k ... l-1], i-k \ge 0$ donc $b^{i-k} \in N$, ainsi q_k est une somme d'entiers positifs et donc $q_k \in \mathbb{N}$.

On déduit alors de la première égalité que q_k est le quotient et r_k le reste dans la division euclidienne de n par b^k . On cherche donc à montrer que a_k est le reste modulo b de q_k . On a

$$q_k = \sum_{i=k}^{l-1} a_i b^{i-k} = a_k \underbrace{b^{k-k}}_{=1} + \sum_{i=k+1}^{l-1} a_i (b^{i-k-1} \times b) = a_k + b \times \left(\sum_{i=k+1}^{l-1} a_i b^{i-k-1} \right)$$

D'une part on sait que $a_k < b$ car $a_k \in \Sigma$. D'autre part, comme $i-k-1 \geqslant 0$ pour tout $i \in [k+1..l-1[$, $\sum_{i=k+1}^{l-1} a_i b^{i-k-1} \in \mathbb{N}$. On déduit donc de l'égalité précédente que a_k est bien le reste de q_k modulo b.

Corollaire 10

Soit $n \in \mathbb{N}$.

Si $a = a_{l-1} a_{l-2} \dots a_1 a_0$ et $a' = a'_{l'-1} a'_{l'-2} \dots a'_1 a'_0$ sont deux écritures de n en base b avec $l \leqslant l'$, **alors** pour tout $k \in [0..r[$ on a $a_k = a'_k$, et pour tout $k \in]l..l'[$ on a $a'_k = 0$.

En particulier on a l'unicité de l'écriture en base b à longueur fixée.

Notation 11

Pour tout $l \in \mathbb{N}$ on peut maintenant définir l'écriture en base b à l chiffres :

$$ecr_b^l = \begin{pmatrix} [0..b^k[\to \Sigma^l \\ n \mapsto a_{l-1} \dots a_1 a_0 \end{pmatrix} \text{ où } \forall k \in [0..l[, a_k \text{ est le reste modulo } b \text{ du quotient de } n \text{ par } b^k.$$

3 Encodage des entiers relatifs

On s'intéresse ici à l'encodage des entiers relatifs tel qu'il est fait sur les ordinateurs. On s'appuie donc sur le codage des entiers naturels en binaire, *i.e.* en base 2. Ainsi dans cette section $\Sigma = \{0, 1\}$. De plus on utilisera un chiffre du nombre pour donner le signe de l'entier encodé: 0 pour positif, 1 pour négatif. Ce chiffre a donc une signification particulière et ne représente pas la même chose que les autres 0 ou 1. De plus pour des raisons pratiques qui apparaîtront plus bas, ce chiffre de signe est le chiffre le plus à gauche du nombre, soit à l'opposé du chiffre des unités. On a donc besoin de travailler à longueur fixée pour pouvoir identifier ce chiffre au statut particulier, et cela limite bien sûr les entiers que l'on peut encoder.

Soit $l \in \mathbb{N}$. On note $I^l = \left[-2^{l-1} ... 2^{l-1} \right]$. On remarque que card $(I^l) = 2^l$.

Notation 12

Propriété 13

Ces fonctions sont bien définies et sont réciproques.

Preuve: φ^l est bien définie car $\operatorname{ecr}_b^{l-1}$ est bien définie et à valeur dans $\{0,1\}^{l-1}$, en ajoutant un 0 ou un 1 à gauche on obtient bien un mot de $\{0,1\}^l$.

 ψ^l est bien définie car val₂ est bien définie, et qu'à un mot de $\{0,1\}^{l-1}$ (ici $a_{l-2}\dots a_0$) elle associe une valeur comprise dans $[0...2^{l-1}[$, en ajoutant 0 ou -2^{l-1} , on obtient bien une valeur dans $[0...2^{l-1}[\cup[-2^{l-1}..0[$ soit dans $[-2^{l-1}...2^{l-1}[=I^l]$.

Soit $z \in I^l$.

- Si $z\geqslant 0$, on a $\varphi^l(z)=0\operatorname{ecr}_b^{l-1}(z)$ donc $\psi^l(\varphi^l(z))=-0\times 2^{l-1}+\operatorname{val}_2(\operatorname{ecr}_b^{l-1}(z))$. Or par définition de l'écriture en base 2, $\operatorname{val}_2(\operatorname{ecr}_b^{l-1}(z))=z$, donc $\psi^l(\varphi^l(z))=z$.

- Si z < 0, on a $\varphi^l(z) = 1 \operatorname{ecr}_b^{l-1}(z+2^{l-1})$ donc $\psi^l(\varphi^l(z)) = -1 \times 2^{l-1} + \operatorname{val}_2(\operatorname{ecr}_b^{l-1}(z+2^{l-1}))$. Or par définition de val₂, val₂(ecr_b^{l-1}(z+2^{l-1})) = $z + 2^{l-1}$, donc $\psi^l(\varphi^l(z)) = -2^{l-1} + (z+2^{l-1}) = z$. Donc $\psi^l \circ \varphi^l = \mathrm{Id}_{I^l}$.

Soit $a \in \{0,1\}^l$. On note $a_{l-1} \dots a_1 a_0$ les lettres de a, et \tilde{a} son suffixe $a_{l-2} \dots a_1 a_0$. Ainsi $\tilde{a} \in \Sigma^{l-1}$. On a $\psi^l(a) = -a_{l-1} 2^{l-1} + \operatorname{val}_2(\tilde{a})$. Par définition de val_2 , on sait que $\operatorname{val}_2(\tilde{a}) \in [0...2^{l-1}]$.

- Si $a_{l-1}=0$, on a $\psi^l(a)=\mathrm{val}_2(\tilde{a})$, donc $\psi^l(a)\in[0..2^{l-1}[$, en particulier $\psi^l(a)\geqslant 0$. On a alors $\varphi^l(\psi^l(a)) = 0 \operatorname{ecr}_b^{l-1}(\operatorname{val}_2(\tilde{a}))$, or par définition de l'écriture en base 2, $\operatorname{ecr}_b^{l-1}(\operatorname{val}_2(\tilde{a})) = \tilde{a}$, et puisque $0 = a_{l-1}$, on en déduit $\varphi^l(\psi^l(a)) = a_{l-1} \tilde{a} = a$.

- Si $a_{l-1}=1$, on a $\psi^l(a)=-2^{l-1}+\mathrm{val}_2(\tilde{a})$, donc $\psi^l(a)\in[-2^{l-1}..0[$, en particulier $\psi^l(a)<0$. On a alors $\varphi^l(\psi^l(a)) = 1 \operatorname{ecr}_b^{l-1}(\operatorname{val}_2(\tilde{a}))$, or par définition de l'écriture en base 2, $\operatorname{ecr}_b^{l-1}(\operatorname{val}_2(\tilde{a})) = \tilde{a}$, et puisque $1 = a_{l-1}$, on en déduit $\varphi^l(\psi^l(a)) = a_{l-1} \tilde{a} = a$.

Donc $\varphi^l \circ \psi^l = \mathrm{Id}_{\Sigma^l}$.

Notation 14

On appelle **complément à 2** d'un nombre écrit sur $\{0,1\}$ le nombre obtenu en remplaçant les 0 par des 1 et vice-versa.

$$comp_2 = \begin{pmatrix} \Sigma^* & \to & \Sigma^* \\ a_{k-1} \dots a_1 a_0 & \mapsto & \overline{a}_{k-1} \dots \overline{a}_1 \overline{a}_0 \text{ où } \forall i \in [0..k[, \overline{a}_i = 1 - a_i] \end{pmatrix}$$

Propriété 15 (complément à 2 et opposé)

$$\forall z \in \mathbb{Z}, \ \psi^l \left(comp_2 \left(\varphi^l(z) \right) \right) = -z - 1$$

 $\forall z \in \mathbb{Z}, \ \psi^l \Big(comp_2 \Big(\varphi^l(z) \Big) \Big) = -z - 1.$ Autrement dit, le complément à 2 de l'écriture d'un entier relatif encode son opposé moins 1.

Preuve: Soit $z \in I^l$. On note $a_{l-1} a_{l-2} \dots a_1 a_0 = \varphi^l(z)$, et $\widetilde{a} = a_{l-2} \dots a_1 a_0$.

Ainsi, puisque $z = \psi^l(\varphi^l(z))$, on a $z = -2^{l-1}a_{l-1} + \operatorname{val}_2(\widetilde{a})$ (\bigstar).

On note aussi $\overline{a}_{l-1} \overline{a}_{l-2} \dots \overline{a}_1 \overline{a}_0 = \text{comp}_2(\varphi^l(z))$ et $\hat{a} = \overline{a}_{l-2} \dots \overline{a}_1 \overline{a}_0$.

Par définition de comp₂, on remarque que $\forall i \in [0..l-1], \, \overline{a}_i = 1-a_i)$.

On peut alors écrire $\psi^l(\text{comp}_2(\varphi^l(z))) = \psi^l(\overline{a}_{l-1} \overline{a}_{l-2} \dots \overline{a}_1 \overline{a}_0) = -2^{l-1} \overline{a}_{l-1} + \text{val}_2(\hat{a}).$

Or on a

$$val_{2}(\hat{a}) = val_{2}(\overline{a}_{l-2} \dots \overline{a}_{1} \overline{a}_{0})$$

$$= \sum_{i=0}^{l-2} \overline{a}_{i} 2^{i}$$

$$= \sum_{i=0}^{l-2} (1 - a_{i}) 2^{i}$$

$$= \sum_{i=0}^{l-2} 2^{i} - \sum_{i=0}^{l-2} a_{i} 2^{i}$$

$$= (2^{l-1} - 1) - val_{2}(\tilde{a})$$

Donc on obtient

$$\psi^{l}(\text{comp}_{2}(\varphi^{l}(z))) = -2^{l-1} \,\overline{a}_{l-1} + \left((2^{l-1} - 1) - \text{val}_{2}(\tilde{a}) \right)$$

$$= -2^{l-1} \left(\overline{a}_{l-1} - 1 \right) - 1 - \text{val}_{2}(\tilde{a})$$

$$= -2^{l-1} \left((1 - a_{l-1}) - 1 \right) - 1 - \text{val}_{2}(\tilde{a})$$

$$= -2^{l-1} \left((1 - a_{l-1}) - 1 \right) - 1 - \text{val}_{2}(\tilde{a})$$

$$= -2^{l-1} \left((-a_{l-1}) - \text{val}_{2}(\tilde{a}) - 1 \right)$$

$$= -\left(-2^{l-1} a_{l-1} + \text{val}_{2}(\tilde{a}) \right) - 1$$

$$= -z - 1 \quad \text{par} (\bigstar)$$

Notation 16

Remarque 17

Il s'agit seulement d'une écriture formelle de l'algorithme d'addition réalisé par la machine présentée en cours, algorithme qui est lui même l'équivalent en base 2 de l'algorithme d'addition des nombres en base 10 que vous connaissez. En particulier, r_i est la retenue à prendre en compte à l'étape i.

Propriété 18 (addition des entiers naturels)

$$\forall (a,b) \in \Sigma^l \times \Sigma^l, \operatorname{val}_2(\operatorname{add}_2^l(a,b)) = \operatorname{val}_2(a) + \operatorname{val}_2(b).$$

 $\forall (a,b) \in \Sigma^l \times \Sigma^l, \ \text{val}_2(\text{add}_2^l(a,b)) = \text{val}_2(a) + \text{val}_2(b).$ Autrement dit add² réalise l'addition sur les écritures binaires des entiers naturels.

Preuve: On montre en fait que cette propriété est vraie pour tout $l \in \mathbb{N}$, par récurrence sur l. Pour tout $l \in \mathbb{N}$ on définit la propriété \mathcal{P}_l comme suit.

$$\mathcal{P}_l: \forall (a,b) \in \Sigma^l \times \Sigma^l, \operatorname{val}_2(\operatorname{add}_2^l(a,b)) = \operatorname{val}_2(a) + \operatorname{val}_2(b)$$

- Pour l = 0, on a $\Sigma^l = \Sigma^0 = \{\varepsilon\}$. Or pour $a = \varepsilon$ et $b = \varepsilon$, on a d'une part $\operatorname{val}_2(a) = 0$ et $\operatorname{val}_2(b) = 0$, donc $\operatorname{val}_2(a) + \operatorname{val}_2(b) = 0$, et d'autre part $\operatorname{add}_2^l(a, b) = \operatorname{add}_2^l(\varepsilon, \varepsilon) = c_0 = r_0 = 0$. Donc on a bien $\operatorname{val}_2(\operatorname{add}_2^l(a, b)) = \operatorname{val}_2(a) + \operatorname{val}_2(b)$, et \mathcal{P}_0 est vraie.
- Soit $l \in \mathbb{N}$, on suppose \mathcal{P}_l vraie.

Soit $(a,b) \in \Sigma^{l+1} \times \Sigma^{l+1}$. On note $a = a_l \, a_{l-1} \dots a_0$ et $b = b_l \, b_{l-1} \dots b_0$, et $\tilde{a} = a_{l-1} \dots a_0$ et $\tilde{b} = b_{l-1} \dots b_0$. On note aussi $\operatorname{add}_2^{l+1}(a,b) = c_{l+1} \, c_l \, c_{l-1} \dots c_0$.

On veut montrer que $\operatorname{val}_2(c_{l+1} c_l c_{l-1} \dots c_0) = \operatorname{val}_2(a) + \operatorname{val}_2(b)$.

Ainsi, par définition de $\operatorname{add}_{2}^{l+1}$, on a $\forall i \in [0..l]$, $c_{i} = (a_{i-1} + b_{i-1} + r_{i-1})\%2$ et $c_{l+1} = r_{l+1}$ avec $r_{0} = 0$ et $\forall i \in [1..l+1]$, $r_{i} = (a_{i-1} + b_{i-1} + r_{i-1})/2$ (\bigstar) En effet, puisque $(a_{i-1} + b_{i-1} + r_{i-1}) \leq 3 < 2 \times 2$, le quotient de $(a_{i-1} + b_{i-1} + r_{i-1})$ par 2 est 0 ou 1, c'est 0 si $(a_{i} + b_{i} + r_{i}) < 2$, auquel cas $r_{i} = 0$, et c'est 1 sinon, auquel cas $r_{i} = 1$.

On remarque que les chiffres les plus à droite de $\operatorname{add}_2^l(\widetilde{a}, \widetilde{b})$ sont les mêmes pour $\operatorname{add}_2^{l+1}(a, b)$. En fait par définition de add_2^l , on a $\operatorname{add}_2^l(\widetilde{a}, \widetilde{b}) = \widetilde{c}_l \, c_{l-1} \dots c_0$, où $\widetilde{c}_l = r_l$.

D'après \mathcal{P}_l , on a donc $\operatorname{val}_2(\widetilde{c}_l c_{l-1} \dots c_0) = \operatorname{val}_2(\widetilde{a}) + \operatorname{val}_2(\widetilde{b})$.

Ainsi on peut réécrire la somme $val_2(a) + val_2(b)$ comme suit.

$$val_{2}(a) + val_{2}(b) = val_{2}(a_{l} \tilde{a}) + val_{2}(b_{l} \tilde{b})$$

$$= 2^{l} a_{l} + val_{2}(\tilde{a}) + 2^{l} b_{l} + val_{2}(\tilde{b})$$

$$= 2^{l} (a_{l} + b_{l}) + \left(val_{2}(\tilde{a}) + val_{2}(\tilde{b})\right)$$

$$= 2^{l} (a_{l} + b_{l}) + val_{2}(\tilde{c}_{l} c_{l-1} \dots c_{0})$$

$$= 2^{l} (a_{l} + b_{l}) + 2^{l} \tilde{c}_{l} + val_{2}(c_{l-1} \dots c_{0})$$

$$= 2^{l} (a_{l} + b_{l}) + val_{2}(c_{l-1} \dots c_{0})$$

D'autre part on a $\operatorname{val}_2(c_{l+1} c_l c_{l-1} \dots c_0) = 2^{l+1} c_{l+1} + 2^l c_l + \operatorname{val}_2(c_{l-1} \dots c_0).$

Il reste donc à montrer que $2^l(a_l+b_l+\widetilde{c}_l)=2^{l+1}c_{l+1}+2^lc_l$, soit en divisant par 2^l que $a_l+b_l+\widetilde{c}_l=2\,c_{l+1}+c_l$. Or on a déjà $c_{l+1}=r_{l+1}$ et $r_{l+1}=(a_l+b_l+r_l)/2$ d'après (\bigstar) , et $c_l=(a_l+b_l+r_l)\%2$ par définition directe de add $_2^{l+1}$. Par définition de la division euclidienne, on a donc bien $(a_l+b_l+r_l)=2*c_{l+1}+c_l$.

Ainsi \mathcal{P}_{l+1} est vraie.

Par récurrence on en déduit que $\forall l \in \mathbb{N}, \mathcal{P}_l$ est vraie.

Propriété 19 (addition des entiers relatifs)

Soit $(y, z) \in I^l \times I^l$.

Si $y+z \in I^l$, **alors** en notant $c_l c_{l-1} \dots c_0 = add_2^l (\varphi^l(y), \varphi^l(z))$, on a $\psi^l(c_{l-1} \dots c_0) = y+z$.

Autrement dit add_2^l réalise aussi l'addition sur les écritures des entiers relatifs pourvu que la somme soit dans l'intervalle I^l .

Preuve: On note $a = a_{l-1} a_{l-2} \dots a_0 = \varphi^l(y)$, et $\tilde{a} = a_{l-2} \dots a_0$, ainsi on a $y = -2^{l-1} a_{l-1} + \text{val}_2(\tilde{a})$.

De même, on note $b = b_{l-1} b_{l-2} \dots b_0 = \varphi^l(z)$, et $\tilde{b} = b_{l-2} \dots b_0$, ainsi on a $z = -2^{l-1} b_{l-1} + \text{val}_2(\tilde{b})$.

Enfin en notant $c = c_l c_{l-1} c_{l-2} \dots c_0$ et $\tilde{c} = c_{l-2} \dots c_0$, on a $\psi^l(c_{l-1} c_{l-2} \dots c_0) = -2^{l-1} c_{l-1} + \operatorname{val}_2(\tilde{c})$.

De plus, par définition de val₂, on a $\begin{vmatrix} val_2(a) = 2^{l-1}a_{l-1} + val_2(\tilde{a}) \\ val_2(b) = 2^{l-1}b_{l-1} + val_2(\tilde{b}) \\ val_2(c) = 2^lc_l + 2^{l-1}c_{l-1} + val_2(\tilde{c}) \end{vmatrix}$

D'après la propriété 18, comme $\operatorname{val}_2(c) = \operatorname{val}_2(\operatorname{add}_2^l(a,b))$, on a $\operatorname{val}_2(c) = \operatorname{val}_2(a) + \operatorname{val}_2(b)$ (\bigstar). On peut donc réécrire l'égalité qu'on cherche à démontrer comme suit.

$$\psi^{l}(c_{l-1} c_{l-2} \dots c_{0}) = y + z$$

$$\Leftrightarrow -2^{l-1} c_{l-1} + \operatorname{val}_{2}(\widetilde{c}) = \left(-2^{l-1} a_{l-1} + \operatorname{val}_{2}(\widetilde{a})\right) + \left(-2^{l-1} b_{l-1} + \operatorname{val}_{2}(\widetilde{b})\right)$$

$$\Leftrightarrow -2^{l-1} c_{l-1} + \operatorname{val}_{2}(\widetilde{c}) = -2^{l-1} (a_{l-1} + b_{l-1}) + \operatorname{val}_{2}(\widetilde{a}) + \operatorname{val}_{2}(\widetilde{b})$$

$$\Leftrightarrow -2^{l-1} c_{l-1} + \left(\operatorname{val}_{2}(c) - 2^{l} c_{l} - 2^{l-1} c_{l-1}\right) = -2^{l-1} (a_{l-1} + b_{l-1}) + \left(\operatorname{val}_{2}(a) - 2^{l-1} a_{l-1}\right) + \left(\operatorname{val}_{2}(b) - 2^{l-1} b_{l-1}\right)$$

$$\Leftrightarrow -2^{l-1} (c_{l-1} + 2c_{l} + c_{l-1}) + \operatorname{val}_{2}(c) = -2^{l-1} (a_{l-1} + b_{l-1} + a_{l-1} + b_{l-1}) + \operatorname{val}_{2}(a) + \operatorname{val}_{2}(b)$$

$$\Leftrightarrow -2^{l} (c_{l-1} + c_{l}) + \operatorname{val}_{2}(c) = -2^{l} (a_{l-1} + b_{l-1}) + \operatorname{val}_{2}(a) + \operatorname{val}_{2}(b)$$

$$\Leftrightarrow -2^{l} (c_{l-1} + c_{l}) = -2^{l} (a_{l-1} + b_{l-1})$$

$$\Leftrightarrow c_{l-1} + c_{l} = a_{l-1} + b_{l-1}$$

Pour montrer cette égalité on utilise le fait que c est obtenu par addition bit à bit des nombres a et b. On note $r_0=0$ et $\forall i\in [1..l], \ r_i=(a_{i-1}+b_{i-1}+r_{i-1})/2$, où l'on désigne par "/2" le quotient par 2. Par définition de add_2^l , on a alors $\forall i\in [0..l-1], \ c_i=(a_i+b_i+r_i)\%2$ où "%2" désigne le reste modulo 2. En particulier, on a $c_l=r_l=(a_{l-1}+b_{l-1}+r_{l-1})/2$ et $c_{l-1}=(a_{l-1}+b_{l-1}+r_{l-1})\%2$.

On remarque aussi qu'avec ces notations, $\operatorname{add}_2^{l-1}(\widetilde{a},\widetilde{b}) = r_{l-1} c_{l-2} \dots c_0$ (4) (c'est la définition de $\operatorname{add}_2^{l-1}$).

• Si $(a_{l-1}, b_{l-1}) = (0, 0)$, alors $a_{l-1} + b_{l-1} + r_{l-1} = r_{l-1} < 2$, donc $c_l = 0$ et $c_{l-1} = r_{l-1}$. Ainsi $c_{l-1} + c_l = a_{l-1} + b_{l-1} \Leftrightarrow r_{l-1} = 0$.

Comme $a_{l-1}=0,\ y=\operatorname{val}_2(\widetilde{a}),$ et comme $b_{l-1}=0,\ z=\operatorname{val}_2(\widetilde{b}),$ donc $y+z=\operatorname{val}_2(\widetilde{a})+\operatorname{val}_2(\widetilde{b}),$ ce qui d'après la propriété 18 donne $y+z=\operatorname{val}_2(\operatorname{add}_2^{l-1}(\widetilde{a},\widetilde{b}))$ Or $y+z<2^{l-1}$ puisque par hypothèse $y+z\in I^l,$ donc le chiffre de poids 2^{l-1} de $\operatorname{add}_2^{l-1}(\widetilde{a},\widetilde{b})$ est nécessairement nul, soit $r_{l-1}=0$ d'après (\(\black{\ph} \)).

- Si $(a_{l-1}, b_{l-1}) = (0, 1)$ ou (1, 0), alors $a_{l-1} + b_{l-1} + r_{l-1} = 1 + r_{l-1}$. Si $r_{l-1} = 1$, alors $1 + r_{l-1} = 2$ donc $c_l = 1$ et $c_{l-1} = 0$. Si $r_{l-1} = 0$, alors $1 + r_{l-1} = 1$ donc $c_l = 0$ et $c_{l-1} = 1$. Ainsi dans les deux cas on a $c_l + c_{l-1} = 1 = a_{l-1} + b_{l-1}$.
- Si $(a_{l-1}, b_{l-1}) = (1, 1)$, alors $a_{l-1} + b_{l-1} + r_{l-1} = 2 + r_{l-1} \geqslant 2$, donc $c_l = 1$ et $c_{l-1} = r_{l-1}$. Ainsi $c_{l-1} + c_l = a_{l-1} + b_{l-1} \Leftrightarrow 1 + r_{l-1} = 2 \Leftrightarrow r_{l-1} = 1$. Comme $a_{l-1} = 1$, $y = -2^{l-1} + \text{val}_2(\tilde{a})$, et comme $b_{l-1} = 1$, $z = -2^{l-1} + \text{val}_2(\tilde{b})$. Donc $y + z = -2^l + \text{val}_2(\tilde{a}) + \text{val}_2(\tilde{b})$, soit $y + z = -2^l + \text{val}_2(\text{add}_2^{l-1}(\tilde{a}, \tilde{b}))$ d'après la propriété 18. Or $y + z \in I^l$, ce qui implique $y + z \geqslant -2^{l-1}$, soit $y + z \geqslant -2^l + 2^{l-1}$, donc $\text{val}_2(\text{add}_2^{l-1}(\tilde{a}, \tilde{b})) \geqslant 2^{l-1}$. Donc le chiffre de poids 2^{l-1} de $\text{add}_2^{l-1}(\tilde{a}, \tilde{b})$ est nécessairement 1, soit $r_{l-1} = 1$. d'après (\$\ldot\$).