
Dominances en programmation linéaire :
ordonnancement autour d’une date d’échéance commune

par Anne-Elisabeth Falq

Thèse de doctorat en informatique
dirigée par Pierre Fouilhoux et Safia Kedad-Sidhoum

présentée et soutenue publiquement le 2 Novembre 2020

Jury :

Nadia Brauner rapporteuse Professeure, Université Grenoble Alpes, G-SCOP

Pierre Fouilhoux co-directeur Professeur, Université Sorbonne Paris Nord, LIPN

Claire Hanen examinatrice Professeure, Université de Nanterre, LIP6

Safia Kedad-Sidhoum co-directrice Professeure, CNAM, CEDRIC

Quentin Louveaux examinateur Professeur associé, Université de Liège, Institut Montefiore

Maurice Queyranne rapporteur Professeur émérite, University of British Columbia

Françis Sourd examinateur HDR, entreprise Sun’R

0

jsi j

da

d−ae′i t′j

•
•

•

•

•
•

•
•

•

•

1=u
2

v

n

B(v)∩B̄(u)∩T

S

B(v)∩T B̄(v)∩T

d
|

v

S ′

B(u)∩T B̄(u)∩T \{v}
d
|

u

Préface

Genèse de la thèse
Cette thèse est certainement née dans le cours MAOA (modèles et algorithmes pour l’ordonnancement
et applications) que j’ai suivi en master 2 puisqu’elle résulte de l’envie de mêler les techniques de
programmation linéaire que Pierre y présentait aux problématiques d’ordonnancement que Safia y
présentait.

Bien qu’elle soit articulée autour du problème d’ordonnancement à une machine avec date d’échéance
commune, le but premier de cette thèse n’était pas la résolution de ce problème. L’idée était
davantage de voir, d’une part ce que les méthodes polyédrales pouvaient apporter sur un pro-
blème d’ordonnancement pour lequel les méthodes de résolution exactes proposées dans la littéra-
ture ne relèvent généralement pas de la programmation linéaire, mais plutôt de la programmation
dynamique ou du Branch-and-Bound; et d’autre part comment les résultats connus en théorie de
l’ordonnancement pouvaient être utilisés pour améliorer les formulations et leur résolution par pro-
grammation linéaire.

Organisation et contributions de la thèse
La thèse est découpée en trois parties qui correspondent à trois axes de recherche différents. Elles
sont ordonnées suivant l’ordre chronologique des recherches, mais peuvent être lues indépendamment
dans la mesure où le matériel commun aux trois parties (définitions, notations, propriétés, exem-
ples...) a été rassemblé en préambule dans le chapitre 0.

Ainsi ce chapitre introductif, en plus de présenter un état de l’art, présente des propriétés de
dominance pour les problèmes d’ordonnancement avec date d’échéance commune que nous avons
étendues à des instances arbitraires, ainsi qu’une formulation linéaire compacte pour le cas où la
date d’échéance est non restrictive, basée sur des variables binaires de partition de l’ensemble des
tâches. En fin de chapitre, nous proposons aussi des contre-exemples montrant que des propriétés
de dominance vraies pour une date d’échéance non restrictive ne le sont plus si cette date devient
restrictive, ce qui nous empêche d’étendre la formulation compacte au cas général.

Dans le but de proposer une formulation pour le cas général, nous nous sommes intéressés dans
la partie A à des variables similaires aux variables de date de fin d’exécution de tâche, qu’on ap-
pelle variables naturelles. Pour gérer de telles variables dans le cas d’un critère régulier, Maurice
Queyranne [34] a proposé des inégalités linéaires dites inégalités de non-chevauchement.

Dans le chapitre 1 nous proposons des formulations mathématiques en variables naturelles basées
sur des inégalités de non-chevauchement inspirées de celles de Queyranne, l’une pour le cas non
restrictif, l’autre pour le cas général. Au delà de ces deux formulations, le chapitre 1 donne surtout
des propriétés sur les inégalités de non-chevauchement et une méthode générique pour construire et
prouver des formulations en variables naturelles. Pour preuve de cette généricité, nous proposons en
fin de chapitre 1 des ébauches de formulation pour d’autres problèmes d’ordonnancement.

3

Le chapitre 2 est dédié à la mise en pratique de ces formulations qui ne sont pas exactement des for-
mulations linéaires en nombres entiers : en plus de devoir être des points entiers, les solutions doivent
êtres des points extrêmes. On explique à la fois comment gérer cette contrainte d’extrêmalité com-
binée à la contrainte d’intégrité, et comment séparer les inégalités de non-chevauchement introduites
au chapitre 1. Afin de mesurer l’intérêt pratique de ces formulations, nous les avons implémentées
avec un solveur de programmation linéaire, ainsi que d’autres formulations linéaires pour compa-
raison. Les résultats de cette campagne expérimentale – fournis en fin de chapitre 2 – ne sont pas
très satisfaisants en comparaison de ceux obtenus par l’algorithme de Branch-and-Bound proposé
par Françis Sourd [41].

Malgré cela, dans le cas non restrictif, la formulation compacte proposée au chapitre 0 – qui
quant à elle est basée sur des variables de partition – se révèle prometteuse, bien qu’elle offre une
valeur de relaxation continue assez faible. Afin de renforcer cette formulation, nous étudions dans la
partie B les variables de partition.

Le chapitre 3 présente une revue des principales inégalités proposées pour les différents polyèdres
associés au problème max-cut encodé ou non avec des variables de partition. Cette revue est
l’occasion de donner un cadre formel pour rassembler ces différentes inégalités sous une même écriture,
adaptée à notre formulation compacte. Ces inégalités renforcent une formulation au sens classique du
terme : elles coupent des points fractionnaires en vue d’améliorer la valeur de relaxation continue,
et ainsi d’accélérer le processus de Branch-and-Bound. On a implémenté certaines d’entre elles
pour les ajouter à la formulation compacte et mesurer leur impact. Les résultats numériques de ces
expérimentations – présentés en fin de chapitre 3 – ne sont pas probants : si la valeur du relâché
continu est considérablement améliorée, le temps de résolution, lui, n’est pas meilleur.

Dans le chapitre 4, on s’intéresse alors à une autre approche de renforcement pour les variables
de partition. Remarquant que la partition triviale dans laquelle toutes les tâches sont en avance
n’est jamais une solution optimale pour notre problème d’ordonnancement, on s’intéresse non plus
au polyèdre des coupes mais à celui des coupes non triviales. Il s’agit d’une première approche
d’élimination de solutions non optimales. (c’est-à-dire qu’on coupe deux solutions réalisables, parce
qu’on les sait non optimales). Bien que cela revienne seulement à enlever deux points extrêmes,
de nombreuses nouvelles facettes apparaissent lorsqu’on passe d’un polyèdre à l’autre. On propose
plusieurs familles d’inégalités, et la preuve qu’elles définissent des nouvelles facettes. La quantité, la
variété et la taille de ces familles d’inégalités nous ont fait renoncer à les implémenter, et changer
légèrement l’approche de renforcement dans la partie suivante.

En effet dans la partie C, on s’intéresse à des inégalités qui, sans être nécessairement facettes,
éliminent des points entiers encodant des solutions non optimales, plus précisément des solutions non
localement optimales, pour un voisinage donné.

Le chapitre 5 introduit d’abord de telles inégalités, qu’on appelle inégalités de dominance, pour
le problème dans le cas non restrictif, avant de proposer un cadre plus général pour ces inégalités.
Grâce à ce cadre, une deuxième famille d’inégalités pour le cas non restrictif est rapidement présentée,
avant de comparer ces deux familles. En fin de chapitre, on fournit quelques résultats théoriques
négatifs à leur propos (elles n’améliorent pas la valeur de relaxation continue).

Le chapitre 6 quant à lui offre des résultats expérimentaux positifs: l’implémentation des inégalités
de dominance conduit d’une part à une véritable amélioration de la résolution exacte pour le cas
non restrictif avec la formulation compacte, et d’autre part à une procédure heuristique qui fournit
rapidement une très bonne borne supérieure.

Dans le chapitre 7, qui présente des travaux en cours, on essaye d’étendre cette approche de
renforcement au delà de l’ordonnancement en proposant des inégalités de dominance pour d’autres
problèmes d’optimisation combinatoire se formulant comme un programme linéaire en nombre entiers.

4

Enfin le chapitre 8 propose une conclusion de la thèse, ainsi que des perspectives. Il est suivi
par diverses annexes qui ont pour but d’accompagner la lecture (et pas d’être lue à la fin): rappels
de définitions usuelles en théorie des graphes et en analyse convexe, tables des notations, liste des
inégalités proposées pour l’ordonnancement avec date d’échéance commune, index des formulations
et polyèdres, index des définitions.

Guide de lecture
L’introduction se veut assez pédagogique, certaines parties peuvent donc être omises. Par exemple,
les personnes déjà familières avec l’ordonnancement juste-à-temps pourront parcourir plus rapide-
ment:

- la section 0.1, un coup d’œil aux figures peut suffire,
- la section 0.2, les énoncés des lemmes 0.1 et 0.2 suffisent
- la section 0.3, résumée sur la cartographie page 32.

De plus, les personnes familères avec les outils de programmation linéaire pourront passer le début
de la section 0.4 et ne lire que la sous-section 0.4.5 qui présente quelques formulations linéaires pour
l’ordonnancement.

Choix de rédaction
Je précise ici quelques choix de rédaction et de mise en page dont la connaissance pourrait vous
faciliter la lecture.
• Transitions

Les transitions qui articulent les sections et sous-sections, sont généralement placées à la fin de la
section qui précède, et non au début de celle qui suit, pour donner au lecteur un avant goût de ce qui
l’attend, si ce n’est de lui donner envie de poursuivre sa lecture. Ainsi, pour une petite introduction
quand vous reprenez la lecture, n’hésitez pas à remonter un peu dans le texte, vous retrouverez
facilement la transition qui précède car elles ont été écrites en italique.

• Exemples
Les exemples et contre-exemples sont souvent présentés sur une page à part et non au fil du texte
comme les figures ou les tables. Cela permet de poursuivre facilement la lecture sans s’y attarder,
et surtout, cela permet de voir l’exemple en entier sur une page. N’hésitez pas à tourner la page si
vous ne voyez pas l’exemple dont il est question.

• Définitions et notations
Les définitions des termes utilisés sont données pour la plupart au fil de l’eau. Un index page 219
permet de retrouver à quelle page chaque terme est introduit. Les définitions générales d’analyse
convexe et de théorie des graphes font quant à elles l’objet de chapitres proposés en annexe. Les
notations sont elles aussi données au cours du texte, et rappelées à partir de la page 213.

• Numéros de pages
La numérotation des pages inclut la page de titre et la page de garde. Cela permet que la page
numérotée n en bas soit aussi numérotée n par un lecteur PDF, et évite ainsi des pièges à l’impression.

• Nombre de pages
Les choix de mise en page ainsi que les nombreuses figures et les annexes rendent ce document
volumineux en nombre de pages.

5

• Figures et légendes
J’espère que vous apprécierez les figures qui illustrent ce tapuscrit. Elles ont toutes été réalisées en
Tikz (notamment grâce aux explications proposées dans [43]). Les figures sont normalement non
ambiguës en noir et blanc, mais plus lisibles en couleurs. Lorsqu’une légende explicite accompagne
la figure, elle est présentée dans un double cadre gris (Cf. page 14 par exemple), mais une bonne
part de la légende est implicite car commune à toutes les figures d’ordonnancement, comme la date
d’échéance d tracée en rouge, les tâches en avance en jaune, celles en retard en rose...

Tout ceci étant dit, bonne lecture!

Paris, le 22 Septembre 2020

6

Contents
Préface (in french) 3

0 Scheduling around a common due date and related dominance properties 9
0.1 Scheduling problem definition . 9
0.2 Dominance properties for common due date problems . 14
0.3 Algorithms for the common due date problems . 22
0.4 MIP formulations for scheduling problems . 33
0.5 A compact MIP formulation for the unrestrictive case . 41
0.6 Outline of Parts A, B, and C . 47

A Formulations using natural variables

1 Non-overlapping inequalities 51
1.1 Non-overlapping Queyranne’s inequalities . 51
1.2 Key lemmas to use non-overlapping inequalities in a larger setting . 54
1.3 A formulation for UCDDP using natural variables . 58
1.4 A formulation for CDDP using natural variables . 66
1.5 Using natural variables and non-overlapping inequalities for related problems 77

2 How to deal with non-overlapping inequalities in practice? 83
2.1 Separation algorithm for non-overlapping inequalities . 83
2.2 Extremality and integrality constraints . 87
2.3 Experimental results . 89

B Reinforcement inequalities for δ,X variables

3 Bridging polytopes CUT n, QP n and P n
δ,X 97

3.1 Polytopes CUT n, QP n and P n
δ,X . 98

3.2 Classical inequalities for QP n and CUT n . 99
3.3 Some results about QP n

LP . 100
3.4 Facets transposition . 104
3.5 Numerical experiments . 114

4 Excluding trivial cuts using facet defining inequalities 117
4.1 Introduction . 117
4.2 How to prove that inequalities define facets . 120
4.3 Hamiltonian path inequalities . 122
4.4 Hamiltonian cycle inequalities . 129
4.5 Without name inequalities . 137
4.6 Star inequality . 141
4.7 Full inequalities . 144

7

C Dominance inequalities

5 Dominance inequalities for UCDDP 151
5.1 Neighborhood based dominance properties . 151
5.2 Linear inequalities for the insert dominance property . 153
5.3 General framework to produce dominance inequalities from a set of operations 156
5.4 Application for swap operations . 160
5.5 Additional properties on insert and swap inequalities . 164

6 Practical application of dominance inequalities for UCDDP 171
6.1 Solving MIP formulations to optimality . 172
6.2 Lower bound obtained at the root node . 173
6.3 Using swap and insert inequalities to obtain an upper bound . 175
6.4 Insert and swap operations use cases . 178

7 Dominance inequalities for other combinatorial optimization problems 183
7.1 Dominance inequalities for max-cut . 183
7.2 Dominance inequalities for the maximum weighted independent set problem 187

Conclusion 193

Bibliography 197

Appendices

Graph theory definitions 201

Convex analysis definitions and properties 203
CA.3General properties and definitions . 203
CA.4Useful properties for transposing facets . 210

Notations 213
General notations . 213
Scheduling notations . 215
Graph notations . 215

Inequalities for F 3 and F 4 217

Indices 219
Index of definitions . 219
Index of polyhedra and formulations . 221

8

Chapter 0

Scheduling around a common due date
and related dominance properties

This chapter intends to introduce just-in-time scheduling around a common due date and to present
the main known results in this field. In addition, we extend some known properties, provide counter-
examples to other property extensions and finally provide two reformulations for a problem.

In Section 0.1, we present the two scheduling problems on which we will focus, as well as the
commonly used notations and the representations. For both problems, we give in Section 0.2 some
dominance properties and present in Section 0.3 the different known solving approaches to which
they lead. Moreover, at the end of Section 0.3 we take a step back and give an overview of related
problems. Section 0.4 is dedicated to the different ways to formulate a scheduling problem as a linear
program (LP) or as a mixed-integer program (MIP), and finally, Section 0.5 presents a compact MIP
for the unrestrictive common due date problem.

NB: All notations introduced in this section and later, as well as commonly used notations, are
summarized on page 215 in the notation appendix.

0.1 Scheduling problem definition
In general, a scheduling problem consists in organizing an activity so as to minimize costs or penalties,
or so as to maximize profits or utilities (Cf. [10], [18], and [33]). Mathematically speaking, a
scheduling problem is then an optimization problem. In addition to an objective function, such a
problem involves:

- tasks, representing the elementary units of the activity,

- machines, representing resources which are able to execute the tasks, (it can be real machines
in a factory, processors in a computer as well as human operators),

- eventually other resources that tasks have to share, (like tool, energy, budget...),

- eventually resource constraints like capacity constraints,

- eventually additional time constraints, like precedence constraints between tasks, time windows
during which tasks have to be processed, time windows during which machine are not available.

9

A solution of such a problem is called a schedule. A schedule assigns to each task a time period
and a machine, and eventually other shared resources. A fundamental constraint that a schedule have
to satisfy to be feasible, is the task non-overlapping constraint: two tasks cannot be processed
on the same machine at the same time. Another one is the non-negativity constraint representing
that we cannot plan to execute a task in the past, but only from now: a task cannot start before the
time 0.

There exists a wide variety of scheduling problems, since they can model a lot of concrete problems
appearing in agriculture, industry, services... The reader can refer to [10] and [33] for a wide range of
examples. However, in this thesis, we will mainly focus on two single machine scheduling problems.
Therefore, we present how single machine schedules are usually encoded and represented.

• Encoding and representing a single machine schedule
Let us consider a single machine framework, where a set of tasks J have to be processed non-
preemptively. A schedule assigns to each task j an execution period, which is a time interval usually
denoted by [Sj, Cj]. Sj (resp. Cj) is called the starting time (resp. the completion time) of
task j. Note that starting time and completion time are not time lengths but time points, that are
dates. Assuming in addition that processing times are fixed, and denoted by (pj)j∈J , a schedule
can be encoded by the vector of task completion times, i.e. (Cj)j∈J , since for each task j ∈ J , we
have Sj =Cj−pj. Encoding schedules by the task completion times allows to express a wide range
of constraints and objective functions.

Feasible schedules are commonly represented by machine oriented Gantt charts. In such a chart,
each task j ∈ J is represented by a rectangle, whose length represents its processing time, i.e. pj,
and each machine corresponds to an oriented axis representing the time horizon. Figure 1 gives the
Gantt chart of S1 and S2, two illustrative schedules for the 4 tasks depicted at the top of the figure.

given tasks:
1 2 3 4

p1 =4 p2 =1 p3 =2 p4 =2.5

S1 p p p p p p p p p p p p p p p p
0
|

3

C3 =10

1

C1 =7.3

2

C2 =12.5

4

C4 =15

S2 p p p p p p p p p p p p p p p p
0
|

2

C2 =2

3

C3 =8

1

C1 =6

4

C4 =11.5

Figure 1: The Gantt charts of two illustrative 4-task schedules

• Earliness-tardiness scheduling
The just-in-time scheduling intends to reduce two kind of costs. On the one hand the storage costs,
appearing when a product is completed before its delivery date, on the other hand the delay costs,
appearing when a product is delivered after its delivery date. Because of the time needed for delivery,
or because a task can be an intermediate operation in the manufacturing process of a final product,

10

we will not use delivery dates. We will rather use, for each task j, a due date denoted by dj ,
modeling the preferred completion time for j. For example, if a product has to be delivered at hour
h for a client an hour’s drive away, the due date of the last operation of this product is h−1.

If task j completes before its due date, then the earliness of j, is the duration between the
completion time and the due date, i.e. dj−Cj. Conversely, if j completes after dj, then its earliness
is 0. To cover these two cases, we can define the earliness as Ej = [dj−Cj]+, where [x]+ denotes
the positive part of x∈R. Similarly, the tardiness of task j, denoted by Tj , is the length of time
between the due date and the completion time if j completes after its due date, and 0 otherwise, i.e.
Tj =[Cj−dj]+. Note that earliness and tardiness are not exactly symmetrical, as the processing time
of a task is included in its tardiness but not in its earliness. Figure 2 illustrates on a Gantt chart the
earliness of an early task and the tardiness of a tardy task sharing the same due date.

dj =di

0
|

i

Ci
Ei

j

Cj
Tj

Figure 2: Earliness and tardiness on a Gantt chart

The reader can refer to [24] for a complete literature review on just-in-time scheduling. In this
thesis, we will focus on problems where earliness and tardiness are linearly penalized. For each task
j ∈ J , two coefficients are given: αj the unit earliness penalty, and βj the unit tardiness penalty.
Each time unit of earliness (resp. tardiness) of task j induces a penalty of αj (resp. βj). The total
earliness-tardiness penalty of a whole schedule is then the following.∑

j∈J
αj Ej + βj Tj

In spite of the above linear writing, note that this objective function is not a linear function of the
completion times. Indeed, the objective function can also be written as follows.∑

j∈J
αj [dj−Cj]+ + βj [Cj−dj]+

Figure 3 illustrates earliness (resp. tardiness) penalty for a given task j ∈ J as a function of its
completion time Cj. This function is piecewise linear, and its slope is defined by the unit earliness
penalty αj (resp. the unit tardiness penalty βj).

Cj

dj

0
|

αj Ej

Cj

dj

0
|

βj Tj

Figure 3: Earliness and tardiness penalties of a task j as a function of its completion time Cj

11

• Common due date problems
We will consider two common due date problems, that is where all the tasks share the same due
date, which is then only denoted by d, i.e. ∀j∈J, dj =d. The objective function for the parameters
(α, β)∈R+

2 and d∈R+, denoted by fα,β,d is then the following.

fα,β,d(C) =
∑
j∈J

αj [d−Cj]+ + βj [Cj−d]+

In practice, a common due date problem can reflect a situation where all the clients want to receive
their products at the same date, for example when people order their cake to a pastry cook for
Sunday 11:00 am. In a more industrial context, we can imagine the following situation: a joiner
wants to send its daily production using an electric truck which leaves at 04:00 pm. Since some
furniture is bulky, finishing a piece of furniture early will clutter up the small workshop. Earliness
penalties reflect this discomfort. Conversely, if a piece of furniture is completed after 04:00 pm, the
carpenter could pay an extra cost for a bike delivery: the longer the time to complete, the more the
employee has to be payed for its overtime. Tardiness penalties reflect this cost. Finally, minimizing
the total earliness-tardiness penalty consists in finding a day’s work organization which is the best
with regard to both the workshop congestion and extra delivery costs. These two objectives are
aggregated in a linear way, then one can give more importance to the one or to the other by tuning
the coefficients αj and βj.

Moreover, this problem can be seen as part of a problem with distinct due dates if a subset of
tasks share the same due date.

The general common due date problem (CDDP) aims at finding a schedule, i.e. C=(Cj)j∈J
minimizing the total earliness-tardiness penalty, i.e. fα,β,d, when all the tasks share the same due
date.

CDDP Input: a number of tasks n∈N
the task processing times (pj)j∈[1..n]∈Rn+
the task unit earliness penalties (αj)j∈[1..n]∈Rn+
the task unit tardiness penalties (βj)j∈[1..n]∈Rn+
a common due date d∈R+

Output: a feasible schedule C=(Cj)j∈[1..n] minimizing fα,β,d(C)

The instance of CDDP defined by its input parameters will be denoted by CDDP(p, α, β, d).

The unrestrictive common due date problem (UCDDP) is a special case of CDDP when
the due date is unrestrictive , that is when d> p(J), where for any subset I ⊆ J , and any vector
a∈RJ indexed by J , a(I) denotes the sum ∑

j∈I aj. That means that the due date does not restrict
the total duration of early tasks. This problem will be denoted by UCDDP, and a given instance of
this problem by UCDDP(p, α, β, d).

As an illustration of CDDP and UCDDP instances we provide on page 13 the optimal schedule
of 4 given tasks for different due dates.

Different exact methods have been proposed to solve these problems (Cf. Section 0.3). Most of
the proposed algorithms are based on dominance properties. Therefore, we present in the next section
the dominance properties standing for UCDDP and CDDP, before presenting the resulting algorithms.

12

Example 1 : Optimal schedules for different 4-task instances

We consider the set of tasks J=[1..4] defined by the parameters on the right.
Depending on the value chosen for d, these parameters define an instance of
UCDDP and CDDP, or an instance of CDDP only.
The following figure presents the1optimal schedules for different values of d.

p1 =3, α1 =4, β1 =5

p2 =4, α2 =1, β2 =6

p3 =2, α3 =5, β3 =8

p4 =2, α4 =2, β4 =4

For each schedule, the total earliness-tardiness penalty is indicated in gray on the right. For example
it is 21 for the first schedule. Moreover, for the first schedule only, the penalty induced by each task is
detailed in gray. For example, task 2 is early since it completes 5 time units before d, then E2 = 5 and
it induces an earliness penalty of α2∗E2 =1∗5.

p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p
1

α1∗E1 =4∗2

2

α2∗E2 =1∗5

3

α3∗E3 =5∗0

4

β4∗T4 =4∗2

→ 21

d=11

0

12 43
→ 28

d=8

12 3 4
→ 32

d=7

12 3 4
→ 51

d=5

1 234
→ 61

d=4

1 23 4
→ 77

d=3

1 23 4
→ 87

d=2

1 23 4
→ 133

d=0

0

0

0

0

0

0

Note that all the optimal schedules presented here have a common structure: the tasks are processed
consecutively, without idle time. Moreover, in each schedule, there is a task starting at time 0, or a
task completing at time d (or both). This is not a coincidence, there always exists an optimal schedule
having this structure. Such properties, called dominance properties, are given in the next section.

In spite of their common structure, the optimal schedules can have completely different sequences, that
are different task execution orders, when the value of d changes, even slightly. For example, task 2 is
first executed in the optimal schedule for d=5, but last executed for d=4.

1For each instance given in this example, there is a unique optimal schedule, therefore we say "the optimal schedule".
However, in general, there may be several optimal schedules.

13

0.2 Dominance properties for common due date problems
For a given optimization problem, and a given instance of this problem, we say that a set of solutions
is dominant if it contains (at least) one optimal solution, and that it is strictly dominant if it
contains all the optimal solutions. In both cases, the search of an optimal solution can be limited
to the dominant set. For the sake of brevity, we say that a schedule is dominant if it belongs to a
dominant set.

Other types of dominance properties exist: dominance between the instances of a given problem
and dominance between problems for example. For an overview of the different kinds of dominance
properties, illustrated with examples coming from the scheduling field, the reader can refer to [23].
Nevertheless, in this thesis, we use dominance property only to designate a property which states,
for a given instance, that a solution subset is dominant or strictly dominant.

In order to describe dominant schedules, we first provide some definitions. For a given UCDDP
or CDDP instance, we use α-ratio (resp. β-ratio) to designate αj/pj∈R+ (resp. βj/pj∈R+).
Moreover, for a given schedule (Cj)j∈J , a task j ∈ J is said early (resp. on-time, resp. tardy) if
it completes at time Cj 6 d (resp. Cj = d, resp. Cj >d). A task j ∈J is said straddling if it starts
before d and completes after d, i.e. Cj−pj <d and d<Cj. Note that there is at most one on-time
task2 (resp. one straddling task), and that it is an early (resp. tardy) task. There cannot be both an
on-time task and a straddling task. Finally, the early-tardy partition of the schedule is (E, T)
where E (resp. T) is the early (resp. tardy) task subset. We then have J=E t T .

In just-in-time scheduling, an idle time designates a time period between two task execution
periods during which no task is executed. We define a block as a feasible schedule without idle
time, a d-schedule as a feasible schedule with an on-time task; a d-block as a d-schedule which is
also a block, a left-block as a block starting at time 0, and a d-or-left-block as a block which is a
d-schedule or which starts at time 0, or both. A schedule is said V-shaped [36] (resp. -shaped)
if early tasks are scheduled in non-decreasing order of their α-ratios and tardy tasks (resp. tasks
starting after d) are scheduled in non-increasing order of their β-ratios. Note that being V-shaped
or -shaped is equivalent for schedules without straddling task.

jt

E T

d0
Figure 4: A d-schedule which is not a block

E T

js

d0
Figure 5: A block with a straddling task

jt

E T

d0

αi
pi

βi
pi

Figure 6: A V-shaped d-block

αi
pi

βi
pi

E T

js

d0

Figure 7: A -shaped block starting at time 0

early task

tardy task

jt on-time task

js straddling task

2except if there is a task with a zero processing time

14

0.2.1 Dominance properties for UCDDP
Some dominance properties for UCDDP with symmetric penalties, i.e. ∀j ∈J, αj =βj, are given
in [21]. The following lemma extends these results to asymmetric penalties, using the same task
shifting and exchange proof arguments.
Lemma 0.1

Let p∈RJ+ and (α, β)∈RJ+×RJ+. Let d∈R such that d>p(J).
The set of d-blocks is dominant for UCDDP(p, α, β, d).
The set of blocks is even strictly dominant for UCDDP(p, α, β, d) if (p, α, β)∈R∗+J×R∗+J×R∗+J .
The set of V-shaped schedules is strictly dominant for UCDDP(p, α, β, d).

Proof of the block dominance property by shifting arguments : Let us assume that there exists an
optimal schedule S∗, encoded by the completion times (Cj)j∈J , which is not a block, i.e. presenting an
idle time. Necessarily there exists two tasks consecutive (i, j)∈J2 in S∗ such that there is an idle time
between their execution periods, i.e. Cj >Ci+pj (?). There are two cases to consider according to the
position of this idle time in relation to the due date.

- If d>Ci, we set ε= min
(
d−Ci, (Cj−pj) − Ci

)
. According to the assumption (?), we have ε> 0.

We also introduce I ⊆ J the subset of tasks placed before task i, including the task i itself. By
right-shifting all the tasks in I by ε time units, these tasks stay early (since Ci+ε6d), but their
earliness reduces by ε, inducing a total penalty reduction by ε α(I). If one task in I has a positive
unit earliness penalty, we get a contradiction, since S∗ is supposed to be optimal. Otherwise,
α(I) = 0 and this right-shifting results in another schedule having the same total penalty as S∗,
that is another optimal schedule.

i

Ci

j

Cjd
ε

or
i

Ci

j

CjCj−pj d
ε

- If d6Ci, we set ε=(Cj−pj)−Ci. Once again, ε>0 according to the assumption (?). We introduce
I⊆J the subset of tasks placed after task j, including the task j itself. By left-shifting all the task
in I by ε time units, these tasks stay tardy (since Cj−ε=Ci+pj>d), except if pj =0 and Ci=d,
in which case task j becomes on-time. In all cases, the tardiness of each task in I reduces by ε,
inducing a total penalty reduction by ε β(I). If one task in I has a positive unit tardiness penalty,
we get a contradiction, since S∗ is supposed to be optimal. Otherwise, β(I)=0 and this left-shifting
results in another schedule having the same total penalty as S∗, that is another optimal schedule.

i

Ci

j

CjCj−pjd
ε

If (p, α, β)∈R∗+J×R∗+J×R∗+J , we get a contradiction in both cases. We deduce that there is no idle time
in optimal schedules, hence the set of blocks contains all the optimal schedules.
If some instance coefficients are null, we cannot conclude to a contradiction, and for a good reason: there
might exist optimal schedules with idle times. However, by iterating these shifting operations as long
as idle times remain, we finally obtain an optimal block. That shows that blocks are dominant. This
iterative procedure finishes since each idle time3 is removed by one or two shifting operations. It is then
necessarily an interval [Ci, Cj−pj] for two tasks i and j, and there are at most n−1 idle times in the
initial schedule. �

3In such a context, for a given schedule C, we call "an" idle time a maximal time interval between two task execution
periods (maximal for⊆).

15

Proof of the d-block dominance property by shifting arguments : Here we want to show that an
optimal schedule can always be found among the d-blocks. Thanks to the block dominance properties,
there exists an optimal schedule S∗, encoded by the completion times (Cj)j∈J , which is a block. Let
us assume that S∗ is not a d-block. We denote by j0 ∈ J (resp. jn ∈ J) the first (resp. last) task in
S∗. Hence, Cj0−pj0 (resp. Cjn) the starting time (resp. completion time) of the block. We also denote
by (E, T) the early-tardy partition of this schedule. There are three cases to consider according to the
position of d regarding to Cj0−pj0 and Cjn , knowing that d 6=Cjn since S∗ is not a d-block.

- If d>Cjn , we set ε=d−Cjn . We have ε>0. By right-shifting the whole block by ε time units all
the tasks stay early, but their earliness reduces by ε inducing a total penalty reduction by ε α(J).
Moreover, task jn becomes on-time, then the obtained schedule is a d-block and is also an optimal
schedule.

jn

E
d

0 Cjn
ε

- If d6Cj0−pj0 , we set ε=Cj0−d. We have ε>0 since pj0 >0. By left-shifting the whole block by
ε time units all the tasks stay tardy except task j0 which becomes on-time. The tardiness of each
task reduces of ε, inducing a total penalty reduction of ε β(J). The obtained schedule, which is a
d-block since j0 is on-time, is then also an optimal schedule.

j0

T
d

0 Cj0
ε

- If d∈]Cj0−pj0 , Cjn [, there exists a straddling task js∈J , i.e. Cjs−pjs<d<Cjs , since the considered
schedule is a block but not a d-block.

– If α(E)<β(T), we set ε=Cjs−d. By left-shifting the whole block by ε time units, the total
tardiness penalty reduces by ε β(T), while the total earliness penalty raises by ε α(E), which
represents a reduction of the total penalty by ε

(
β(T)−α(E)

)
>0. Contradiction.

E T

js

d
0 ε

+ εα(E) − ε β(T)

ε εE′

E

T ′

T

j′t = js

d0

– If α(E)>β(T), we set ε=d− (Cjs−pjs). By right-shifting the whole block by ε time units, the
total earliness penalty reduces by ε α(E), while the total tardiness penalty raises by ε β(T),
which represents a reduction of the total penalty by ε

(
β(T)−α(E)

)
>0. Contradiction.

– If α(E)=β(T), there is an infinite number of optimal schedules which are not d-block: all those
obtained by left-shifting the whole block by ε<Cjs−d and all those obtained by right-shifting
the whole block by ε < d − (Cjs−pjs). However, there also exists an optimal d-block, since
there is at least the one obtained by a Cjs−d left-shifting in which js is on-time.

Finally, in the three cases an optimal d-block can be derived from the initial optimal block. �

16

Proof of the V-shaped dominance property by exchange arguments : Let us assume that there ex-
ists an optimal schedule S̃, which is not V-shaped. Using the block dominance property proof, we can
transform S̃ into an optimal block S∗ without changing neither the early-tardy partition, nor the task
sequence. Let (Cj)j∈J denote the task completion times in S∗. At least one of the two following cases
occurs.

- Early tasks are not scheduled in the non-decreasing order of their α-ratio, then there exist two
consecutive early tasks (i, j)∈J such that i is placed before j, i.e. Ci+pj =Cj6d, but has a larger
α-ratio, i.e. αi

pi
>
αj
pj
. By swapping tasks i and j, that is by completing task i at time Cj and task

j at time (Ci−pi)+pj , the earliness of task i reduces by pj time units, while the earliness of task
j raises by pi time units. That results in a reduction of the total penalty of −αi pj+αj pi > 0.
Contradiction.

i j

Ci Cj d

Ej

Ei

ij

C ′iC ′j d

E′i

E′j

- Tardy tasks are not scheduled in the non-increasing order of their β-ratio, then there exist two
consecutive early tasks (i, j)∈J such that i is placed before j, i.e. d6Ci and Ci+pj =Cj , but has
a smaller β-ratio, i.e. βi

pi
<
βj
pj
. By swapping tasks i and j, that is by scheduling task i to complete

at time Cj and task j to complete at time (Ci−pi)+pj , the tardiness of task i raises by pj time
units, while the tardiness of task j reduces by pi time units. That results in a reduction of the
total penalty of βi pj−βj pi > 0. Contradiction.

We deduce that S∗ is V-shaped, then S̃ is V-shaped too. �

The Lemma 0.1’s dominance properties are of major importance as all the results given in Sec-
tion 0.3.2, as well as the formulations of UCDDP provided in Section 0.5 are derived from these
dominance properties Moreover, using Lemma 0.1, we can make some assumptions on parameters
p, α, β of the UCDDP without loss of generality.

• Assuming that d=p(J) without loss of generality
An important point to notice is that the total earliness-tardiness penalty of a d-block only depends
on the task sequence for both sides of the due date, no matter neither the value of the due date nor
the task completion times. This allows to solve all the unrestrictive instances by solving only the
one with d=p(J) for instance. We illustrate this remark on an example, before using the dominance
properties to prove it.

Example 1 (continued) : Equivalence of all the unrestrictive instances
Let us consider again the 4 tasks and the optimal schedules introduced in Example 1 on Page 13. In
the optimal d-block for the unrestrictive instance with d= p(J) = 11, the total length of early tasks is
∆=p2+p1+p3 =9. Therefore, for any d>∆, shifting the whole block such that task 3 completes at d, as
represented below, always provides a d-block of total penalty 21. In addition, this schedule is necessary
optimal, which can be proved by a converse shifting argument.

p p p p p p p p p p p p p p p p
12 3 4

→ 21
d>9

17

Thanks to the d-block dominance, the optimal value does not depend on the value of d (provided
that d is unrestrictive). Indeed, let us consider an instance UCDDP(p, α, β, d) where d>p(J), and
consider d′ = p(J) as a new due date. In addition, let us consider a d-block S, and denote by
(E, T) its early-tardy partition. By definition, S starts at time s= d−p(E). Since E⊆ J , we have
s− (d−d′) = −p(E) + p(J) > 0. That ensures that we can left-shift S by d−d′ time units without
violating the non-negativity constraint. The obtained schedule S ′ is a d′-block, and each task has
exactly the same earliness (resp. tardiness) in S with respect to d as in S ′ with respect to d′. It follows
that S as a solution of UCDDP(p, α, β, d) and S ′ as a solution of UCDDP (p, α, β, d′) have the same
value. More generally, there exists a one-to-one correspondence preserving the objective function
between the dominant sets for these two instances: solving UCDDP (p, α, β, d′) is thus equivalent to
solving UCDDP(p, α, β, d).

• Assuming that ∀j∈J, pj>0 without loss of generality
Thanks to the d-block dominance, we can only consider tasks having a positive processing time.
Indeed, let us assume that there exists a task j∈J having a zero processing time, i.e. pj =0. In any
d-block, the task j can be moved at d, since no task is processing at time d (there is no straddling
task). This move does not impact other tasks. Moreover, it does not increase the penalty induced
by task j, since j incurs no penalty when it is placed at d. We deduce that the set of d-blocks where
j is processed at d is dominant.
Since removing task j does not change the schedule penalty when j is placed at time d, there is a
one-to-one correspondence preserving the total penalty between this dominant set and the set of the
d-blocks for J\{j}. We deduce that an optimal d-block for J\{j} corresponds to an optimal d-block
for J . In other words, it suffices to solve the problem for the instance where the zero processing time
task j has been removed.

• Assuming that ∀j∈J, βj∈R∗+ without loss of generality
Moreover, we can only consider tasks having positive unit tardiness penalties. Indeed, let us assume
that there is a task j∈J having a zero unit tardiness penalty, i.e. βj =0. In any d-block, the task j
can be moved at the end of the schedule without impacting other tasks. This move does not raise the
penalty induced by j, since placed tardy, j incurs no penalty. If this move produces an idle time, we
transform the obtained schedule into a d-block by right-shifting some early tasks or by left-shifting
some tardy tasks. In both cases, that does not raise again the penalty. We deduce that the set of
d-blocks where j is processed last is dominant.
Since removing task j from such a schedule does not change its penalty, there is a one-to-one corre-
spondence preserving the penalty between this dominant set and the set of the d-blocks for J \{j}.
We deduce that an optimal d-block for J \{j} corresponds to an optimal d-block for J . In other
words, it suffices to solve the problem for the instance where the zero unit tardiness penalty task j
has been removed.

• Assuming that ∀j∈J, αj∈R∗+ without loss of generality
Thanks to the unrestrictiveness of d, we can also only consider tasks having positive unit earliness
penalties. We almost follow the same line as above, but we have here to use the assumption d>p(J).
Let us assume there is a task j∈J with a zero unit earliness penalty, i.e. αj = 0. Let us consider a
d-block, and denote by (E, T) its early-tardy partition. We check that task j can be moved at the
beginning of this d-block to obtain a d-block with a non-larger penalty.

- If j ∈ T , we want to place j such that j completes at d−p(E) (and then necessarily starts
at d−p(E)−pj). Since j 6∈ E, we have p(E)+pj 6 p(J). Since d > p(J), we deduce that
d−p(E)−pj>0, that is processing a task between d−p(E)−pj and d−p(E) respects both non-
negativity and non-overlapping constraints. The task j can thus be moved at the beginning

18

of the d-block. This move does not increase the total penalty since, placed early, j incurs no
penalty. By left-shifting some tardy tasks, we transform the obtained schedule into a d-block,
without increasing the total penalty.

- If conversely j ∈ E, then we can first remove task j, then right-shift the early tasks placed
before j so that there is no more idle time, which does not raise their earliness penalties, and
finally place j at the beginning of the schedule, which induces no penalty since j is placed early.
This operation produces a d-block with a lower penalty.

We deduce that the set of d-blocks where j is scheduled first is dominant. As previously done, we
establish a one-to-one correspondence preserving the total penalty between this dominant set and
the set of the d-blocks for J \{j}, and deduce that it suffices to solve the problem for the instance
where the zero unit earliness penalty task j has been removed.

Thanks to the previous remarks, an instance of UCDDP will be defined by p∈R∗+J , α∈R∗+J
and β ∈R∗+J in the sequel. The due date will be implicitly fixed at d= p(J). Such an instance
will be denoted UCDDP(p, α, β).

19

0.2.2 Dominance properties for CDDP
In the general case, the dominance of the d-blocks is no longer valid. Indeed, since the total length
of the early tasks is limited by d, some tasks are tardy even if they would have a lower penalty
scheduled early. Figure 8 shows that the penalty of the left-block4 is smaller than the penalty of the
d-block for two identical tasks characterized by pj =3, αj =2, βj =4, for j∈{1, 2}

S p p p p p p p p
1

α1E1 =2×0

2

β2 T2 =4×30
|

d

→ 12
S ′ p p p p p p p p

1

α1E1 =2×1

2

β2 T2 =4×20
|

d

→ 10

Figure 8: The two possible d-or-left-blocks for a 2-identical-task instance

The following lemma gives dominance properties already known for the common due date problem
with symmetric penalties (Cf. [22] and [20]). These results have been extended to asymmetric
penalties in [13], using the same task shifting and exchange proof arguments. The proof is omitted
since it is very similar to Lemma 0.1’s proof.
Lemma 0.2

Let p∈RJ , (α, β)∈RJ+×RJ+, and d∈R+.
The set of d-or-left-blocks is dominant for CDDP(p, α, β, d).
The set of -shaped schedules is strictly dominant for CDDP(p, α, β, d).

Note that the -shaped property gives no information about the straddling task β-ratio. This
remark is more fully discussed in Section 0.5.3.

•What we can assume about CDDP instance parameters without loss of generality
In a CDDP instance, the due date can be restrictive (i.e. d < p(J)). In this case left-shifting a
d-block by d−p(J) time units can result in a schedule starting before time 0, which is thus unfeasible.
Therefore, we cannot assume that d= p(J) for CDDP instances. Similarly, the arguments used to
show that we can assume that ∀j∈J, αj>0 are not still valid for a restrictive due date. We provide
a counter-example below (Cf. page 21)

Conversely, the arguments establishing that we can assume that ∀j∈J, pj>0 and βj>0 are still
valid for an unrestrictive due date.

Thanks to the previous remarks, in the sequel a CDDP instance will be defined by p∈R∗+J ,
α∈R+

J , β∈R∗+J and d∈R+.

4Since the two tasks are identical, the two possible left-blocks are identical, idem for the two possible d-blocks.

20

Counter-example 1 : We cannot assume without loss of generality that ∀j∈J, αj>0 for CDDP
Let us consider the following instance of CDDP with a task having a 0 unit earliness penalty (task 1).

J=[1..3], d=6, p1 =5, α1 =0, β1 =1,

p2 =3, α2 =2, β2 =2,

p3 =2, α3 =2, β3 =2,
For this instance it is not possible to follow the solving approach described on page 18 by setting aside
task 1. Indeed, if we solve the problem for J={2, 3}, we may obtain the optimal solution where task 2
is on-time, and task 3 starts at time d (another optimal solution starting earlier exists). This schedule
starts at time 3, which does not allow to place task 1 of length 6 before while satisfying the non-negativity
constraint.

According to Lemma 0.2, an optimal schedule can be found among the -shaped d-or-left-blocks. The
following figure presents the -shaped d-or-left-blocks for this instance. For each schedule, the total
penalty is written in gray on the right, moreover the task penalties are detailed under each one. One
can check that all the -shaped d-or-left-blocks are represented. Indeed, in such a schedule, if they are
early, task 1 must be placed before task 2, itself placed before 3 since α1

p1
= 0 < α2

p2
= 2

3 <
α3
p3

= 1, while
if they are tardy, task 3 must be placed before task 2, itself placed before 1 since β3

p3
=1 > β2

p2
= 2

3 >
β1
p1

= 1
5 .

p p p p p p p p p p p p p p p p
1

0∗1

2

2∗42∗1

3

→ 10d0

p p p p p p p p p p p p p p p p
1

0∗0

2

2∗52∗2

3

→ 14d0

p p p p p p p p p p p p p p p p
1

1∗4

2

2∗3 2∗1

3

→ 12d0

p p p p p p p p p p p p p p p p
1

1∗5

2

2∗2 2∗0

3

→ 9d0

p p p p p p p p p p p p p p p p
1

1∗7

2

2∗0 2∗2

3

→ 11d0

p p p p p p p p p p p p p p p p
1

1∗8

2

2∗32∗0

3

→ 14d0

The optimal schedule with a total penalty equals to 9, is a d-block where task 1 is tardy. Moreover, the
schedules where task 1 is early are not optimal. That shows that we cannot say that it is always better
to schedule early the tasks having a zero unit earliness penalty.

21

0.3 Algorithms for the common due date problems
This section presents different algorithms provided in the literature for solving some common due
date problems, along with complexity results. Several sub-problems of UCDDP and CDDP, obtained
by making assumptions on α and β, are considered. Other related problems are presented.

0.3.1 A polynomial algorithm for UCDDP when unit earliness and tar-
diness penalties do not depend on the task

• Kanet algorithm
Kanet [26] considers UCDDP in the particular case where all the unit earliness or tardiness penalties
are equal, i.e. ∀j ∈ J, αj = βj = c for c∈R. This minimization problem, which does not depend on
the constant c, is also called the mean absolute deviation minimization problem, since for c= 1

n
the

objective function can be written as follows.∑
j∈J

αj Ej+βj Tj = 1
n

∑
j∈J

Ej+Tj = 1
|J |

∑
j∈J

[d−Cj]++[Cj−d]+ = 1
|J |

∑
j∈J
|Cj−d|

However, for the sequel, we assume that c = 1. Using V-shaped d-block dominance property,
Kanet [26] provides for this problem an exact O(n log(n)) algorithm Let us present this algorithm.
Once the number of early (resp. tardy) tasks nE (resp. nT = n−nE) is fixed, we know that, for
k∈ [1..nE] (resp. k∈ [1..nT]), placing j at the k-th (resp. n+1−k-th) position in a d-block contributes
for (k−1) pj (resp. k pj) to its total penalty. Finding an optimal schedule for (nE, nT) is then equivalent
to an assignment problem: it then suffices to sort tasks by decreasing processing times and assign
them to the lower penalty positions, that is going from the external positions to the central ones by
alternating the right and left side of d. Following this assignment procedure, the obtained schedule
is a V-shaped d-block, whose total penalty depends on (nE, nT). Using the expression of this total
penalty, one can ensure that it is minimal for nE = dn2 e and nT = bn2 c. On page 23, we give a proof
of these results within a more general framework where earliness and tardiness can have different
weights. The following example illustrates the Kanet’s algorithm course.

Example 3 : The Kanet’s algorithm course on a 4-task instance
We consider the 4-task instance depicted on
the top right, which is formally defined by
J={1, 2, 3, 4}, p1 =4, p2 =1, p3 =2, p4 =3.
The first step of the algorithm is to sort the tasks
by decreasing processing times (a).
Then the sequence is fixed by distributing tasks,
from the external position to the central position,
alternating early and tardy side, starting on the
early one (b – e).
Here, the longest task 1 is placed on the early
side, at the first position (b). Then the second
longest task 4 is placed on the tardy side, at
the last position (c). The third longest task 3
is placed on the early side, between the already
placed early tasks and d, that is at the second
position (d). The shortest task 2, is placed on
the tardy side, between d and the already placed
tardy tasks, that is in second last position (e).
The schedule is finally obtained from this se-
quence by gathering the tasks around d (f).

d
|

d
|

d
|

d
|

d
|

1 2 3 4

1 4 3 2(a)

1(b)

1 4(c)

1 43(d)

1 43 2(e)

1 43 2(f) p p p p p p p p p p p p p

22

• Extension of Kanet’s algorithm for distinct earliness and tardiness penalties
Bagchi, Chang, and Sullivan [4] adapt the Kanet’s algorithm to handle instances where unit earliness
and tardiness penalties are distinct but still do not depend on the tasks, i.e. ∀j ∈ J, αj = α0 ∈R∗+
and ∀j ∈ J, βj = β0 ∈ R∗+. As Kanet did for the case where α0 = β0, they provide an O(n log(n))
algorithm which consists in first sorting the tasks by non-decreasing processing times, and then place
them successively, in E if α0 |E| < β0 (|T |+1) and in T otherwise. This algorithm results in a d-block
where the number of tardy tasks nE is γ or γ+1 if γ=n β0

α0+β0
is integer, and is dγe otherwise. We

provide below a proof of this result. Note that this proof is different from the one proposed in [4].

Proof : Let (nE , nT)∈N2 such that nE+nT =n. Let S a schedule having exactly nE early tasks and nT
tardy ones. Let a∈F([1..nE], J) (resp. b∈F([1..nT], J)) such that a(k) (resp. b(k)) is the task placed at
the k-th position before d (resp. after d) in S.

p p
a(1)a(2). . .a(k). . .a(nE) b(1) b(2) . . . b(k) . . . b(nT)

0
|

d

Ea(k) =
∑
k′<k

pa(k′) Tb(k) =
∑
k′6k

pb(k′)

The total penalty of S can then be written as follows.

α0
∑
j∈J

Ej + β0
∑
j∈J

Tj = α0

nE∑
k=1

Ea(k) + β0

nT∑
k=1

Tb(k) = α0

nE∑
k=1

k−1∑
k′=1

pa(k′) + β0

nT∑
k=1

k∑
k′=1

pb(k′)

= α0

nE∑
k′=1

nE∑
k=k′+1

pa(k′) + β0

nT∑
k′=1

nT∑
k=k′

pb(k′)

= α0

nE∑
k′=1

(nE−k′) pa(k′) + β0

nT∑
k′=1

(nT−(k′−1)) pb(k′)

The problem of finding a schedule S with nE early tasks and nT tardy ones that minimizes the total
penalty is thus equivalent to find how to assign each pj , either to an early position k ∈ [1..nE] whose
cost is α0 (nE−k), or to a tardy position k ∈ [1..nT] whose cost is β0 (nT −k+1). For given (nE , nT),
let us denote by z(nE , nT) the cost of optimal assignments. The value of an optimal schedule (for the
initial problem) is then min{z(nE , nT) |nE + nT = n}. Using exchange arguments, one can prove that
an optimal solution for such assignment problem is obtained by assigning the longest processing times
to the lowest costs. Moreover, one can note that the more (nE , nT) offers positions with a small cost,
the smaller is the cost of the best assignment, i.e. z(nE , nT). In particular, this argument allows us to
deduce the following necessary conditions on (nE , nT)∈N2 to minimize z.

(nE , nT)∈arg min
u+v=n

z(u, v)⇒
{
z(nE , nT)6z(nE+1, nT−1)
z(nE , nT)6z(nE−1, nT +1)

⇒
{
α0 nE>β0 nT

β0 (nT +1)>α0 (nE−1)

⇒
{
α0 nE>β0 (n−nE)
β0 ((n−nE)+1)>α0 (nE−1)

⇒
{

(α0+β0)nE>β0 n

β0 n>(α0+β0) (nE−1)

⇒
{
nE>γ

γ>(nE−1)
⇒ nE∈ [γ, γ+1]∩N

23

Note that z necessary admits a minimizer over the finite set of possible couples (nE , nT). Moreover,
one can check that the value of z is the same for all couples (nE , n−nE) such that nE ∈ [γ, γ+1]∩N.
Therefore, the previous implications are in fact equivalences.

This proves that the original scheduling problem can be solved by first fixing (nE , nT) as presented
according to the parameters α0, β0 and n, and then assigning the different processing times to the
different positions for the costs mentioned above. �

•What is really an unrestrictive instance for Kanet algorithm
One can note that the sequence of the d-block provided by Kanet’s algorithm does not depend on
the due date d>p(J). More precisely, neither the sequence, nor the on-time task depend on d.
Indeed, for a larger due date d′ > d, it suffices to right-shift the whole d-block by d′−d time units
to obtain an optimal schedule. For a smaller due date d′ 6 d, we can similarly left-shift the whole
d-block by d−d′ time units, assuming that d′ is larger than the total length of early tasks, otherwise
this left-shifting produces a schedule which does not satisfy the non-negativity constraint.

Let us define a sequence as a total strict order on the set of tasks, a pointed sequence as a
sequence provided with an on-time task. One can consider that Kanet’s algorithms takes as only
input the processing times, and that it provides as output a pointed sequence, rather than a
schedule. The optimal schedule is directly deduced from this pointed sequence as soon as a large
enough due date is given.

A priori the minimal suitable value for the due date is simply the total length of the early5 tasks
in the pointed sequence. However, the sequence can be chosen so as to minimize this length, as
proposed by Bagchi, Chang, and Sullivan in [5]. Indeed, for each k∈ [1..bn2 c], the (k+1)-th position
and the (n+1−k)-th position in the sequence have the same cost, namely k. Therefore, when the
only goal is to find a minimum penalty sequence, like in the Kanet’s algorithm, the 2k-th and the
(2k+1)-th longest tasks can be placed arbitrarily at these two positions, since it results in two pointed
sequences having the same penalty. On the contrary, Bagchi, Chang, and Sullivan impose how to
place these two tasks in order to minimize the total length of early tasks: the shortest (i.e. the 2k-th
longest tasks of the instance) has to be placed early (i.e. at the (k+1)-th position) and the longest
(i.e. the (2k+1)-th longest tasks of the instance) has to be placed tardy (i.e. at the (n+1−k)-th
position).

Let us denoted by ∆ the total length of early tasks in the resulting sequence. For any d>∆, this
O(n log n) algorithm provides an optimal solution, therefore one can say that an instance is "really
restrictive" when d < ∆. However, in the sequel, we keep the definition of unrestrictive due date
given previously, that is d>p(J).

5By extension of the definition for a schedule, the early tasks of a pointed sequence are those place before the
on-time task in the sequence, including the on-time task itself, and the tardy tasks are the other tasks.

24

0.3.2 A pseudo-polynomial algorithm for UCDDP when unit earliness
and tardiness penalties are symetric

Hall and Posner [21] study UCDDP in the case of symmetric earliness-tardiness penalties, i.e.
∀j ∈ J, αj = βj. In this case, the unit penalties are simply denoted (wj)j∈J . Moreover, they as-
sume that processing times are integer. The problem is then called weighted earliness-tardiness
problem (WETP).
WETP Input: a number of tasks n∈N

the task processing times (pj)j∈[1..n]∈Nn
the task unit earliness-tardiness penalties (wj)j∈[1..n]∈Rn+
a common due date d∈R+ such that d>p(J)

Output: a feasible schedule C=(Cj)j∈[1..n] minimizing fw,w,d(C)

• Complexity results
Hall and Posner [21] show that WETP is NP-hard by reduction from the even-odd partition
problem (EOPP), which is shown be NP-hard in [16].
EOPP Input: (ai)i∈[1..2n] ∈ (N∗)2n sorted in increasing order

Output: yes if there exists a bi-partition {U, V } of [1..2n] s.t


∑
i∈U

au = ∑
v∈V

av

∀k∈ [1..n], {2k-1, 2k} ∩ U 6=∅
∀k∈ [1..n], {2k-1, 2k} ∩ V 6=∅no otherwise

Since UCDDP is more general than WETP, that implies that UCDDP is NP-hard. More precisely
UCDDP is weakly NP-hard since it can be solved by a pseudo-polynomial algorithm proposed in [21]
(Cf. below).

• A pseudo-polynomial algorithm based on dynamic programming
Hall and Posner [21] propose a dynamic programming algorithm to exactly solve UCDDP for sym-
metric penalties. Let us present this algorithm based on the V-shaped d-block dominance property.
Let us assume that tasks are sorted by non-increasing w-ratio, i.e. wj/pj does not increase when j
raises. Without loss of generality, we consider only the d-blocks for which early (resp. tardy) tasks
are scheduled in decreasing (resp. increasing) order of their indices. Note that, in such schedules,
for any k∈ [1..n+1], tasks [1..k−1] are placed consecutively around d: in other words, they form a
d-block.

[k..n]∩E
[1..k−1]
e

[k..n]∩T

d

0

j j

Figure 9: A dominant schedule for the Hall and Posner’s algorithm

Moreover, the penalty induced by tasks [k..n] does not depends of the task sequence of this
d-block, but only of its starting and completion times, which can be deduced from each other. If
e = p

(
E ∩ [1..k− 1]

)
, then the starting time of the d-block is d− e while its completion time is

d−e + p
(
[1..k−1]

)
(which is equal to d + p

(
T ∩[1..k−1]

)
. Note that e∈ [0..p(J)] since processing

25

times are integers.

Thanks to these observations, for any k∈ [1..n+1], the minimal penalty induced by tasks [k..n] in a
dominant schedule only depends on e. It is then denoted by fk(e). By definition, f1(0) is the total
penalty of an optimal schedule. Moreover, for any e∈ [0..p(J)], fn+1(e) = 0 since [n+1..n] = ∅. The
value of fk(e) for e∈ [0..p(J)] and k∈ [1..n] can be computed by reverse induction using the following
recurrence relation.

fk(e) = min
(
fk+1(e+pk) + wk e, fk+1(e) + wk

(
p
(
[1..k]

)
−e
))

Indeed, let us assume that tasks [1..k−1] are already scheduled so as to form a d-block starting e time
units before d, and consider a schedule S optimally completing this block. According to previous
observations, task k can only hold at two positions.

→ Either k is placed just before the block, that is with an earliness of e. In this case, k induces an
earliness penalty of wk e, and, by optimality of S, tasks [k+1..n] induce a penalty of fk+1(e+pk),
otherwise they would be rescheduled so as to reach this smaller penalty.

→ Or k is placed just after the block, that is with a tardiness of p
(
[1..k−1]

)
− e + pk. In this

case, k induces an tardiness penalty of wk
(
p
(
[1..k]

)
−e
)
, and tasks [k+1..n] induce a penalty

of fk+1(e), since S is optimal.

This results in a dynamic programming with O
(
n p(J)

)
states. Even if this number can be divided

by two using other arguments proposed in [21], the algorithm is still pseudo-polynomial. Indeed,
p(J) is the time horizon, but not the problem size. For some instances, p(J) can be exponential with
respect to the problem size.
Remark 0.3

The Hall and Posner’s algorithm can also be used for non-symmetric penalties provided that there exists
a single order σ such that tasks are sorted both by non-increasing α-ratios and non-increasing β-ratios.

0.3.3 Algorithms for CDDP
Hoogeveen and Van de Velde [22] study CDDP in the case of symmetric earliness-tardiness penalties,
i.e. ∀j ∈ J, αj = βj. As previously, the unit penalties are then simply denoted (wj)j∈J . Moreover,
they assume that processing times are integer.

• Complexity results
To establish the complexity of the problem, Hoogeveen and Van de Velde [22] consider the sub-case
of task-independent unit penalties, i.e. ∀j∈J, wj =c for a constant c∈R, with a restrictive due date,
i.e. d<p(J). They show that EOPP reduces to this problem. This proves that CDDP is NP-hard
even if all unit penalties are equal.
More precisely, CDDP is weakly NP-hard as soon as unit penalties are symmetric, since it can be
solved by a pseudo-polynomial algorithm proposed by Hoogeveen and Van de Velde [22]. This algo-
rithm is based on the -shaped d-or-left-block dominance property. The dominant set is decomposed
into two subsets so that the schedules of the same subset share the same structure: on one hand
the d-blocks, on the other hand the left-blocks. An optimal schedule is obtained by comparison of
the best schedules within each subset. These optimal schedules are computed separately, using a
different dynamic programming algorithm. Let us present both algorithms.

26

• A pseudo-polynomial algorithm for the best d-block when unit penalties are symmetric
Note that a -shaped d-block is a V-shaped d-block as well. Therefore, as done for the unrestrictive
case, one can consider only the d-blocks for which early (resp. tardy) tasks are scheduled in decreasing
(resp. increasing) order of their indices, provided that tasks have been sorted by non-increasing w-
ratio. Then in any considered d-block, for any k∈ [0..n], tasks [1..k] form a d-block starting at time
d−e, where e=p

(
E∩[1..k]

)
∈N.

[k+1..n]∩E
[1..k]

e [k+1..n]∩T

d

0

j j

Figure 10: A d-block for the first Hoogeveen and Van De Velde’s algorithm

For any k∈ [0..n] and any e∈ [0..d], let us denote by f̃k(e) the minimal penalty induced a d-block of
tasks [1..k] starting at time d−e. Note that we focus here on the penalty induced by central tasks,
while f focuses on the penalty induced by external tasks. Since the starting time of an optimal
d-block is not known a priori, the total penalty of an optimal d-block is given by mine∈[0..d] f̃n(e).
Moreover, for any e∈ [0..d], f̃0(e)=0 since [1..0]=∅.
The value of f̃k(e) for e ∈ [0..d] and k ∈ [1..n] can be computed by induction using the following
recurrence relation.

f̃k(e) = min
(
f̃k−1(e−pk) + wk (e−pk), f̃k−1(e) + wk

(
e+ p

(
[1..k]

)))
Indeed, in an optimal d-block S of tasks [1..k] starting at time d−e, task k can only hold at two
positions.

→ Either k is the first task of S, its earliness is then e−pk and it induces an earliness penalty of
wk (e−pk). In this case, tasks [1..k−1] form a d-block S ′ starting at time e−pk. Moreover, by
optimality of S, S ′ is an optimal d-block starting at time e−pk. We deduce that tasks [1..k−1]
in S induce a penalty of f̃k−1(e−pk).

→ Or k is the last task in S, its tardiness is then p
(
[1..k]

)
−e, and it induces a tardiness penalty

of wk
(
e+ p

(
[1..k]

))
. In this case, tasks [1..k−1] form a d-block S ′ starting at time e, by

optimality of S, we deduce that tasks they induce a penalty of f̃k−1(e).

This results in a dynamic programming with O
(
n d
)
states.

• A pseudo-polynomial algorithm for the best left-block when unit penalties are symmetric
In a left-block, one cannot say how the tasks are placed regarding to d. However, one knows that
it starts at time 0 and completes at time p(J). Therefore, the dynamic programming algorithm
proposed here does not consider a central block but two blocks. One block to the left, starting
at time 0, which is then a left-block, and completing before or at d, and one block to the right,
completing at time p(J), and starting after or at d.

Moreover, another difference with the d-blocks, is the -shaped property instead of the V-shaped
property. That implies that one cannot know which is the straddling task, it is not necessarily the

27

one with the largest ratio even if it is the first tardy task. Therefore, we compute successively for
each js ∈ J the best left-block in which js is the straddling task, and finally deduced the optimal
left-block by comparison.
To explain how, let us set js∈J , and assume that tasks are sorted by non-increasing w-ratio (that
is in the converse order to the previous one!). We consider only left-blocks where js is the straddling
task and in which early (resp. tardy) tasks are scheduled in increasing (resp. decreasing) order of
their indices. In addition, for any (a, b)∈N2, let us denote by [a..b]∗ the integer set [a..b]\{js}. Hence,
for any k∈ [0..n], tasks [1..k]∗ are divided into two blocks, one starting at time 0 and completing at
time l = p

(
[1..k]∗∩E

)
6 d, and another starting at time p(J)−

(
p([1..k]∗)−l

)
= p

(
[k+1..n]∪{js}

)
+l

and completing at time p(J). Tasks [k+1..n]∗∪{js} form a block in the middle.

[1..k]∗∩E

js

[k+1..n]∪{js}
ll

[1..k]∗∩T

d

0 p(J)p(J)−
(
p([1..k]∗)−l

)
= p

(
[k+1..n]∪{js}

)
+l

j j

Figure 11: A left-block for the second Hoogeveen and Van De Velde’s algorithm

For any k ∈ [0..n] and any l ∈ [−p(J)..d], let us denote by f̂k(l) the minimal penalty induced by a
schedule of tasks [1..k] in the two time intervals [0, l] and [p

(
[k+1..n]∪{js}

)
+ l, p(J)]. If no such

schedule exists, f̂k(l) =∞. Therefore, f̂k(l) =∞ when l > p([1..k]∗), in particular when k = 0 and
l>0. Conversely, f̂0(0)=0.
Since the starting time of the straddling task js is not known a priori, the total penalty of an optimal
left-block in which js is the straddling task is given by minl∈[d−pjs ..d] f̂n(l).
The value of f̂k(l) for k ∈ [1..n] and l ∈ [0..d] can be computed by induction using the following
recurrence relation.

f̂k(l) =
f̂k−1(l) if k=js

min
(
f̂k−1(l−pk) + wk (d−l), f̂k−1(l) + wk

(
p
(
[k+1..n]∪{js}

)
+l+pk−d

))
otherwise

Indeed, in an optimal schedule S of tasks [1..k] in [0, l] and [p
(
[k+1..n]∪{js}

)
+l, p(J)], task k can

only hold at two positions.
→ Either k is the last task in the left interval, that is k completes at time l and then induces

an earliness penalty of wk (d− l). In this case, tasks [1..k−1] are placed in the two intervals
[0..l−pk] and [r, p(J)] where r=p

(
[k+1..n]∪{js}

)
+l=p

(
[k..n]∪{js}

)
+(l−pk). By optimality

of S, these tasks [1..k−1] induce a penalty of f̂k−1(l−pk).

→ Or k is first task in the right interval, that is k completes at time r=p
(
[k+1..n]∪{js}

)
+l+pk.

In this case, tasks [1..k− 1] are placed in the two intervals [0..l] and [r, p(J)]. Since r =
p
(
[k..n]∪{js}

)
+l, by optimality of S, we deduce that tasks [1..k−1] induce a penalty of f̂k−1(l).

This results in a dynamic programming with O
(
n p(J)

)
states, which as to be repeat n times to

consider all possible straddling tasks.

28

Remark 0.4
Like the Hall and Posner’s algorithm, both Hoogeveen and Van De Velde algorithms can be used for
non-symmetric penalties provided that there exists a single order σ such that tasks are sorted both by
non-increasing α-ratios and non-increasing β-ratios.

• A heuristic for CDDP, along with a benchmark
Biskup and Feldmann [9] propose two heuristics algorithm for CDDP, without any assumptions on
the unit penalties.

In contrast with the exact algorithms proposed above, these heuristic algorithms are not exactly
based on dominance properties since they consider onlyV-shaped d-blocks, which do not form a dom-
inant set for an arbitrary due date. As we will explain in Section 0.5, the total penalty of such a
schedule can be computed from the partition between early and tardy tasks only. Therefore, both
heuristic algorithms proposed by Biskup and Feldmann consist in building an early-tardy partition
(E, T).

The first heuristic algorithm starts with E = ∅ and T = J . At each step, the penalty variation
induced by moving j from T to E. is compute for each task j∈T such that pj6d−p(E). If no such
task induces a penalty reduction, the algorithms stops and returns the V-shaped d-block associated
with the partition (E, T). Otherwise, the task inducing the largest reduction is removed from J and
added to E.

The second heuristic algorithm starts with E = ∅ and T = ∅. Tasks are considered one by one
by decreasing β-ratio. While |E|< bn/2c, if the considered task j satisfies pj 6 d−p(E), then j is
added to E, otherwise j is added to T . When bn/2c tasks have been added to E, all the remain-
ing tasks are added in T , However, these tasks are considered by decreasing β-ratio once again in
order to decide if they stay in T or not: a task is moved from T to E if it induces a penalty reduction.

These algorithms provide a feasible schedule which is not necessary optimal, and no guarantee
is provided to bound the ratio of its penalty over the penalty of an optimal schedule. To assess the
efficiency of their algorithms, the authors provide a benchmark with both restrictive and unrestrictive
instances, with arbitrary penalties.
Both algorithms succeed in providing a solution within few seconds, even for large instances (n=
1000). However, authors can only evaluate the quality of these solutions for small instances (n=10),
since they have no exact methods to solve large instances. For these small instances, the penalty of
the provided solutions is close to the optimal value for a restrictive due date (the average gap over
the ten instances is 6.7%) and very closed when the due date is unrestrictive (9 over the 10 instances
are solved to optimality).

In order to compare the heuristic that we proposed in Section 6.3 for UCDDP, we implement the
more promising6 of the Biskup and Feldmann’s algorithms. Therefore, we are able to evaluate the
quality of the solutions provided by their heuristic for lager size instances (n = 200): they are very
good since the average gap for unretsrictive instances is 0.1%, Cf. Table 6.3 on page 181. However,
these solutions can be improved by a local search algorithm proposed in Section 6.3.

• Algorithms designed for more general problems
A generalization of CDDP is the single machine scheduling problem with distinct due dates, in
which each task j∈J has its own due date dj. The earliness (resp. tardiness) of j is then Ej =[dj−Cj]+

6According to the authors themselves.

29

(resp. Tj = [Cj−dj]+). The algorithms designed to solve this problem can be used to solve CDDP.
Among them, one can cite the Branch-and-Bound algorithm proposed by Sourd [41], which have been
tested on the Biskup and Feldmann benchmark. This algorithm is able to exactly solve instances up
to size 1000 within 1400 seconds at most. To the best of our knowledge, this algorithm is the most
efficient for solving to optimality UCDDP and CDDP.

Araki, Fujikuma and Tanaka [42] propose a Successive Sublimation Dynamic Programming
(SSDP) algorithm to solve a general single machine scheduling problem, where the penalty of a
schedule can be written as ∑j∈j fj(Cj), where, for any task j, fj is an integer-valued function. This
kind of functions covers all the cases where the total penalty of a schedule is the sum of the penalty
of each task, and the latter only depends on the task completion time. In particular, that covers
function fα,β,d. However, no experimental results are given for common due date problems but only
for distinct due date problems.

The complexity results given in the last three sections are contextualized in the next section, in
which we propose an overview of the complexity results known for problems related to UCDDP and
CDDP.

0.3.4 Due date related scheduling problems
On page 32, we propose a cartography of single machine scheduling problems related to CDDP. More
precisely, all the problems represented can be derived from CDDP by changing assumptions on the
due date, the processing times, and/or the unit penalties, or by adding some assumptions.
Note that, in spite of their name, some assumptions induce no restriction on the instances. For exam-
ple, "restrictive due date" is only written by opposition to "unrestrictive due date", and means that
the due date is not necessarily unrestrictive, i.e. d can be arbitrarily chosen smaller or greater than
p(J). To avoid misunderstanding, the following table specifies the different assumptions appearing
on the cartography.

- Assumptions on the due date:
– distinct due dates means that each task j has its own due date dj. These due dates are
not necessarily distinct.

– common due date means that ∀j∈J, dj =d.
– restrictive for a common due date d means that d can be small.
– unrestrictive for a common due date d means that d>p(J).

- Assumptions on the unit earliness and tardiness penalties:
– symmetric penalties means that earliness and tardiness are penalized in the same way,
i.e. ∀j∈J, αj =βj. The unit penalty of task j is then denoted by wj.

– arbitrary penalties conversely means that the earliness and the tardiness of each task j
are penalized according to different parameters αj ans βj. It is not necessary that αj 6=βj.

– task-independent penalties means that ∀j∈J, αj =α and βj =β for given α and β
– task-dependent penalties means that each task j has its own unit penalties αj and βj.
These penalties are not necessarily distinct from a task to another.

- Assumptions on the processing times:
– pi=p means that all the tasks have the same processing time, i.e. ∀j∈J, pj =p

– pj =wj for symmetric penalties (wj)j∈J means that ∀j ∈ J, pj =wj

- Additional assumption:

30

– fixed sequence means that a task sequence is given in the instance,

Each problem is represented by a rectangle divided in two parts: the left part gives its definition
while the right part gives its complexity, if it is known. In addition, some explanations are given in
gray on the right part, either to justify why the problem is NP-hard, or to specify its complexity
when the problem is in P.

• How to read this cartography
The idea is to start from a problem, like UCDDP, and then browse the cartography going from a
problem to another following the arrows. Indeed, an arrow is represented from a problem to another
if only one assumption is added or removed.
However, problems can also be considered by batch of four problems differing from each other only on
assumptions about unit penalties. Such batches are highlighted using mauve ellipses in background.

• Changes making a problem hard or conversely easy
Starting from the problem studied by Kanet (unrestrictive common due date, all unit penalties being
equal), which is solvable in O(n log n), three assumptions makes the problem NP-hard when they are
relaxed.

- By relaxing the due date unrestrictiveness, the problem becomes weakly NP-hard as shown by
Hoogeveen and Van De Velde [22].

- By relaxing the due date unicity, the problem becomes NP-hard as shown by Garey, Tarjan,
and Wilfong [16].

- By relaxing the task-independence of unit penalties, the problem becomes weakly NP-hard as
shown by Hall and Posner [21].

Conversely, NP-hard problems can become solvable in polynomial time by assuming that all process-
ing times or all α and β-ratios are equal, or when a task sequence is given.

The cartography given on the next page concludes our state of the art for the scheduling field.
In the next section, we introduce the linear programming—from what is an LP to what is a Branch-
and-Cut algorithm—and present some linear formulations for single machine scheduling problems.

31

KANET [26]
unrestrictive ∈ P
common due date O(n logn)

task-independent
symmetric penalties
↪→ αi = βi = 1

unrestrictive ∈ P
common due date O(n logn)

task-independent
arbitrary penalties
↪→ αi = α and βi = β [4]

UCDDP
unrestrictive NP-hard
common due date since already

when symetrictask-dependent
arbitrary penalties
↪→ αi and βi

HALL and POSNER [21]
unrestrictive NP-hard
common due date by reduction from

EOPPsymmetric penalties
task-dependent weakly NP-h.

O(np(J))↪→ αi = βi = ωi

unrestrictive ∈ P
common due date O(n logn)

task-dependent
symmetric penalties
↪→ αi = βi = ωi

pi = p [21]

unrestrictive ∈ P
common due date O(n)

task-dependent
symmetric penalties
↪→ αi = βi = ωi

ωi = pi [21]

restrictive NP-hard
common due date by reduction

from EOPP [22]task-independent
symmetric penalties weakly NP-h.

O(n2d)↪→ αi = βi = 1

restrictive O(n)
common due date
task-independent
symmetric penalties
↪→ αi = βi = 1
pi = p [22]

HOOGEVEEN and VAN DE VELDE [22]
restrictive NP-hard
common due date since already

without weigthstask-dependent
symmetric penalties weakly NP-h.

O(n2d)↪→ αi = βi = ωi

restrictive NP-hard
common due date since already

when symetrictask-independent
arbitrary penalties weakly

NP-hard [25]↪→ αi=α and βi=β

CDDP
restrictive NP-hard
common due date since already

without weights
or when
symetric

task-dependent
arbitrary penalties
↪→ αi and βi

restrictive ∈ P
common due date O(n logn)

task-dependent
symmetric penalties
↪→ αi = βi = ωi

pi = p [22]

restrictive ∈ P
common due date O(n logn)

task-dependent LPT order,
d placed in
the middle

symmetric penalties
↪→ αi = βi = ωi

ωi = pi [22]

GAREY, TARJAN, WILFONG [16]
distinct due dates NP-hard
task-independent by reduction

from EOPPsymmetric penalties
↪→ αi = βi = 1

distinct due dates NP-hard
task-independent since already

when symetricarbitrary penalties
↪→ αi = α and βi = β

distinct due dates NP-hard
task-dependent since already

without weighssymmetric penalties
↪→ αi = βi = ωi

distinct due dates strongly
NP-hardtask-dependent

arbitrary penalties since stronger
than

∑
ωiTi [30]

distinct due dates ∈ P
task-independent O(n logn)
symmetric penalties
↪→ αi = βi = 1
pi = p

distinct due dates ???
task-independent
arbitrary penalties
↪→ αi=α and βi=β
pi = p

distinct due dates ???
task-dependent
symmetric penalties
↪→ αi = βi = ωi

pi = p

distinct due dates ???
task-dependent
arbitrary penalties
pi = p

distinct due dates ∈ P
task-independent O(n logn)
symmetric penalties
↪→ αi = βi = 1
fixed sequence [16]

distinct due dates ∈ P
task-independent O(n logn)
arbitrary penalties
↪→ αi=α and βi=β
fixed sequence [16]

distinct due dates ∈ P
task-dependent O(n logn)
symmetric penalties
↪→ αi = βi = ωi

fixed sequence [16]

distinct due dates ∈ P
task-dependent O(n logn)
arbitrary penalties
fixed sequence [16]

lo
ss

of
sy
m
et
ry lo
ss

of
sy
m
et
ry

lo
ss

of
sy
m
et
ry

lo
ss

of
sy
m
et
ry

lo
ss

of
sy
m
et
ry lo

ss
of

sy
m
et
ry

lo
ss

of
sy
m
et
ry lo

ss
of

sy
m
et
ry

lo
ss

of
sy
m
et
ry lo
ss

of
sy
m
et
ry

weighting

weighting

weighting

weighting

weighting

weighting

weighting

weighting

weighting

weighting

pi
=p

fixing
sequence

re
st
ric

tiv
ne
ss

loss of due date unicity

0.4 MIP formulations for scheduling problems

In order to present MIP formulations, we first define what is a linear formulation for a minimiza-
tion problem. Of course they can be transposed to a maximization problem. The convex analysis
definitions used (polyhedron, convex...) are recalled in appendix (Cf. page 203).

0.4.1 Linear formulations and polyhedra

Let d∈N∗. A linear inequality7 in dimension d is defined by a normal vector a∈Rd\{0}, a real
number α ∈ R, and an inequality symbol, i.e. 6 or >. A vector x ∈ Rd satisfies the inequality
if a ·x 6 α (resp. a ·x > α). Otherwise, one say that x violates the inequality. An inequality is
valid for a set S ⊆ Rd if all the points of S satisfies it. A linear program (LP) in dimension d
is defined by a linear objective function f from Rd to R and a finite set of linear inequalities, in-
dexed by I. Such an LP can be written as follows for a cost vector c∈Rd and a family (ai, αi)i∈I∈RI .

min{ c·x | ∀i∈I, ai ·x6αi}

Such an LP can be solved in polynomial time (with respect to the LP size) using the interior-point
method proposed by Karmarkar in 1984 [27]. Moreover, several LP-solvers are available to solve such
problems. Even though they are based on the simplex algorithm proposed by Dantzig in 1947, which
can require exponentially-many computation steps, these solvers are efficient in practice, and broadly
used.

From a geometrical point of view, the solution set of an LP is a polyhedron, since each inequality
is satisfied by an half-space of Rd. Let us denote by P this polyhedron and assume that P 6=∅. Since
P is a closed set, function f , which is a linear and then continuous, admits a minimum on P . Note
that several points in P can reach this minimum. Actually, If there exist two minimizers x 6=y in P ,
then the whole segment [x, y] is in P (by convexity of P), and any point in [x, y] is also a minimizer
(by linearity of f). An important particularity of polyhedra among closed convex sets, is that they
can be finitely generated, in the sense of Klee’s Theorem (Cf. page 208). Indeed, a polyhedron has
finitely-many extreme points, and at least one of them reaches the minimum. Based on this remark,
the simplex algorithm browses the extreme points of the polyhedron, guided by the objective func-
tion. The minimizer provided by this algorithm is then an extreme point of the polyhedron.

LP can model a wide class of practical problems. However, a priori (i.e. without further inves-
tigations on the polyhedron) variables have to model continuous quantities, which is restrictive. Let
us introduce a small example to illustrate this remark.

0.4.2 Continuous variables vs. integer variables, or bulk vs. packets
Imagine that I have a 10€ voucher to buy flour directly to a mill, where green lentil, chickpea, spelt,
and wheat flours are sold from bulk. I want to use my voucher, that is spend at least 10€ and to
buy at least 500g of each kind of flour, but I also want to minimize my shopping weight. Moreover,
I use only chickpea or green lentil flour mixed with twice as much wheat or spelt flour. The best
solution for me, i.e. is the best weight of each flour (wgl, wcp, ws, ww) that I can buy, can be found by
solving the following LP, where cgl, ccp, cs, cw denote the price per kg of green lentil, chickpea, spelt,
and wheat flour respectively.

7Note that a linear inequality a ·x6 α corresponds to an half-space delimited by an affine hyperplane, since the
right member α is not necessarily zero.

33

min


wgl + wcp + ws + ww

∣∣∣∣∣∣∣∣∣∣∣

(wgl, wcp, ws, ww)∈R4

cgl wgl + ccpwcp + csws + cw ww > 10
wgl > 0.5, wcp > 0.5, ws > 0.5, and ww > 0.5
ws+ww > 2 (wgl+wcp)


Note that this problem can be formulated as an LP since the amount of each floor can be

represented by a continuous variable. If you assume, in the same example, that flours are not sold
from bulk, but in 5kg-packets for wheat and in 1kg-packet for the others, the problem is modeled
by integer variables, ngl, ncp, ns, nw representing the number of packets for each kind of flour. The
problem is then formulated as follows, where c1

gl, c
1
cp, c

1
s, and c1

w denote the packet prices.

min


ngl + ncp + ns + 5nw

∣∣∣∣∣∣∣∣∣∣∣

(ngl, ncp, ns, nw)∈N4

c1
gl ngl + c1

cp ncp + c1
s ns + c1

w nw > 10
ngl > 0.5, ncp > 0.5, ns > 0.5, and 5nw > 0.5
ns + 5nw > 2 (ngl+ ncp)


The solution set of this formulation is no longer a polyhedron, but the set of the integer points of a
polyhedron. Such a program is called an integer program (IP) .

Assuming that the wheat flour only is sold from bulk and no longer in 5kg-packet, the problem
is then formulated by the following mixed-integer program (MIP) where continuous and integer
variables coexist.

min


ngl + ncp + ns + ww

∣∣∣∣∣∣∣∣∣∣∣

(ngl, ncp, ns, ww) ∈ N3× R
c1
gl ngl + c1

cp ncp + c1
s ns + cw ww > 10

ngl > 0.5, ncp > 0.5, ns > 0.5, and ww > 0.5
ns + ww > 2 (ngl+ ncp)


In the sequel, we will use MIP to design both IP or MIP. Conversely, LP will only designate

programs without integrity constraints. Note that a MIP can be turned into an LP by relaxing (i.e.
removing) its integrity constraints. The LP is then called the linear relaxation of the MIP. In
the above example, the first LP formulation is the linear relaxation of the last formulation. Indeed,
the objective function and the linear inequalities are the same8 but (ngl, ncp, ns) ∈ N3 is relaxed into
(ngl, ncp, ns) ∈ R3.

MIP can model a very broad range of problems, which includes NP-hard problems, then, in con-
trast with LP, MIP are not solvable in polynomial time in general. In some cases, it can be shown
that the MIP has the same value as its linear relaxation, for example when all the extreme points
of the polyhedron are integer points. If so, it suffices to solve the linear relaxation, which is easy if
the formulation is not too big. To be precise, for a given problem, a formulation is said compact
if the number of variables and the number of inequalities are bounded by a polynomial function of
the instance size. If a problem reduces to solve a compact LP, then it can be solved in polynomial time.

We do not develop such cases in the following, and conversely focus of how to solve MIP where
integrity constraints cannot be omitted, and then LP holding exponentially-many inequalities.

8They are the same, as soon as variables ngl, ncp, and ns are renamed into wgl, wcp, and ws respectively.

34

0.4.3 Branch-and-Bound algorithm to solve MIP
Let us present the Branch-and-Bound method in general, for an arbitrary minimization problem
P0. Let us denote by z∗ its optimal value. Of course the following results can be transposed to
a maximization problem. A more developed introduction to Branch-and-Bound algorithms can be
found in [38].

• Branch-and-Bound algorithms in general
A Branch-and-Bound algorithm requires a sub-algorithm, called bounding function, able to provide
a lower bound for P0 and for reinforcements of P0, that are problems obtained from P0 by adding
some constraints. Let us denote this sub-algorithm by LB. and by z∗ the optimal value of P0. The
more a problem P̂ is reinforced compared to P0, the larger is its optimal value ẑ, and hopefully the
larger is LB(P̂). Note that LB(P̂) is not a lower bound on z∗ in general. However, if the solution
subsets of a family of reinforcements cover the solution set of P0, then the minimal lower bound of
these reinforcements is a lower bound on z∗. To decide how to divide the solution set, that is to
chose which reinforcements of a problem to consider, the Branch-and-Bound algorithm also requires
a branching rule.

A Branch-and-Bound algorithm handles both a lower and an upper bound on z∗. The aim is to
reduce the gap between these bounds so that only one possible value remains in the interval: z∗. The
lower bound is improved by:
→ applying the branching rule to generate problem reinforcements,
→ applying the bounding function to each reinforcements,
→ deducing a new lower bound by taking the minimal lower bound,
→ recursively applying this method to improve the lower bounds.

The execution of a Branch-and-Bound algorithm can be represented by a decision tree, called the
branching tree. Each node represents a reinforcement of P0. The root node is P0 itself. The
children of a node P are reinforcements of P , obtained by making additional assumptions, called
branching decisions. The solution sets of the children must cover the solution set of P . Thanks
to this, the minimal value of the child lower bounds is a lower bound for P , hopefully better, i.e.
larger, than the one provided by LB(P).

In addition, a Branch-and-Bound algorithm requires a way to choose which node is explored at
each step. Whichever strategy is chosen (depth first, best first...), there exists two kinds of nodes P
that do not need to be explored.
(i) If an optimal solution x is known for P , then its value is an exact lower bound for P, there

is no way to improve this bound by considering reinforcements. Such a solution can be found, by
any chance, when applying LB, or by applying on purpose a heuristic method to solve P, or even by
applying an exact method if P is sufficiently reinforced to be easy to solve. Moreover, x is also a
solution for P0 then its value gives an upper bound on z∗.

(ii) If LB(P) is larger than the best currently known upper bound on z∗, there is no need to explore
P. Indeed, this node will never have the minimal lower bound, and will never be used as a lower
bound for z∗, since improving a lower bound makes it only largest. In other words, the solution set
of P corresponds to solutions having a too large value according to the objective function, and it will
be worse for any reinforcement of P. Note that this case particularly occurs when P solution set is
empty, and the lower bound for P is +∞.

When the potential sub-tree rooted in such a node is not explored, we say that we prune the
branching tree. Pruning is interesting since it allows to save node exploration.

35

• Branch-and-Bound algorithms for solving MIP
Let us now present how Branch-and-Bound algorithm components are instantiated for MIP exact
solving.

- A branching decision consists in adding a linear inequality involving only one integer variable,
which is then called the branching variable, i.e. an inequality like xi6a or xi>a. Therefore,
the reinforcements of the initial MIP are also MIP, or even LP.

- The bounding function consists in solving the linear relaxation of the MIP related to the node.
Therefore, reinforcing a problem necessarily leads to a no smaller lower bound. Moreover, if
the solution found by solving the linear relaxation is integer, its value is an exact lower bound
for this node, and also an upper bound on z∗. Otherwise, a rounding procedure may be applied
in order to produce a feasible solution and then an upper bound on z∗.

- The branching rule is based on the solution x̃ of the linear relaxation. The decision variable xi
is chosen among the integer variables that have the largest fractional part in x̃. Two branching
decisions are then considered: xi6bx̃ic and xi>dx̃ie. The corresponding solution subsets cover
all the feasible solutions, since the value of xi has to be integer.
Note that, in the case of binary variables, the branching decisions are necessary xi 6 0 and
xi>1, which are equivalent to xi=0 and xi=1. In other words, each branching step consists in
fixing one variable. If the n integer variables are n binary variables, a node of depth n admits
only one solution, which is an integer solution and provides an upper bound.

The efficiency of a Branch-and-Bound algorithm depends in general of the quality of the lower
bounds provided by the bounding function. Indeed, the tighter they are, the more we can prune a
node of type (ii). In the MIP solving framework, the quality of the lower bounds directly depends
on the quality of the initial formulation. In addition, a best formulation can also allow to obtain
an integer solution when solving the linear relaxation, which corresponds to a node of type (i) and
potentially improves the upper bound on z∗.

Therefore, when a problem is formulated as a MIP, we are interested in its linear relaxation
value, i.e. the optimal value of the linear relaxation. Roughly speaking, a formulation with a linear
relaxation value near to the optimal value is a formulation for which the Branch-and-Bound solving
will requires to explore few nodes. However, in practice, adding linear inequalities to improve the
linear relaxation value can slow down the linear relaxation solving step at each node. Therefore, it
does not necessary reduce the global computation time required by the Branch-and-Bound algorithm.
Such cases will be discussed in Section 3.5.

36

0.4.4 Branch-and-Cut algorithm
Even if LP are solvable in polynomial time, when the number of inequalities becomes too large,
solving an LP can be very long, or at least too long to be repeated at each node of a Branch-and-
Bound algorithm. A common way to manage inequalities when they are too numerous, is to add
them progressively in the LP given to the solver, according to a separation algorithm. The aim is to
add only a small part of the inequalities, while ensuring that the solution finally obtained satisfies
them all. We present first what is a separation algorithm, and then explain how it can be used in a
cutting plane based algorithm to solve an LP.

• Separation problem and separation algorithm
Let us consider a family of inequalities ai·x6αi indexed by a finite set I. The separation problem
associated with this inequality family is to decide for a point in x ∈Rd whether it satisfies all the
inequalities of the family, and, if not, to provide a violated inequality.
separation Input: x∈Rd

Output: "yes" if ∀i∈I, ai ·x6αi
an index i∈I such that ai ·x>αi otherwise

Note that it is not a simple decision problem, since in the negative case, a violated inequality is
required as a proof. A separation algorithm is an algorithm that solves such separation problem.
A separation algorithm can provide several indices of unsatisfied inequalities, or it can provide the
index of a most violated inequality, i.e. maximizing ai ·x−αi One uses also "separation algorithm"
to designate an algorithm that solves the sub-problem where x is integer. Indeed, the separation
problem can be easier to solve for integer points, and in this case, it is advantageous to use a special
algorithm for these points.

• Cutting plane based algorithm
Let us consider the following LP.

min

 c·x
∣∣∣∣∣∣∣∣
x∈Rd

∀i∈I, ai ·x6αi

∀j∈J, bj ·x6βj


Let us assume that only the first inequality family has to be separated, i.e. inequalities ai·x6αi for
i∈I, which will be called a-inequalities. We introduce the polyhedron defined by the other inequality
family.

P̃ =
{
x∈Rd

∣∣∣ ∀j∈J, bj ·x6βj }
For a given separation algorithm for the a-inequalities, the cutting plane based algorithm is the
following.

0. Start with Ĩ=∅, that is with no a-inequality.
1. Solve the LP and record its optimal solution x̃, i.e. x̃=arg min

 c·x
∣∣∣∣∣∣ x∈ P̃∀i∈Ĩ, ai ·x6αi


2. Launch the separation algorithm on x̃

3. If all the a-inequalities are satisfied, return x̃.
Otherwise, add to Ĩ the index provided by the separation algorithm, and go back to step 1.

An important result about the complexity of cutting plane based algorithms is due to Grötschel,
Lovász and Schrijver [19]. They show that a cutting plane based algorithm can be solved in polyno-
mial time if and only if the related separation algorithm is solvable in polynomial time.

37

A MIP can combine both difficulties: an exponential number of inequalities along with integrity
constraints. In this case, we use a Branch-and-Cut algorithm, which is actually a Branch-and-
Bound algorithm in which the algorithm used to solve each LP is a cutting plane based algorithm.

0.4.5 Linear formulations for scheduling problems
Many scheduling problems are formulated by LP, IP or MIP, even in cases where they are not solved
using linear programming techniques. The nature of these linear formulations greatly depends on
the variables used to described a schedule. We briefly presents some of them in the case of single
machine scheduling problems. Within more general framework, polyhedral approaches using these
variable families are presented in a report of Queyranne and Schulz [35].

• Completion time variables (Cj)j∈J
These variables are continuous variables representing the completion times as they are defined

page 10. Without speaking about linear formulation, most of the single machine scheduling problems
are first formulated using the completion times. Therefore, they are called natural date variables
in [35].

As presented on page 51, the fundamental non-overlapping constraints (1.1) are not linear in-
equalities for completion time variables. However, Queyranne proposes in [34] a way to ensure task
non-overlapping with linear inequalities using only completion time variables. This result is further
discussed in Section 1.1 as we propose to extend the idea in order to provide linear formulations for
common due date scheduling problems based on natural variables, which are similar to completion
time variables.

To the best of our knowledge, no linear formulation using completion time variables has been
proposed for common due date problems.

• Time-indexed variables (xj,t)(j,t)∈J×[1..T]

In case of integer processing times, the task completion times in a block starting at an integer
time are all integers. Therefore, using dominance properties, one can assume that task completion
times belong to a range [1..T], where T is called the time horizon. Then a schedule can be de-
scribed by the so-called time-indexed variables, (xj,t)(j,t)∈J×[1..T], which indicate for each task j
if it completes at time t. In contrast with the previous variables, these ones are integer (and even
binary). Moreover, they can model a lot of constraints without additional variables, then they gen-
erally result in IP formulations, and not in MIP formulations. Such IP formulations often offer a
good linear relaxation value, but their size is sensitive to the time horizon, and when it becomes too
large, the number of variables skyrockets.

The fundamental non-overlapping constraints can be formulated using time-indexed variables by
linear inequalities (2) presented below.

Even if the Sourd’s solving approach for CDDP in [41] does not fall under linear programming,
a time-indexed formulation for CDDP is proposed. Let us present below this formulation, that we
solve in Section 2.3.

Let us assume that the due date and the processing times are integer, i.e. d∈N and (pj)j∈J ∈NJ .
The task completion times for a d-block are then necessary integers between Tmin = d−p(J) and
Tmax = d+p(J). For the sake of brevity, we rather use Tmin = 1 and denote simply by T the Tmax.
For any t∈ [1...T] and any j ∈J , the penalty induced by the task j if it completes at time t can be

38

expressed as follows.

cj,t = max
(
αi(d−t), βi(t−d)

)
= αi[d−t]+ + βi[t−d]+

Moreover, the following inequalities ensure that each task completes exactly at one time and tasks
do not overlap.

∀j∈J,
T∑
t=1

xj,t = 1 (1)

∀t∈ [1..T],
∑
j∈J

min(t+pj−1, T)∑
s=t

xj,s 6 1 (2)

Let us introduce the polyhedron defined by these inequalities, along with the set of its integer points.

P TI =
{

(xj,t)(j,t)∈J×[1..T]∈RJ×[1..T]
∣∣∣ (1 – 2) are satisfied

}
intx(P TI)=P TI ∩ {0, 1}J×[1..T]

The time-indexed formulation for CDDP is then the following.

FTI : min
x∈intx(PTI)

∑
j∈J

T∑
t=1

cj,t xj,t

• Linear ordering variables (xi,j)i,j∈J<
If the schedules of the dominant set considered are entirely defined by their task sequence, they

can be described by binary variables (xi,j)i,j∈J< that indicate for each pair of tasks (i, j) whether i
completes before j. These variables are called linear ordering variables, since they encode a linear
ordering of tasks, that is a function from J to [1..n], which assigns to each task its position in the
sequence. In contrast with the previous variables, linear ordering variables often requires additionnal
variables to provide a linear formulation of the problem. Indeed, having enough variables to encode a
schedule is not sufficient, one needs variables that allow to express the objective function as a linear
function, and to translate constraints by linear inequalities. Therefore, such variables result often in
MIP formulations, and not IP formulations.

The fundamental non-overlapping constraints can be formulated using starting time variables as
well as linear ordering variables by linear inequalities (7) and (8) presented below.

Even if Biskup and Feldmann propose a heuristic method for CDDP in [9], a MIP formulation
for CDDP is also provided. Let us present below this formulation, that we solve in Section 2.3. For
each task j∈J , three continuous variables are additionally considered: ej representing its earliness,
tj representing its tardiness, and sj representing its starting time. The following inequalities (3 – 6)
ensure that these variables are consistent.

∀j∈J, ej > 0 (3)
∀j∈J, tj > 0 (4)
∀j∈J, ej > d− (sj+pj) (5)
∀j∈J, tj > (sj+pj)− d (6)

∀(i, j)∈J<, sj+pj 6 si + p(J) xi,j (7)
∀(i, j)∈J<, si+pi 6 sj + p(J) (1−xi,j) (8)

∀(i, j)∈J<, xi,j > 0 (9)
∀(i, j)∈J<, xi,j 6 1 (10)

39

Let us introduce the polyhedron defined by these inequalities, along with the set of its integer points.

P LO=
{

(e, t, s, x)∈(RJ)3×RJ<
∣∣∣ (3 – 10) are satisfied

}
intx(P LO)=

{
(e, t, s, x)∈PLO

∣∣∣x∈{0, 1}J< }
The linear ordering formulation for CDDP is then the following.

FLO : min
(e,t,s,x)∈(PLO)

∑
j∈J

αj ej + βj tj

In this thesis, we use time-indexed and linear-ordering variables in formulations FLO and FTI
for comparison. In contrast we use natural variables which are similar to completion times variables
to provide formulation for common due dates problem in Part A. Moreover, we also use partition
variables, which are usually used in other frameworks than scheduling field. The partition variables
are introduced in a scheduling framework in the next section, in order to provide a compact MIP
formulation for UCDDP.

40

0.5 A compact MIP formulation for the unrestrictive case
In this section, we focus on UCDDP. Thanks to the dominance properties, we show that UCDDP
can be formulated as a partition problem, then we derive a compact linear MIP formulation. Finally,
we exhibit a lack of dominance properties in the general case, which does not allow us to use the
same approach for CDDP.

Let us consider a given instance UCDDP(p, α, β) in this section. Although we can only consider
V-shaped d-blocks since they form a dominant set, in order to simplify the writing of the following
formulations, we consider a larger dominant set: let V be the set of V-shaped blocks with a task
starting or completing at time d. Note that in such schedules, each tardy task is entirely processed
after d, since there is no straddling task, i.e. there is no task starting before d and completing after
d. Therefore, the early (resp. tardy) task set can be referred to the left side (resp. right side) of d.

0.5.1 Formulation of the UCDDP as a partition problem
In general, a schedule S ∈ V cannot be encoded by its early-tardy partition. Indeed, if two early
(resp. tardy) tasks have the same α-ratio (resp. β-ratio), one cannot determine which one is processed
first, they can be sequenced arbitrarily. However, swapping two such tasks in S results in another
schedule S ′∈V having the same total penalty. Furthermore, all the schedules in V having the same
early-tardy partition have the same total penalty. Based on this remark, two schedules in V having
the same early-tardy partition will be said equivalent. We denote by ∼ this relation.

We define an ordered bi-partition of a set A as a couple (A1, A2) where {A1, A2} is a partition
of A, i.e. A1∩A2 =∅ and A1∪A2 =J . This is not only a partition into two subsets since the two sub-
sets are not symmetric, i.e. (A1, A2) 6=(A2, A1). Let ~P2(J) denote the set of the ordered bi-partitions
of J . Note that the early-tardy partition of any schedule is an ordered bi-partition. Moreover, there
is a one-to-one correspondence between equivalence classes for ∼ and ordered bi-partitions (E, T) of
J , i.e. between V/∼ and ~P2(J). Therefore, we will say that a schedule S ∈V is a representative
of an ordered bi-partition (E, T) if it belongs to the corresponding equivalence class, that is if its
early-tardy partition is (E, T). In the sequel, we will only say partition to refer to an ordered
bi-partition or to an early-tardy partition, when there is no ambiguity.

For any partition (E, T)∈ ~P2(J), let f(E, T) denote the penalty of the equivalence class (E, T),
that is the penalty of any representative of (E, T). From now on, our aim is to find a partition of J
minimizing f , since the UCDDP can be formulated as follows.

F 1 : min
(E,T)∈ ~P2(J)

f(E, T)

We propose in the next section a linear translation of F 1. More precisely, we provide a compact
MIP formulation for the UCDDP.

0.5.2 A compact MIP translating F 1

• Providing an explicit expression of f(E, T) based on a particular representative
In order to provide an explicit expression of f(E, T) for any partition (E, T), we will focus on a
specific representative of (E, T), for which we can express task earliness and tardiness, and hence
the total penalty.
For this purpose, we introduce two orders on J . Let us consider ρ and σ two bijective functions from

41

[1..n] to J , such that (
αρ(k)

pρ(k)

)
k∈[1..n]

and
(
βσ(k)

pσ(k)

)
k∈[1..n]

are non-increasing.

A schedule is said ρ-σ-shaped if the early (resp. tardy) tasks are processed in decreasing order of
ρ−1 (resp. increasing order of σ−1).

E T

d0

ρ−1(i) σ−1(i)

Figure 12: A ρ-σ-shaped d-block

Note that, ρ(1) (resp. ρ(n)) is the index of the task having the largest (resp. the smallest) α-ratio:
if this task is early in a ρ-σ-shaped d-block, it is necessarily the on-time task (resp. the first task).
Similarly, σ(1) (resp. σ(n)) is the index of the task having the largest (resp. the smallest) β-ratio: if
this task is tardy in a ρ-σ-shaped d-block, it is necessarily the first (resp. the last) tardy task.

Note that a ρ-σ-shaped schedule is a V-shaped schedule. More precisely, each equivalence class
of V admits a unique ρ-σ-shaped representative. Furthermore, the earliness and the tardiness of a
task j∈J in the representative of a partition (E, T) are given by the following expressions.

Ej =
∑
i∈E

ρ−1(i)<ρ−1(j)

pi =
ρ−1(j)−1∑
k=1

pρ(k) Iρ(k)∈E if j∈E, 0 otherwise

Tj = pj +
∑
i∈T

σ−1(i)<σ−1(j)

pi = pj +
σ−1(j)−1∑
k=1

pσ(k) Iσ(k)∈T if j∈T, 0 otherwise

Then, for any partition (E, T) we have the following explicit expression of f(E, T).

f(E, T)=
∑
j∈J

αj Ej + βj Tj =
∑
j∈J

αj

Ij∈Eρ
−1(j)−1∑
k=1

pρ(k) Iρ(k)∈E

+ βj

Ij∈T
pj +

σ−1(j)−1∑
k=1

pσ(k) Iσ(k)∈T



• Using binary variables to encode a partition
In order to replace terms like Ij∈E or Ij∈T in the previous expression, let us introduce a vector δ of
n binary variables encoding a partition. Given δ ∈{0, 1}J , we define the partition encoded by δ as(
E(δ), T (δ)

)
, where E(δ)={j∈J | δj =1} and T (δ)={j∈J | δj =0}. In other words, for each j∈J ,

δj indicates whether j is early or not, therefore Ij∈E = δj and Ij∈T = (1−δj). Hence, in a schedule
S ∈V whose partition is encoded by δ, the earliness and the tardiness of a task j ∈ J are given by
the following expressions.

Ej =δj

ρ−1(j)−1∑
k=1

pρ(k) δρ(k) and Tj =(1−δj)
pj +

σ−1(j)−1∑
k=1

pσ(k) (1−δσ(k))


42

• Linearization of the quadratic terms using X variables
In order to replace the quadratic terms appearing in the previous earliness and tardiness expressions,
let us introduce a vector of binary variables X indexed by J< = {(i, j)∈J2 | i<j}. These variables
can be used to linearize products of type δi δj, provided that they satisfy some linear constraints.
The following lemma sums up this result established by Fortet [15].
Lemma 0.5 ([15])

Let (δ,X) ∈ RJ×RJ< .
If δ∈{0, 1}J and (δ,X) satisfies the following inequalities:

∀(i, j)∈J<, Xi,j > δi−δj (X.1)

∀(i, j)∈J<, Xi,j > δj−δi (X.2)

∀(i, j)∈J<, Xi,j 6 δi+δj (X.3)

∀(i, j)∈J<, Xi,j 6 2−(δi+δj) (X.4)

then ∀(i, j)∈J<, Xi,j =
{
1 if δi 6=δj
0 otherwise , δi δj = δi+δj−Xi,j

2 and (1−δi)(1−δj)= 2−(δi+δj)−Xi,j

2 .

The proof can be easily done by considering for each (i, j)∈ J< two cases: δi = δj and δi 6= δj. One
can also notice that if (δ,X) satisfies (X.1-X.4), then δ∈ [0, 1]J and X∈ [0, 1]J< .

Let us consider the polyhedron P n
F 2 =

{
(δ,X)∈RJ×RJ< | (X.1-X.4)

}
and the set of its integer

points intδ(P n
F 2) =P n

F 2∩{0, 1}J×{0, 1}J< . From Lemma 0.5, if a partition (E, T) is encoded by δ,
then there exists a unique X such that (δ,X)∈ intδ(P n

F 2). We will say that (δ,X) encodes (E, T).

Using the Fortet linearization proposed in Lemma 0.5, the earliness and the tardiness of a task j∈J
in a ρ-σ-shaped d-block whose partition is encoded by (δ,X) are given by the following expressions9.

Ej =
ρ−1(j)−1∑
k=1

pρ(k)
δj+δρ(k) −Xj,ρ(k)

2 and Tj =
σ−1(j)−1∑
k=1

pσ(k)
2−(δj+δσ(k))−Xj,σ(k)

2 + pj(1−δj)

Hence, the penalty of the partition encoded by (δ,X) ∈ {0, 1}J×{0, 1}J< is given by the following
function hα,β, which is linear.

hα,β(δ,X)=
∑
j∈J

αj

ρ−1(j)−1∑
k=1

pρ(k)
δj+δρ(k)−Xj,ρ(k)

2

+ βj

σ−1(j)−1∑
k=1

pσ(k)
2−(δj+δσ(k))−Xj,σ(k)

2 + pj(1−δj)


Finally, UCDDP can be formulated as the following compact MIP.

F 2 : min
(δ,X)∈ intδ(Pn

F2)
hα,β(δ,X)

Formulation F 2 is a direct linear translation of F 1. Indeed, there is a one to one correspondence
between their solution sets, i.e. between intδ(P n

F 2) and ~P2(J), and g(δ,X) = f(E, T) for any (δ,X)
encoding (E, T).
The advantage of F 2 is that it can be solved using a MIP solver such as cplex. Section 2.3 presents
experimental results for different MIP formulations for UCDDP, including F 2. The drawback of F 2

is that it cannot be easily extended to CDDP. The following section explains why.
Note that polyhedron P n

F 2 does not depend on ρ or σ. It is an extended polytope of the classical
cut polytope for the complete undirected graph on the node set J [7], Cf. Chapter 3.

9For the sake of readability, we use Xi,j regardless of whether i<j, that is to denote the variable Xmin(i,j),max(i,j).

43

0.5.3 Why F 2 cannot be extended to the general case
As explained in Section 0.5.2, we can compute the best d-block with respect to a given early-tardy
partition. Conversely, computing the best left-block with respect to a given early-tardy partition
is not straightforward, since we cannot say a priori which is the straddling task among the tardy
tasks. Therefore, the early-tardy partition is no longer sufficient to encode an optimal schedule in
the general case.

Let us consider the best left-block with respect to a given partition (E, T). Then the time between
the starting time of the straddling task and d, denoted by a, is equal to d−p(E) and the straddling
task belongs to { j∈T | pj>a }.
One can conjecture that the straddling task maximizes βj/pj over this set. However, it is not the
case, as shown by Counter-example 2 (Cf. Page 45).

Another conjecture can be done from Counter-example 2. Indeed, in this counter example, the
non-optimality of the schedule where the first tardy task is the one with the largest β-ratio seems to
be induced by an incorrect ratio choice: if we consider the ratio βj/(pj−a) instead of βj/pj, in the
optimal schedule (i.e. SE), the first tardy task (i.e. task 7) has the largest ratio among the tardy
tasks longer than a (indeed, β7

p7−a = 8
1 >

11
2 = β8

p8−a). Then one can conjecture that the straddling task
maximizes βj/(pj−a) over tardy tasks with a processing time larger than a, i.e. { j ∈ T | pj > a }.
Unfortunately, this is also false, as shown by Counter-example 3 (Cf. Page 46).

44

Counter-example 2 : Schedules where the first tardy task is the one with the largest β-ratio are not
dominant for CDDP

Let us consider the following instance of CDDP, where α7 and α8 can be chosen arbitrarily10.
J=[1..8], d=2, ∀i∈ [1..6], pi=1, αi=40 , βi=4 , βi

pi
=4,

p7 =3, α7 =1 , β7 =8 , β7
p7

= 8
3 ,

p8 =4, α8 =105, β8 =11, β8
p8

= 11
4

Note that this instance admits a lot of symmetries. Since tasks 1 to 6 are identical, interchanging them
leads to a lot (6! = 720 exactly) of equivalent schedules. We can say that such schedules are equivalent
since they have the same total penalty, and even the same total earliness (resp. tardiness) penalty. In
the sequel, we will choose to place them in the order given by their indices to reduce the number of
schedules to consider. In other words, we will consider only one representative for each equivalence class.
According to Lemma 0.2, an optimal schedule can be found among the d-or-left-blocks. The following
figure shows all the different types of d-or-left-blocks for this instance. Indeed, tasks 7 and 8 are too long
to be early, then the set of early tasks only contains at most two small tasks, i.e. tasks belonging to [1..6].

- SA represents the only type of V-shaped block where 2 small tasks are early.
- SB, SC , and SD represent the three types of V-shaped d-or-left-block where 1 small task is early.
- SE , and SF represent the two types of V-shaped d-or-left-block where no task is early.

SA p p p p p p p p p p p p p p p p

SB p p p p p p p p p p p p p p p p

SC p p p p p p p p p p p p p p p p

SD p p p p p p p p p p p p p p p p

SE p p p p p p p p p p p p p p p p

SF p p p p p p p p p p p p p p p p

a

a

a

a

1 2 3 4 5 6

4 ∗ (1+2+3+4)40∗1 0

8

11∗8

7

8∗11
→ 256

1 2 3 4 5 6

4 ∗ (1+2+3+4+5)0

8

11∗9

7

8∗12
→ 255

1

40∗1

2 3 4 5 6

4 ∗ (3+4+5+6+7)

8

11∗11

7

8∗2
→ 277

1

40∗1

2 3 4 5 6

4 ∗ (4+5+6+7+8)

8

11∗3

7

8∗11
→ 281

1 2 3 4 5 6

4 ∗ (2+3+4+5+6+7)

8

11∗11

7

8∗1
→ 237

1 2 3 4 5 6

4 ∗ (3+4+5+6+7+8)

8

11∗2

7

8∗11
→ 242

d0

d0

d0

d0

d0

d0

In the optimal schedule type SE , the first tardy task is 7 while the task with the largest β-ratio in
{ j ∈ T | pj > a } is 8 since a= 2 (7 starts at time 0 = d−2), p8 > 2 and β8

p8
= 11

4 > 8
3 = β7

p7
. Moreover,

schedules where the first tardy task is task 8, that is schedules SD and SF , are not optimal.

10since task 7 and 8 will never complete before d=2.

45

Counter-example 3 : Schedules where the first tardy task is the one with the largest ratio βj
pj−a are

not dominant for CDDP
Let us consider the following instance of CDDP, where α4 and α5 can be chosen arbitrarily.

J=[1..5], d=2, ∀i∈ [1..3], pi=1, αi=20 , βi=2

p4 =4, α4 =1 , β4 =5

p5 =3, α5 =105, β5 =3

As in the previous counter-example, the instance admits a lot of symmetries: tasks 1, 2, and 3 can be
interchanged without changing the earliness and tardiness penalties Therefore, we choose to place them
in the order given by their indices to reduce the number of schedules to consider.
According to Lemma 0.2, an optimal schedule can be found among the d-or-left-blocks. The following
figure shows all the different types of d-or-left-blocks for this instance. Indeed, tasks 4 and 5 are too long
to be early, then the set of early tasks only contains at most two small tasks, i.e. tasks belonging to [1..3],.

- SA represents the only type of V-shaped block where 2 small tasks are early.
- SB, SC , and SD represent the three types of V-shaped d-or-left-block where 1 small task is early.
- SE , and SF represent the two types of V-shaped d-or-left-block where no task is early.

SA p p p p p p p p p p p p p

SB p p p p p p p p p p p p p

SC p p p p p p p p p p p p p

SD p p p p p p p p p p p p p

SE p p p p p p p p p p p p p

SF p p p p p p p p p p p p p

a

a

a

a

1 2 3

20∗1 0 2∗1

4

5∗5

5

3∗8
→ 71

1 2 3

2∗(1+2)0

4

5∗6

5

3∗9
→ 63

1

20∗1

2 3

2∗(3+4)

4

5∗8

5

3∗2
→ 80

1

20∗1

2 3

2 ∗ (4+5)

4

5∗3

5

3∗8
→ 77

1 2 3

2∗(2+3+4)

4

5∗8

5

3∗1
→ 61

1 2 3

2 ∗ (3+4+5)

4

5∗2

5

3∗8
→ 58

d0

d0

d0

d0

d0

d0

In the optimal schedule type SF , the first tardy task is 4 while the task with the largest ratio βj
pj−a in

{ j∈T | pj>a } is 5 since a=2 (4 starts at time 0 = d−2), p5>2 and β5
p5−a = 3

1 >
5
2 = β4

p4−a .

Moreover, schedules where the first tardy task is the one with the largest ratio βj
pj−a are SE and SD

(since a=1 and β4
p4−a = 5

3 >
3
2 = β5

p5−a), and none of them is optimal.

46

0.6 Outline of Parts A, B, and C
According to the previous section observations, it seems not possible to extend Formulation F 2 to
CDDP. That is a motivation to investigate formulations based on other variables than partition
variables.

In Part A, we focus on variables representing directly the earliness and tardiness of tasks that we
call natural variables. Thanks to these variables, we provide two MIP formulations, one for UCDDP,
and one for CDDP.

Since the variables (δ,X) used in F 2 also appear in these formulations, we study in Part B the
associated polytope which is a kind of "cut polytope". The idea is to find facet defining inequalities
able to strengthen our formulations.

Finally in Part C, we use dominance properties for UCDDP to derive linear inequalities removing
locally non-optimal solutions, in order to improve Formulation F 2. We also try to extend this latter
approach to other combinatorial problems.

47

48

PART A

Formulations using natural variables

For a minimization problem, a regular criterion is an objective function which is, for any task j, a
non-increasing function of Cj. That means that 0 is an attractive point, in the sense that the closer
from 0 is the task, the lower is the penalty of the schedule. In particular, left-tight schedules are
dominant for such problems. Since completion times variables measure, for each task, its distance to
0, it seems "natural" to use them.

Queyranne [34] studies these variables for the single machine scheduling problem when min-
imizing ∑

ωj Cj, which is a regular criterion. More precisely, he proposes to encode a schedule
using only these "natural variables", and provides linear inequalities ensuring that such variables
encode a feasible schedule. While ensuring the non-negativity constraint using Cj is straightforward
(Cj>pj suffices), the non-overlapping constraint requires an exponential number of inequalities —and
an additional extremality constraint. In the sequel, we will call these inequalities non-overlapping
Queyranne’s inequalities.

In the just-in-time scheduling context, the criteria are no longer regular. In particular, in the
common due date problems, 0 is not an attractive point, but d is. Indeed, the penalty induced by a
task reduces when the task gets closer to d. Therefore, it is "natural" to change the reference point,
and hence use variables measuring the distance to d, instead of the distance to 0. More precisely,
since tasks can be placed before, as well as after d, we will use two family of "natural variables": the
earliness variables, denoted by e, for the distance on the left of d the tardiness variables, denoted
by t, for the the distance to on the right of d. More generally, we will call natural variables any
variables similar to completion times variables.

We show how the feasibility of a schedule encoded by (e, t) variables can be ensured using linear
inequalities derived from the original non-overlapping Queyranne’s inequalities. In this way, we pro-
vide a MIP formulation for UCDDP, and another one, similar, for CDDP.

Part A is divided into two chapters: Chapter 1 only gives theoretical results, namely properties
of non-overlapping inequalities, and then the mathematical formulations, while Chapter 2 focuses on
how to solve such formulations in practice.

49

50

Chapter 1

Non-overlapping inequalities

The first section of this chapter presents the non-overlapping Queyranne’s inequalities and the related
results provided in [34]. The second section, discusses the limitations of these results, and provides
two lemmas to extend them, namely to use non-overlapping Queyranne’s inequalities in combination
with other inequalities. Sections 1.3 and 1.4 follow the same pattern: first we build the formulation
step by step, then we show that it is a valid formulation for UCDDP (resp. CDDP). After these two
sections, we try to retrieve the main ideas on which they are based, and give in Section 1.5 some
insights of other problems where the same method could be used.

Let us consider in this chapter a given set of tasks J , and their processing times p ∈ R∗+J .
Moreover, to facilitate some proofs, we assume that ∀j∈J, pj>1. Even if all processing times have
to be multiplied by 1/min pj, we can make this assumption without loss of generality.

1.1 Non-overlapping Queyranne’s inequalities for minimiz-
ing the weighted sum of completion times

As explained in Section 0.1, for a single-machine problem, a schedule must only satisfy two constraints
to be feasible: non-negativity and non-overlapping constraints. Therefore, a vector1 y∈RJ encodes
a feasible schedule by its completion times if and only if it satisfies the two following constraints.

non-negativity ∀j∈J, yj>pj (1.0)

non-overlapping ∀(i, j)∈J<, yj>yi + pj or yi>yj + pi (1.1)

Completion time variables allow an easy way to express feasibility at the expense of the non-linearity
of constraints (1.1). However, Queyranne [34] introduces linear inequalities using completion times
to handle the non-overlapping for minimizing weighted sum of completion times, i.e. for the problem
1 | − | ∑ωjCj. We first recall notations and results proposed by Queyranne [34] before generalizing
them to a larger framework in the next section. For S ⊆ J and y∈RJ , let us consider the following
notations.

S<=
{

(i, j)∈S2 | i<j
}

y(S)=
∑
i∈S

yi p ∗ y(S)=
∑
i∈S

piyi gp(S)= 1
2

(∑
i∈S

pi

)2

+ 1
2
∑
i∈S

p2
i

We give some properties about the function gp, which will be useful for the next proofs.

1Here we use a vector denoted y instead of C since these constraints will be used in the following for other variables,
which will not represent completion times.

51

∀S⊆J, gp(S)=
∑

(i,j)∈S<
pi pj +

∑
j∈S
p2
j (1.2)

∀S⊆J, ∀i∈J\S, gp
(
St{i}

)
= gp(S) + pi

(
p(S)+pi

)
(1.3)

The non-overlapping Queyranne’s inequalities are defined as follows.

∀S ⊆ J, p∗y (S) > gp(S) (Q0)

Let Q (resp. PQ) denote the set of all vectors encoding a feasible schedule by its completion times,
(resp. the polyhedron defined by inequalities (Q0)). Figure 1.1 illustrates Q and PQ for a 2-task
instance.

Q=
{
y∈RJ

∣∣∣ y satisfies (1.0) and (1.1)
}

PQ=
{
y∈RJ

∣∣∣ y satisfies (Q0)
}

0

C2

0
C1

_p2 •

p
p1+p2

p
p1

•_p1+p2

Cone of feasible schedules
where 1 is executed before 2

Cone of feasible schedules
where 2 is executed before 1

Q

PQ=conv(Q)

Area without feasible schedule

Figure 1.1: Q and conv(Q) in the case of two tasks

The following property establishes that inequalities (Q0) are valid for all vectors of Q, inducing
conv(Q)⊆PQ.

Property 1.1
Let y∈RJ .
If y satisfies constraints (1.0) and (1.1), then y satisfies inequalities (Q0).

Proof : Let S⊆J .

- If S=∅, inequality (Q0) is satisfied.
- If S= {j}, then inequality (Q0) is pj yj > p2

j , that is yj > pj since pj > 0. Hence, constraints (1.0)
ensure that the inequalities (Q0) associated with the singletons are all satisfied.

- If |S| > 2, we need to exhibit an order on J . Since processing times are positive, constraints (1.1)
ensure that (yj)j∈J are distinct and then that there exists a (single) total order ≺ on J such that
i≺j ⇔ yi<yj . Then constraints (1.1) translate into ∀(i, j)∈J2, i≺j ⇒ yj> yi + pj .

52

Using inequalities (1.0) we deduce that yj>p(I) + pj for I⊆J and j∈J such that i≺j for all i∈I.
This allows to prove by induction on the cardinality of S that all inequalities (Q0) are satisfied.
Indeed, let us assume that they are satisfied for all sets of cardinality k where k>1 and let S⊆J
with |S|= k+1. Let us set j = max≺ S and U =S\{j}. By induction, we have p ∗ y(U)> gp(U),
since |U |=k−1. Moreover, by previous arguments we have yj>p(U)+pj . Consequently, p∗y(S)=
p ∗ y(U) + pjyj > gp(U) + pj

(
p(U)+pj

)
= gp(S) using (1.3), hence y satisfies the inequality (Q0)

associated with S.

�

As depicted in Figure 1.1, some points in conv(Q) correspond to unfeasible schedules Indeed,
the two cones represent the set of feasible schedules, each corresponding to an order in the task
execution, and points in between correspond to schedules where the two tasks overlap, then to
unfeasible schedules. By definition of conv(Q), these points are in conv(Q), so they cannot be cut
by the non-overlapping Queyranne’s inequalities.
Moreover, one can observe that PQ only has two extreme points and that they correspond to feasible
schedules. This observation is true in general. Indeed, Queyranne [34] shows that the extreme points
of PQ always correspond to feasible schedules. The latter inclusion, i.e. extr(PQ)⊆Q⊆ conv(Q),
and the previous one, i.e. conv(Q)⊆PQ, are sufficient to say that minx∈Q f(x) = minx∈PQ f(x) for
any linear function f , but not sufficient2 to conclude that PQ is exactly conv(Q). Queyranne [34]
shows this equality using a geometrical argument: the equality of the recession cones of these two
polyhedra. The following theorem sums up these results.
Theorem 1.2 (Queyranne [34])

(i) extr(PQ) ⊆ Q

(ii) PQ = conv(Q)

Moreover, Queyranne [34] shows that each extreme point of PQ encodes a left-block. Conversely
each left-block is encoded by an extreme point of PQ since, according to the Smith rule [40], it is the
only point in Q (and then in conv(Q)=PQ) minimizing ω∗C(J) for ω∈RJ+ such that the tasks are
scheduled by strictly decreasing ratio ωj/pj.

The Theorem 1.2’s proof given in [34] uses the geometrical structure of conv(Q), which is the
convex hull of a finite number of cones. As soon as schedules are subject to additional constraints
like deadlines (i.e. Cj6 d̃j), the set of the vectors encoding feasible schedules is no longer an union
of cones. Therefore, this proof cannot be extended. In order to use non-overlapping inequalities
combined with other inequalities, we provide in the next section two lemmas which somehow generalize
Theorem 1.2(i).

2Such a reasoning would be valid for polytopes, but PQ is unbounded.

53

1.2 Key lemmas to use non-overlapping inequalities in a
larger setting

In this section, we provide two lemmas which will be the key for showing the validity of formulations
using non-overlapping inequalities, such as formulations F 3 and F 4 that we propose in the next
sections. The first key lemma gives a new proof of Theorem 1.2(i). In this lemma, we explain how
a vector of PQ can be slightly disrupted in two opposite directions without leaving PQ if it encodes
a schedule presenting an overlap. Such a vector is then on the segment between two other points of
PQ, and hence it is not an extreme point of PQ. Figure 1.2 illustrates the two ways of disrupting
the overlapping tasks so that the corresponding vectors stay in PQ.

Lemma 1.3 (first key lemma)
Let y∈RJ satisfying inequalities (Q0).
If there exists (i, j)∈J2 with i 6=j such that yi6yj<yi + pj,
then there exists ε∈R∗+ such that y+−=y+ ε

pi
Ii− ε

pj
Ij and y−+ =y− ε

pi
Ii + ε

pj
Ij also satisfy (Q0).

ε/pi ε/pj

(a)
ε/pi ε/pj

(b)

Figure 1.2: Illustration of the schedule’s disruption between y and y+− (a) (resp. y−+ (b))

Proof : Let ε=min(m1,m2) where m1 =min {p∗y (S)− gp(S) |S⊆J, i 6∈S, j∈S}

and m2 =min {p∗y (S)− gp(S) |S⊆J, i∈S, j 6∈S}.

Since y satisfies inequalities (Q0), m1>0 and m2>0, thus ε>0.
Let S⊆J . We first check that vector y+− defined by ε satisfies inequality (Q0) associated with S.

If i 6∈S and j 6∈S then p ∗ y+−(S) = p ∗ y(S) > gp(S).
If i∈S and j∈S then p ∗ y+−(S) = p ∗ y(S) + pi

ε
pi
− pj εpj = p ∗ y(S) > gp(S).

If i 6∈S and j∈S then p ∗ y+−(S) = p ∗ y(S)− pj εpj > gp(S) since ε6m1.

If i∈S and j 6∈S then p ∗ y+−(S) = p ∗ y(S) + pi
ε
pi
> p ∗ y(S) >gp(S), since ε>0.

In each case p ∗ y+−(S)>gp(S), then y+− satisfies (Q0). Similarly we can check that y−+ satisfies (Q0)
using that ε6m2. Finally, we have to check that ε> 0. For this purpose we use the next two claims,
which respectively ensure that m1>0 and m2>0.

Claim

Let y∈RJ satisfying inequalities (Q0) and (i, j)∈J2.
If yi6yj , then ∀S⊆J, i 6∈S, j∈S⇒p∗y (S)>gp(S).

Proof : By contradiction, let us assume that there exists a subset S ⊆ J such that i 6∈ S, j ∈ S and
p∗y (S)=gp(S). Setting U=S\{j}, we have p∗y (S)=p∗y (U) + pj yj and gp(S)=gp(U) + pj p(S)
by (1.3). Since we assume that these two terms are equal, and since p∗y (U) > gp(U) from
inequalities (Q0), we deduce that pj yj6pj p(S), and even yj6p(S)(?) since pj>0.

54

Then we have: p∗y (St{i}) = p∗y (S) + pi yi by definition of p ∗ y
= gp(S) + pi yi by assumption
6 gp(S) + pi yj since yi6yj
6 gp(S) + pi p(S) by (?)
< gp(S) + pi [p(S) + pi] since pi>0
= gp(S t {i}) Cf. (1.3)
6 p∗y (St{i}) by (Q0)

Therefore, p∗y (St{i})<p∗y (St{i}). A contradiction. �

Claim
Let y∈RJ satisfying inequalities (Q0) and (i, j)∈J2.
If yj<yi + pj , then ∀S⊆J, i∈S, j 6∈S⇒p∗y (S)>gp(S).

Proof : By contradiction, let us assume that that there exists S ⊆ J such that i ∈ S, j 6∈ S and
p∗y (S)=gp(S). Like in the previous proof we can show that yi6p(S)(?).
Then we have: p∗y (St{j}) = p∗y (S) + pj yj by definition of p ∗ y

= gp(S) + pj yj by assumption
< gp(S) + pj [yi + pj] since yj<yi + pj

6 gp(S) + pj [p(S) + pj] by (?)
= gp(S t {j}) Cf. (1.3)
6 p∗y (St{j}) by (Q0)

Therefore, p∗y (St{j})>p∗y (St{j}). A contradiction. �

Thanks to these two claims, we have m1>0, m2>0 and then ε=min(m1,m2)>0.
Remark 1.4

Note that any ε between 0 and min(m1,m2) is suitable in this proof.
Therefore, ε can be chosen as small as wanted. �

To obtain an alternative proof of Theorem 1.2(i), Lemma 1.3 can be reformulated as follows.
If C is a vector of PQ which gives the task completion times of a schedule with an overlap,
then C is the middle of two other vectors of PQ, C+− and C−+.

That implies that C is not an extreme point of PQ. By contraposition, we deduce that an extreme
point of PQ encodes a schedule without overlap, and since inequalities (Q0) associated with single-
tons ensure the non-negativity, an extreme point of PQ encodes a feasible schedule, i.e. extr(PQ)⊆Q.

This way of proving that the extreme points correspond to feasible schedules can be adapted
to a more general polyhedron, that is a polyhedron defined by inequalities (Q0) and additional
inequalities. Indeed, it is then sufficient to check that the two vectors C+− and C−+ also satisfy
these additional inequalities. However, for some extreme points, the two vectors introduced by
Lemma 1.3 may not satisfy the additional inequalities. Let us consider for example, the following
additional inequalities for a constant M such that M>p(J).

∀j∈J, yj6M (1.4)

Let QM (resp. PQM) denote the set of all vectors encoding by its completion times a feasible schedule
completing before time M (resp. the polyhedron defined by inequalities (Q0) and (1.4)). Figure 1.3
illustrates QM and PQM for a 2-task instance.
QM =

{
y∈RJ

∣∣∣ y satisfies (1.0), (1.1) and (1.4)
}

PQM =
{
y∈RJ

∣∣∣ y satisfies (Q0) and (1.4)
}

55

0

C2

0
C1

M

M

•

_p2 •

p
p1+p2

p
p1

•_p1+p2

Cone of feasible schedules
where 1 is executed before 2

Cone of feasible schedules
where 2 is executed before 1

QM

PQ
M

Area without feasible schedule

Figure 1.3: QM and PQM in the case of two tasks

As depicted in Figure 1.3 for a 2-task instance, inequalities (1.4) induce extreme points encoding
unfeasible schedules. Indeed, adding the inequalities C1 6M and C2 6M to the inequalities (Q0)
leads to the extreme point (M,M), which encodes a schedule with an overlap.

Let us explain why applying Lemma 1.3 is not useful for this kind of extreme points in general.
Let us assume that C∈PQM is the completion time vector of a schedule with two overlapping tasks.
If one of these tasks completes at time M , applying Lemma 1.3 to C provides a vector C−+ which
does not satisfy inequalities (1.4) and thus which is not in PQM . Therefore, we cannot conclude this
way that C is not an extreme point in PQM .

However, provided that ω ∈ (R∗+)2, an extreme point like (M,M) is not an issue for the mini-
mization of ω1C1+ω2C2, since this point will not be proposed as an optimum. The idea is then the
following: since the inclusion extr(PQM)⊆QM does not hold, we will prove that extr*(PQM)⊆QM for
a well-chosen subset of extreme points extr*. More formally, we define extr* for any given polyhedron
P ⊆Rn as follows.

extr*(P) =
{
x∗∈P ∃ω∈Rn+, {x∗}=arg min

x∈P

n∑
i=1
ωi xi

}

In words, extr*(P) is defined as the set of points which are unique minimizer of a non-negatively
weighted sum. The unicity is required to deal with some zero weight coefficients in the following.
Since the extreme points of a polyhedron are exactly the points which can be written as the unique
minimizer of a linear function, we have extr*(P)⊆ extr(P).

The following lemma allows to handle the extreme points encoding a schedule with two overlap-
ping tasks, when one of them completes at M . Indeed, this lemma will be the key for showing that
such a point is not a unique minimizer.

56

Lemma 1.5 (second key lemma)
Let y∈RJ satisfying inequalities (Q0).
If there exists (i, j)∈J2 with i 6=j such that yj< yi+pj, and yj>p(J),
then there exists ε∈R∗+ such that y− ε

pj
Ij also satisfies inequalities (Q0).

Proof : Since y satisfies inequalities (Q0), setting ε=min{ p∗y (S)− gp(S) |S⊆J, j∈S } suffices to ensure
that y− ε

pj
Ij also satisfies inequalities (Q0) and that ε>0. It remains to show that ε>0, that is for any

subset S⊆J containing j, the associated inequality (Q0) is not tight.
Let S⊆J such that j∈S and let U=S \ {j}. First remark the following equivalent inequalities.

p∗y (S) > gp(S)⇔ p∗y (U) + pjyj > gp(U) + pj
[
p(U)+pj

]
⇔ p∗y (U)− gp(U) > pj

[
p(S)− yj

]
If S J , then p(S)<p(J)6yj , thus pj

[
p(S)− yj

]
<0. Moreover, p∗y (U)− gp(U)>0 since y satisfies the

inequality (Q0) associated with T . We deduce that p∗y (S) > gp(S) in this case.
If S=J , then pj

[
p(S)−yj

]
60 since yj>p(J). In this case, pj

[
p(S)−yj

]
can be equal to zero if yj =p(J),

but we prove that p∗y (U)− gp(U)>0 as follows.

p∗y (U)− gp(U) > 0⇔ p∗y
(
J \{j}

)
> gp

(
J \{j}

)
⇔ p∗y

(
J \{i, j}

)
+ piyi > gp

(
J \{i, j}

)
+ pi

[
p
(
J \{i, j}

)
+pi

]
⇔ p∗y

(
J \{i, j}

)
− gp

(
J \{i, j}

)
> pi

[
p
(
J \{j}

)
− yi

]
By assumption yi > yj−pj > p(J)−pj = p

(
J\{j}

)
, thus pi

[
p
(
J\{j}

)
− yi

]
< 0 and since y also satisfies

the inequality (Q0) associated with J\{i, j}, we have p∗y
(
J\{i, j}

)
− gp

(
J\{i, j}

)
> 0. We deduce that

p∗y (U)− gp(U) > 0 in this case, and finally that p∗y (S) > gp(S). �

Combining Lemmas 1.3 and 1.5, we prove that a point in extr*
(
PQM

)
encodes a feasible schedule.

More precisely, we prove the following theorem.
Theorem 1.6

If M>p(J), then extr*
(
PQM

)
⊆QM .

Proof : Let C ∈ extr* (PQM). Since C satisfies inequalities (Q0), an overlap between tasks i and j such
that Ci6Cj<Ci+pj contradicts either the extremality of C or its minimality.

- If Cj<p(J), we can construct C+− and C−+ as proposed in Lemma 1.3 for ε set in] 0, p(J)−Cj [,
so that C+− and C−+ satisfy inequalities (Q0) and (1.4). Thus, C can be written as the middle of
two other vectors of PQM , then it is not an extreme point.

- If conversely Cj > p(J), we can construct a vector C− as proposed in Lemma 1.5, so that C− is
component-wise smaller than C and satisfies inequalities (Q0). Thus, C− is another point of PQM ,
which has a smaller value than C for any linear function with non-negative coefficients, then C
cannot be the single minimizer of such a function on PQM .

Moreover, using the same argument as for PQ, we can say that every left-tight schedule is encoded by
an extreme point of PQM , and even by a vector of extr* (PQM). �

Despite this theorem is a kind of generalization of Theorem 1.2(ii), it will not be used in the
following. Conversely, Lemmas 1.3 and 1.5 will be.

For the common due date problem, an encoding by completion times does not lead to a linear
objective function (except in the very particular case where d=0, since the tardiness are then equal to
the completion times). Therefore, we propose in the next sections a schedule encoding together with
a set of inequalities ensuring that every minimum extreme point corresponds to a feasible schedule.

57

1.3 A formulation for UCDDP using natural variables
In this section, we will provide a linear formulation for UCDDP. As explained in Section 0.2.1, we
can consider an instance UCDDP(p, α, β) defined by (p, α, β) ∈ (R∗+J)3 without loss of generality.
Moreover, according to Lemma 0.1, we will only consider the d-blocks in this formulation.

NB: All the inequalities useful for formulations F 3 and F 4 are summarized on page 217.
I suggest to keep this page handy while reading the next two sections.

1.3.1 Building the formulation step by step

• A linear objective function using e and t variables
Since earliness and tardiness are not linear with respect to completion times, the function fα,β,d is
not linear. Therefore, we propose an encoding by earliness and tardiness of each task, by introducing
the corresponding variables: (ej)j∈J for the earliness of the tasks, and (tj)j∈J for their tardiness. This
way, the function gα,β which gives the total penalty of a schedule from its earliness-tardiness vector
(e, t) is linear. Indeed, this function is defined as follows.

gα,β(e, t) =
∑
j∈J

(αj ej + βj tj)

In the remainder of this section, the objective function will be gα,β. To express the link between the
latter and the previous objective function fα,β,d for any given due date d∈R+, let us denote by θd the
function which gives the earliness-tardiness vector of a schedule from its completion time vector C.
Function θd is defined as follows.

θd(C) =
((

[d−Cj]+
)
j∈J

,
(
[Cj−d]+

)
j∈J

)
Then the objective functions are linked as follows.

fα,β,d=gα,β ◦ θd

Note that the parameter d is omitted in the function gα,β. That is consistent with the omission
of d in the definition of an UCDDP instance. Moreover, parameters α and β which are used here to
define the optimization direction (i.e. the objective function), will not be used again in the rest of
the section which is dedicated to describe the set of (e, t) vectors encoding d-blocks.

• Consistency between e and t using δ variables
We say that a vector (e, t) in RJ+×RJ+ is consistent if ∀j∈J , either ej =0 or tj =0. For any d>p(J),
there exists C in RJ such that θd(C) = (e, t) if and only if (e, t) is consistent. In order to ensure
consistency, we introduce the following inequalities using, as done for F 2

l , a variable δj indicating if
j is early for each task j∈J . For each task j, δj indicates if j is early.

∀j∈J, ej > 0 (1.5)
∀j∈J, ej 6 δj (p(J)−pj) (1.6)
∀j∈J, tj > 0 (1.7)
∀j∈J, tj 6 (1−δj) p(J) (1.8)

Inequalities (1.5) and (1.6) force ej to be zero when δj = 0. Since we only consider d-blocks,
p(J)−pj is an upper bound on the earliness of task j. Thus, inequality (1.6) does not restrict ej
when δj = 1. Note that for an unrestrictive due date d, p(J)−pj is tighter than d−pj. Similarly,
inequalities (1.7) and (1.8) force tj to be zero when δj = 1, without restricting tj when δj = 0, since
p(J) is an upper bound on the tardiness in a d-block. Consequently, we have the following lemma.

58

Lemma 1.7
Let (e, t, δ)∈RJ×RJ×{0, 1}J .
If e, t, δ satisfy inequalities (1.5 – 1.8),
then (e, t) is consistent and for any d>p(J), C=

(
d−ej+tj

)
j∈J

satisfies θd(C)=(e, t).

Let θ−1
d denote the function which gives the completion time vector of a schedule from its (nec-

essarily consistent) earliness-tardiness vector (e, t).
θ−1
d (e, t) = (d−ej+tj)j∈J

In addition to the consistency, inequalities (1.5 – 1.8), ensure the non-negativity of the encoded
schedule. Indeed, for any d∈R and j∈J , (1.6) and (1.7) ensure that d−ej+tj > d−ej > d−p(J)+pj.
In particular, for any d>p(J) we deduce that d−ej+tj > pj. Hence, we obtain the following lemma.
Lemma 1.8

Let (e, t, δ)∈RJ×RJ×{0, 1}J .
If e, t, δ satisfy (1.5 – 1.8), then for any d>p(J), θ−1

d (e, t) satisfies (1.0).

• Handling the non-overlapping
To ensure the non-overlapping, it suffices that early tasks are fully processed before d and do not
overlap each other, and that tardy tasks are fully processed after d and do not overlap each other
either. For a d-schedule, and even for any schedule with no straddling task, it suffices then that
early (resp. tardy) tasks do not overlap each other. The global non-overlapping constraint is then
decomposed into two non-overlapping constraints: one for each side of d.

In order to denote the early-tardy partition of a schedule from its completion times, we introduce
the following notations.

E(C)={ j∈J |Cj6d } T (C)={ j∈J |Cj>d }
For a tardy task, the tardiness can be seen as a completion time with respect to d. Therefore,

ensuring that the tardy tasks are fully processed before d (resp. they do not overlap each other)
is equivalent to imposing non-negativity constraints for tardy tasks (resp. the non-overlapping con-
straint for tardy tasks). As shown in Figure 1.4, for an early task j, the value ej+pj can be seen as
a completion time. Using x/S to denote

(
xj
)
j∈S

for any subset S of J and for any vector x in RJ ,
the following lemma sums up these observations.

i j

0d

ei
ei+pi Cj

Figure 1.4: Illustration of the role of pi+ei for an early task i

Lemma 1.9
Let d∈R such that d>p(J). Let C∈RJ and (e, t)∈RJ×RJ .
If (e, t) = θd(C), then the following equivalence holds.

C satisfies (1.1)
∀j∈J, Cj6d or Cj>d+pj

⇔
(e+p)/E(C) satisfies (1.0) and (1.1)
t/T (C) satisfies (1.0) and (1.1)

59

Since the formulation do not use completion times, we use δ variables to obtain the early-tardy
partition. Therefore, let us introduce the following notations to denote the early-tardy partition of
a schedule from the δ variables.

E(δ)={ j∈J | δj =1 } T (δ)={ j∈J | δj =0 }
According to Section 1.1, we want to apply Queyranne’s inequalities (Q0) to the vector (e+p)/E(δ)

(resp. t/T (δ)), so that it satisfies (1.0) and (1.1). Therefore, we consider the following inequalities.

∀S⊆J, p ∗ (e+p)
(
S∩E(δ)

)
> gp

(
S∩E(δ)

)
(1.9)

∀S⊆J, p ∗ t
(
S∩T (δ)

)
> gp

(
S∩T (δ)

)
(1.10)

These inequalities are not linear inequalities as E(δ) and T (δ) depend on δ variables. Replacing
S∩E(δ) (resp. S∩T (δ)) by S raises non-valid inequalities. Indeed, inequality (1.10) for S = {i, j}
where i∈E, would become pj tj > p2

i+p2
j+pi pj since ti=0 by (1.7) and (1.8). Since pi>0 and pj>0,

this implies that tj>pj and tj>pi, which is not valid, that is not true for some d-blocks.

To ensure that only the terms corresponding to early (resp. tardy) tasks are involved in the
inequality (1.9) (resp. in (1.10)), we multiply each term of index j in S by δj (resp. by (1−δj)). Then
we obtain the following inequalities.

∀S ⊆ J,
∑
j∈S

pj ej δj >
∑

(i,j)∈S<
pi pj δi δj (1.11)

∀S⊆J,
∑
j∈S

pj tj (1−δj) >
∑

(i,j)∈S<
pi pj (1−δi)(1−δj) +

∑
j∈S

p2
j (1−δj) (1.12)

For δj ∈ {0, 1}, if (e, t, δ) satisfies inequalities (1.5 - 1.8), then we have ej δj = ej and tj (1−δj) = tj.
Therefore, the previous inequalities are simplified as follows.

∀S ⊆ J,
∑
j∈S

pj ej >
∑

(i,j)∈S<
pi pj δi δj (1.13)

∀S⊆J,
∑
j∈S

pj tj >
∑

(i,j)∈S<
pi pj (1−δi)(1−δj) +

∑
j∈S

p2
j(1−δj) (1.14)

• Non-overlapping linear inequalities
In order to remove the quadratic terms in the previous inequalities, we use the X variables intro-
duced for F 2 in Section 0.5. Replacing δi δj and (1−δi)(1−δj) according to Lemma 0.5, we obtain
the following inequalities.

∀S⊆J,
∑
j∈S

pj ej >
∑

(i,j)∈S<
pi pj

δi+δj−Xi,j

2 (Q1)

∀S⊆J,
∑
j∈S

pj tj >
∑

(i,j)∈S<
pi pj

2−(δi+δj)−Xi,j

2 +
∑
j∈S

p2
j(1−δj) (Q2)

The following lemma summarizes the relationship between the inequalities (Q1), (Q2) and (Q0).
Lemma 1.10

Let (δ,X)∈{0, 1}J×RJ< satisfying inequalities (X.1 –X.4).
(i) If e∈RJ satisfies inequalities (1.5) and (1.6) for all j∈E(δ),

then e, δ,X satisfy inequalities (Q1) for all S⊆J ⇔ (e+p)/E(δ) satisfies inequalities (Q0).
(ii) If t∈RJ satisfies inequalities (1.7) and (1.8) for all j∈T (δ),

then t, δ,X satisfy inequalities (Q2) for all S⊆J ⇔ t/T (δ) satisfies inequalities (Q0).

60

The following lemma allows to make the bridge between (e+p)/E(C) from Lemma 1.9 and (e+p)/E(δ)
from Lemma 1.10 (resp. between t/T (C) and t/T (δ)).
Lemma 1.11

Let (e, t, δ)∈RJ×RJ×{0, 1}J .
If e, t, δ satisfy (1.5 - 1.8), and (Q2)
then for any d>p(J), E(δ)=E

(
θ−1
d (e, t)

)
and T (δ)=T

(
θ−1
d (e, t)

)
.

Proof : Let d>p(J) and C=θ−1
d (e, t). Let j∈J .

− If j∈T (C), then Cj>d by definition. That is tj>ej since Cj =d−ej+tj . From inequality (1.5), we
deduce that tj > 0. Then inequality (1.8) implies that δj 6= 1. Since δj ∈{0, 1}, necessarily δj = 0. That
proves T (C)⊆T (δ).
− Conversely, if j∈T (δ), δj =0 by definition. Inequalities (1.5) and (1.6) ensure then that ej =0. Thus,
Cj = d+ tj . Since tj > pj > 0 from inequality (Q2) for S = {j}, we deduce that Cj > d, that proves
T (δ)⊆T (C).

− If j∈E (C), then Cj6d by definition. That is tj6ej since Cj =d−ej+tj . From inequality (1.7), we
deduce that ej>0. We distinguish then the two following cases.

- If ej = 0, then tj = 0 too from inequality (1.7). From inequality (Q2) for S= {j}, we deduce that
δj 6=0, otherwise this inequality implies tj>pj , and hence tj>0.

- If ej>0, inequality (1.6) implies that δj 6=0, otherwise this inequality implies ej =0.
In both cases, since δj∈{0, 1}, necessarily δj =1. That proves E (C)⊆E(δ).
− Conversely, if j ∈ E(δ), δj = 1 by definition. From inequality (1.8) we then have tj = 0, and hence
Cj =d−ej . Since ej>0 from inequality (1.5), we deduce that Cj>d. That proves E(δ)⊆E (C). �

• Formulation F 3

Let us introduce the polyhedron defined by the linear inequalities introduced so far.
P 3 =

{
(e, t, δ,X)∈RJ×RJ×[0, 1]J×RJ< (1.5 – 1.8), (X.1 –X.4), (Q1) and (Q2) are satisfied

}
Note that this polyhedron does not depend on either α, β, or even d, but is only defined from p.
Moreover, this polyhedron is defined by an exponential number of inequalities, inducing the use of a
separation algorithm. This subject will be the purpose of Section 2.1.

Since δ are boolean variables, we are only interested in vectors for which δ is an integer, that are
integer points. Therefore, we introduce the operator intδ, which only keeps the integer points of any
set V ⊆RJ×RJ×RJ×RJ< .

intδ(V)=
{

(e, t, δ,X)∈V | δ∈{0, 1}J
}
.

As previously explained for PQ and PQM , some points in P 3 do not encode feasible schedules, even
if they are integer (i.e. if δ ∈ {0, 1}J). Therefore, we have to add an extremality constraint to our
formulation, which is then not a classical MIP formulation. We finally propose the following formu-
lation for UCDDP.

F 3 : min
(e,t,δ,X)∈intδ

(
extrP 3

) gα,β(e, t)

The next section aims to prove the validity of F 3 that is to show the two following statements.
- Each d-block is encoded by (at least) one point in intδ

(
extrP 3

)
, and the value of this point

according to gα,β is the total penalty of the d-block.

- Each point in intδ
(

extrP 3
)
encodes a feasible d-block whose total penalty is given by gα,β.

61

1.3.2 Validity of Formulation F 3

•Why are there three theorems to show two statements?
The main goal of this paragraph is to informally give the intuition of how the three following theorems
are linked. To do this, let us use terms coming from the logic vocabulary. A deductive system is
said complete if it allows to obtain all the true formulas, and it is said sound if it allows to obtain
only true formulas. In some sense, to show the validity of our formulation, we want to show both its
soundness and completeness.

- Theorem 1.12 states that the (e, t, δ,X) encoding is complete, in the sense that any feasible
schedule — under a technical assumption, which is satisfied in particular by any d-block —
can be encoded by a point in intδ(P 3).

- Conversely, a point in intδ(P 3) does not necessarily encode a feasible schedule. However, if
such point is also (i) an extreme point of (P 3) and (ii) a minimizer of gα,β, we can show
that it encodes a feasible schedule, and even show that it is a d-block using Theorem 1.12.
Therefore, Theorem 1.13 states that formulation F 3 is sound, in the sense that any point in
arg min{gα,β | intδ(extr(P 3))} encodes a d-block.

- Then we need a stronger version of Theorem 1.12: we need to ensure that a feasible schedule
is encoded by a vector in arg min{gα,β | intδ(extr(P 3))}, and not just in intδ(P 3). This is not
true for any feasible schedule. However, that is true for optimal d-blocks, i.e. C minimizing
fα,β,d(C). This is what Theorem 1.14(i) states.

- Finally, to conclude, we need a stronger version of Theorem 1.13: we need to ensure that a
point in arg min{gα,β | intδ(extr(P 3))} encodes an optimal d-block and not just a d-block. This
can be shown using Theorem 1.14(i) (in the same way that we use Theorem 1.12 in the proof of
Theorem 1.13 to show that the encoded schedule is a d-block rather than just a feasible schedule
without straddling task). That is what Theorem 1.14(ii) states.

The following theorem establishes that a feasible schedule, under some assumptions, is encoded by
an integer point of P 3. In particular a d-block is encoded by an integer point of P 3.
Theorem 1.12

Let d>p(J). Let C∈RJ .
If C gives the completion times of a feasible schedule without any straddling task such that tasks
are processed between d−p(J) and d+p(J), i.e. ∀j∈J, d−p(J)6Cj−pj and Cj6d+p(J),
then there exists (e, t, δ,X)∈ intδ(P 3), such that θd(C)=(e, t), and hence fα,β,d(C)=gα,β(e, t).

Proof : From C, let us set: (e, t)=θd(C), δ=IE(C), x=
(
Iδi 6=δj

)
(i,j)∈J<

and Y =(e, t, δ,X).

Note that the definition of δ ensures that δ∈{0, 1}J⊆ [0, 1]J , and that E(δ)=E (C) (resp. T (δ)=T (C)),
which allows the notation E (resp T) for the sake of brevity. Inequalities (1.5) and (1.7), as well as (1.6)
for j in T and (1.8) for j in E, are automatically satisfied by construction of e, t and δ. The assumption
that ∀j ∈ J, d−p(J) 6 Cj−pj (resp. Cj 6 d+p(J)) ensures that inequalities (1.6) for j in E (resp.
inequalities (1.8) for j in T) are satisfied.
Using Lemma 0.5(i), X and δ satisfy inequalities (X.1 –X.4) .
Since C encodes a feasible schedule, C satisfies (1.1).Using Lemma 1.9, (e+p)/E (resp. t/T) satisfies (1.0)
and (1.1). Applying Property 1.1 to these two vectors, we deduce that they satisfy (Q0), and using
Lemma 1.10, that e, δ,X satisfy (Q1) and t, δ,X satisfy (Q2). Thus, Y belongs to P 3, and even to
intδ(P 3) since δ∈{0, 1}J . �

62

The following theorem establishes that an optimal solution of formulation F 3 is a solution for the
unrestrictive common due date problem. Let us define πe,t the projection of the whole variable space
to the (e, t) variable space as follows.

πe,t =
(
RJ×RJ×RJ×RJ< −→ RJ×RJ

(e, t, δ,X) 7−→ (e, t)

)

Theorem 1.13
Let d>p(J). Let Y ∗=(e, t, δ,X)∈ intδ(P 3).
If Y ∗∈extr(P 3) and (e, t) minimizes gα,β on πe,t

(
intδ(P 3)

)
,

then Y ∗ encodes a d-block whose total penalty is gα,β(e, t).

Proof : We decompose the proof into two steps.

− Proving that Y ∗ encodes a feasible schedule without straddling task
From Lemma 1.7, (e, t) is consistent and we can set C∗=θ−1

d (e, t). Then Y ∗ encodes a schedule defined
by the completion times C∗. This schedule will be denoted by S∗. Proving that S∗ is feasible consists
then in showing that C∗ satisfies (1.0) and (1.1). From Lemma 1.8, C∗ satisfies (1.0). From Lemma 1.11,
E(δ)=E (C∗) (resp. T (δ)=T (C∗)), which allows the notation E (resp. T) for the sake of brevity. Since
(e, t)=θd(C∗), we can use Lemma 1.9: to show that C∗ satisfies (1.1), and at the same time that there
is no straddling task in S∗, it remains to show that (e+p)/E (resp. t/T) satisfies (1.0) and (1.1).

From Lemma 1.10, we know that (e+p)/E (resp. t/T) satisfies inequalities (Q0). First, using in partic-
ular inequalities (Q0) associated with singletons, that ensures that (e+p)/E (resp. t/T) satisfies (1.0).
Second, that allow to show that (e+p)/E (resp. t/T) satisfies (1.1) in the same way that we have shown,
in Section 1.1, that a vector in extr*(PQM) encodes a schedule without overlapping. Let us assume that
(e+p)/E does not satisfy (1.1). Then there exists (i, j) ∈E2 such that ei+pi 6 ej+pj < (ei+pi)+pj .
Depending on whether there is a gap between ej+pj and the bound p(J), we show that this overlap
contradicts either the extremality of Y ∗ or the minimality of (e, t). Therefore, two cases have to be
considered.

→ If ej+pj<p(J), then from Lemma 1.3 applied on (e+p)/E there exists ε∈R∗+ such that setting

e+−=e+ ε

pi
Ii −

ε

pj
Ij and e−+ =e− ε

pi
Ii + ε

pj
Ij

leads to two vectors (e+−+p)/E and (e−++p)/E satisfying (Q0). According to Remark 1.4, ε can
be chosen such that ε6p(J)− (pj+ej), and hence such that ε6p(J)−(pi+ei) (?).
Using Lemma 1.10, both e+−, δ,X and e−+, δ,X satisfy (Q1).
Since pi>1, we have e+−

i =ei+ ε
pi
6ei+ε, and using (?) we obtain e+−

i 6p(J)−pi. For k∈J\{i}, we
have e+−

k 6ek and since e satisfies (1.6), we deduce that e+−
k 6p(J)−pk. Thus e+− satisfies (1.6).

For any k ∈E, we have e+−
k +pk > pk since the inequality (Q0) associated with the singleton k is

satisfied by (e+−+p)/E . For any k ∈ T , we have e+−
k = ek, and ek > 0 since e satisfies inequali-

ties (1.5). We deduce that e+− satisfies inequalities (1.5).
Similarly, e−+ satisfies inequalities (1.5) and (1.6). Finally, the two following points are in P 3.

Y +−=(e+−, t, δ,X) and Y −+ =(e−+, t, δ,X)

Then Y ∗ is the middle of two points of P 3. A contradiction, since Y ∗ is extreme.
→ If ej+pj>p(J), then ej+pj>p(E), and from Lemma 1.5 on (e+p)/E there exists ε∈R∗+ such that

setting
e−=e− ε

pj
Ij

leads to a vector (e−+p)/E satisfying (Q0).Using Lemma 1.10, e−, δ,X satisfy (Q1).
Since e− is component-wise smaller than e, e− satisfies inequalities (1.6) as well.

63

For any k ∈E, we have e−k +pk > pk since the inequality (Q0) associated with the singleton k is
satisfied by (e−+p)/E . For any k∈T , we have e−k =ek, and ek>0 since e satisfies inequalities (1.5).
We deduce that e− satisfies inequalities (1.5).
Finally, the following point is in P 3.

Y −=(e−, t, δ,X)
Since α and β parameters are positive, Y − has a smaller value than Y ∗ according to gα,β, i.e.
gα,β(e−, t)<gα,β(e, t). A contradiction, since (e, t) minimizes gα,β on πe,t

(
P 3).

Since both cases leads to a contradiction, we deduce that (e+p)/E satisfies (1.1). In the same way, we
can prove that t/T satisfies (1.1). As explained above, that suffices to show that S∗ is a feasible schedule.

− Proving that S∗ is a d-block
Since we already know that S∗ does not hold a straddling task, it suffices to show that it is a block with
at least one early task to conclude that it is a d-block.
Let us assume that S∗ holds an idle time or has no early task. Let Ŝ denote the schedule obtained by
tightening tasks around d so as to fill idle times between tasks and, if there is no early task, left-shifting
all the tasks such that the first one becomes on-time. Since d>p(J), this left-shifting operation respects
the non-negativity constraint. Let Ĉ denote the completion times in Ŝ.
Since Ŝ is a d-block by construction, we have ∀j∈J, d−p(J)6 Ĉj−pj and Ĉj6d+p(J), which allows to
use Theorem 1.12. We deduce that there exists Ŷ =(ê, t̂, δ̂, X̂)∈ intδ(P 3), such that θd(Ĉ)=(ê, t̂).
Moreover, Ŝ has a lower penalty than S∗, i.e. fα,β,d(Ĉ)< fα,β,d(C∗), since the early tasks stay early
but with a smaller earliness, and the tardy tasks, except the first tardy task which becomes eventually
on-time, stay tardy with a smaller tardiness.
Then gα,β(ê, t̂) = fα,β,d(Ĉ) < fα,β,d(C∗) = gα,β(e, t). A contradiction since (e, t) minimizes gα,β on
πe,t

(
intδ(P 3)

)
. �

The following theorem establishes that UCDDP reduces to solving formulation F 3.
Theorem 1.14

Let d>p(J).
(i) Any optimal d-block is encoded by a vector minimizing gα,β on intδ

(
extrP 3

)
.

(ii) Conversely, any vector minimizing gα,β on intδ
(

extrP 3
)
encodes an optimal d-block.

Proof : Let us consider an optimal d-block S∗. From Theorem 1.12, there exists a vector Y ∗=(e∗, t∗, δ∗, X∗)
in intδ(P 3) encoding S∗. We will prove that Y ∗ is necessary an extreme point of P 3. We introduce
P δ∗=

{
(e, t) | (e, t, δ∗, X∗) ∈ P 3}, which is the slice of P 3 according to δ∗, i.e. the projection of set of

points of P 3 satisfying δ=δ∗ and therefore X=X∗.
Claim

If (e∗, t∗) is an extreme point of P δ∗ , then Y ∗ is an extreme point of P 3.

Proof : Let us show the contrapositive implication. Hence, we assume that Y is not an extreme point
in P 3. By definition, there exist then Y 1 = (e1, t1, δ1, X1) and Y 2 = (e2, t2, δ2, X2) in P 3 such
that Y ∗= 1

2(Y 1+Y 2). Then δ1 and δ2 are necessarily equal to δ∗ since δ∗ ∈{0, 1}J , δ1 ∈ [0, 1]J ,
and δ2∈ [0, 1]J . By Lemma 0.5, we deduce that X1 =X∗ (resp. X2 =X∗), and thus that (e1, t1)
(resp. (e2, t2)) is in P δ∗ . Since (e∗, t∗) = 1

2
(
(e1, t1)+(e2, t2)

)
, that shows that (e∗, t∗) is not an

extreme point of P δ∗ . �

Let (E, T) denote the partition of tasks given by δ∗, i.e. E=E(δ∗) and T =T (δ∗). Using Lemma 1.10,
and inequalities (1.5 -1.8) we decompose P δ∗ as the Cartesian product P δ∗= P δ∗, E×{0}T×P δ∗, T×{0}E
where P

δ∗, E =
{
ẽ∈RE

∣∣∣ ẽ+p/E satisfies (Q0) and ∀j∈E, ẽj+pj6p(J)
}

P δ∗, T =
{
t̃∈RT

∣∣∣ t̃ satisfies (Q0) and ∀j∈T, t̃j 6 p(J)
}
.

64

Knowing that the extreme points set of a Cartesian product is exactly the Cartesian product of the
extreme points sets, it remains to show that e∗/E∈extr(P δ∗, E) and that t∗/T ∈extr(P δ∗, T).
Note that P δ∗, T is the polyhedron called PQ

M in Section 1.1, where the index set J is replaced by T
while keeping M =p(J)>p(T). Similarly, P δ∗, E is a translation according to −p/E of PQM , where J is
replaced by E while keeping M=p(J)>p(E).
Queyranne has shown that left-tight schedules are encoded by extreme points of PQ. These points are
also extreme points of PQM since no task is scheduled after M>p(J) in a left-tight schedule. Therefore,
it suffices that t∗/T (resp. e∗/E+p/E) encodes a left-tight schedule of tasks in T (resp. E) to ensure its
extremality in P δ∗, T (resp. P δ∗, E). Both conditions are satisfied since Y ∗ encodes a d-block. We deduce
that (e∗, t∗) belongs to extr(P δ∗) and thus that Y ∗ belongs to intδ

(
extrP 3).

To prove item (i), it remains to show that Y ∗, or more precisely (e∗, t∗), is a minimizer of gα,β. By
contradiction, let us assume that there exists Ŷ = (ê, t̂, δ̂, Ŷ) ∈ intδ

(
extrP 3) such that (ê, t̂) minimizes

gα,β and gα,β(ê, t̂) < gα,β(e∗, t∗). According to Theorem 1.13, Ŷ encodes a schedule inducing a total
penalty gα,β(ê, t̂), which is lower than the total penalty of S∗ a contradiction.

The second item (ii) is a direct corollary of item (i) and Theorem 1.13. The schedule encoded by a
vector Y ∗ minimizing gα,β on πe,t

(
intδ

(
extrP 3)) is a d-block, and if it is not optimal, there would

exist a strictly better d-block, and a vector in intδ
(

extrP 3) with a smaller value according to gα,β, a
contradiction. �

The next section provides a formulation similar to F 3 for CDDP. The main ideas are the same,
but the occurrence of a straddling task in dominant schedules makes the encoding and the validity
proof a bit more difficult.

65

1.4 A formulation for CDDP using natural variables

As explained in Section 0.2.2, we can consider an instance CDDP(p, α, β, d) where β∈(R∗+)J . More-
over, only d-or-left-blocks will be consider since they form a dominant set.

1.4.1 An encoding based on a new reference point

• Encoding a schedule with a straddling task
In case of a schedule with a straddling task js, i.e. Cjs−pjs<d<Cjs , the tardiness of tardy tasks do
not satisfy the non-overlapping constraints, i.e. t/T does not satisfy inequalities (Q0), particularly
the one associated with {j}, i.e. tjs > pjs . Indeed, these tardiness no longer play the same role as
completion times. Therefore, we will use variables describing the schedule with respect to a new
reference point, which is the starting time of js instead of the due date d.

We introduce a new variable a, so that d−a is the starting time of js. The schedule is then a
(d−a)-schedule. For each task j in J , we consider a variable e′j (resp. t′j) instead of ej (resp. tj),
representing the earliness (resp. the tardiness) according to the new reference point d−a. Figure 1.5
illustrates this encoding for a schedule holding a straddling task.

0

jsi j

da

d−ae′i t′j

Figure 1.5: The (a, e′, t′) encoding for a schedule holding a straddling task js

Since we do not know a priori if there is a straddling task in the optimal schedule, our formulation
must also handle d-blocks. Hence, we also need to encode schedules having an on-time task with
variables a, e′, t′.

• Two possible encodings for a schedule with an on-time task
In case of a schedule holding an on-time task jt, we can keep d as the reference point, since we can
use earliness and tardiness as proposed in formulation F 3. Hence, a first possible encoding consists
in setting a= 0, and using e′ (resp. t′) to represent earliness (resp. tardiness). Figure 1.6 illustrates
this encoding for a schedule holding an on-time task.

0

jti j

d

d−ae′i t′j

Figure 1.6: The first (a, e′, t′) encoding for a schedule holding an on-time task jt

Unfortunately, to ensure that a takes the expected value in case of a schedule holding a straddling
task, we will introduce a boolean variable to identify the task j0 beginning at d−a. It forces to have
in every schedule a task beginning at d−a. Therefore, this encoding proposed above is not valid in
case of a d-block without tardy task, since no task starts at d−a= d in such a schedule. We then
propose a second encoding for the d-blocks. It consists in choosing the starting time of the on-time
task jt as the new reference point, which is setting a=pjt , This second encoding can be also used for
a schedule holding an on-time task and having tardy tasks, as illustrated by Figure 1.7.

66

0

jti j

da

d−ae′i t′j

Figure 1.7: The second (a, e′, t′) encoding for a schedule holding an on-time task jt

To sum up, the first encoding, with a= 0, is suitable for d-blocks, except those without tardy
tasks, and the second encoding, with a=pjt , is suitable for any d-block. Fortunately, all the encoding
proposed in this section can be decoded in the same way: the following expression gives the completion
times of the encoded schedule.

C=
(
d−a−e′j+t′j

)
j∈J

• A task partition slightly different from the early-tardy partition
Let us introduce the following notations in order to partition the tasks according to their completion
times in a slightly different way than (E(C), T (C)) does.

Ẽ(C)={ j∈J |Cj<d} T̃ (C)={ j∈J |Cj>d }

Figure 1.8 (resp. Figure 1.9) illustrates this partition for a schedule with a straddling task (resp.
with an on-time task). Note that if there is a straddling task in the schedule, then E (C)= Ẽ (C) and
T (C)= T̃ (C).

E

Ẽ

js

T

T̃

d

0

Figure 1.8: (Ẽ, T̃) when a straddling task occurs

jt

E

Ẽ

T

T̃

d

0

Figure 1.9: (Ẽ, T̃) when an on-time task occurs

1.4.2 Building the formulation step by step

• Consistency between e′ and t′ using δ variables
To ensure consistency between e′ and t′, we use again variables δ. In the previous formulation, δj
indicated if task j completes before or at d. In this formulation δj indicates if the task completes
before or at d−a. We also use inequalities (1.5 – 1.8) (Cf. page 58) where e (resp. t) are replaced by
e′ (resp. t′). These inequalities will be denoted by (1.5’ – 1.8’) in the sequel.

Note that δj no longer necessarily indicates if task j is early or not. In particular,
(
E(δ), T (δ)

)
is no longer necessarily the early-tardy partition.

→ When a straddling task occurs, both partitions coincide, then we have:

E(δ)=E (C)= Ẽ (C) and T (δ)=T (C)= T̃ (C)

→ When an on-time task occurs, using the first encoding we have

E(δ)=E (C) and T (δ)=T (C),

but using the second one we have

E(δ)= Ẽ (C) and T (δ)= T̃ (C).

67

• Handling the non-negativity
Since the due date can be smaller than p(J), avoiding overlaps and idle times does not ensure the
non-negativity constraint. Therefore, we add the following inequalities ensuring that e′j+pj 6 d−a
for each task j completing before d−a.

∀j∈J, e′j+pj δj 6 d−a (1.15)

Since d is an upper bound of a, i.e. d−a>0, these inequalities are valid even for a task j completing
after d−a, i.e. such that δj =0, and thus e′j =0.

• Handling the non-overlapping
To ensure the non-overlapping, we use again variables X, satisfying (X.1-X.4) and the inequali-
ties (Q1) and (Q2) (Cf. page 60), where e (resp. t) are replaced by e′ (resp. t′). These inequalities
will be denoted by (Q1’) and (Q2’) in the sequel.

In order to ensure that tasks completing before or at d−a do not overlap using inequalities (Q1’),
inequalities (1.15) must not restrict too much e′j from above. Indeed, an inequality of the form Cj6M
is compatible with the non-overlapping inequalities (Q0) only ifM> p(J)3. IfM<p(J), adding such
an inequality makes appear extreme points which can be reached by minimization, whereas they do
not correspond to feasible schedules, as the following example shows.

Example 4 : A constraint Cj6M for a too small M disables the non-overlapping inequalities
Let us consider the following instance of CDDP reduced to two identical tasks.

J=[1..2], d=5, p1 =3, α1 =1, β1 =10,

p2 =3, α2 =1, β2 =10,

Let us consider the polyhedron corresponding to the draft formulation built so far.

P =
{

(e′, t′, δ,X, a)∈RJ×RJ×[0, 1]J×RJ<×R
∣∣∣ (1.5’ – 1.8’), (X.1 –X.4), (Q1’), (Q2’), and (1.15)

}
The vector Y = (2, 2, 0, 0, 1, 1, 0, 0), is an integer extreme point of P . It corresponds to the schedule S
represented below, where both tasks complete at time 3, since e′1 =e′2 =2 and a=0.

p p p p p p p p p

1
2

→ 4

0

d

d−a=5−0e′1 =e′2

The positivity constraint is satisfied, but not the non-overlapping constraint. Then S is unfeasible, then
its penalty is not defined. However, one can say that S has a total penalty of 4, since α1(e′1+a)+α2(e′2+
a) = 4. More precisely S minimizes the following function supposed to represent the total penalty over
P . ∑

j∈J
αj (e′ − j+aδj) + βj (e′ − j−a(1−δj))

Finally, Y encodes a schedule where an overlap occurs in spite of inequalities (Q1’) and despite Y is
both extreme an minimal. The reason is that d−a=5<6=p(E(δ)), then Lemma 1.5 fails to be applied
to (e′+p)/E(δ). One can say that "d−a is a too restrictive big M".

3Implicitely, inequalities (Q0) are written for the whole set of tasks J . In case where the non-overlapping only
involves a subset of tasks I⊆J , the condition is M> p(I).

68

To prevent d−a to be too restrictive, we introduce the following inequality.∑
j∈J

pj δj 6 d−a (1.16)

Indeed, for a given δ∈{0, 1}J , inequalities (1.16) for j∈E(δ) are similar to inequalities (1.4), where
d−a can play the role of M since d−a>p

(
E(δ)

)
.

To ensure that inequalities (Q1’) (resp. (Q2’)) prevent overlaps of tasks completing before (resp.
after) d−a, the objective function must be:
(i) a non-increasing function of variable e′j for each task j such that δj =1,

(ii) a non-increasing function of variable t′j for each task j such that δj =0.

Note that if a takes a value such that d−a is the starting time of the straddling task, the on-time
task, or the first tardy task as proposed by the previous encodings, then these two conditions are
ensured. The new point is dedicated to provide linear inequalities ensuring that the variable a takes
a value such that the objective function fulfills (i) and (ii).

• Ensuring that variable a takes the expected value
In spite of their apparent symmetry, the two conditions (i) and (ii) are completely different.

To ensure the condition (i), it suffices to ensure that any task completing before or at d−a
completes before or at d. Indeed, for such a task j, reducing e′j while satisfying the inequality (Q1’)
associated with {j}, i.e. e′j > 0, task j remains early and its earliness decreases, which reduces the
induced penalty. Therefore, the first constraint is guaranteed by the following inequality.

a > 0 (1.17)

To ensure the condition (ii), ensuring that any task completing after d−a completes after or at d
is not sufficient. Indeed, for such a task j, reducing t′j while satisfying the inequality (Q2’) associated
with {j}, i.e. t′j > pj, task j can become early if pj 6 a. In this case, the induced penalty does not
necessarily decrease. Figure 1.10 illustrates the extreme case of this phenomenon, that is when a=d,
E(δ)=∅ (then (1.15) is satisfied) and tasks overlap each other to be on-time, while being in T (δ).

p p p p p p p p p p p p
i

j

k

d

d−a

0 a

t′j = t′i= t′k

Figure 1.10: An unfeasible schedule when a=d

Note that this case appears even if we add inequalities ∀j ∈ J, t′j > a(1−δj). Adding inequalities
∀j ∈J, pj>a(1−δj), could avoid this issue, but unfortunately they are not valid, since a task com-
pleting after d−a can be shorter than a, provided that it is not the first one. Therefore, in order to
identify the first task j0 completing after d−a, we introduce boolean variables (γj)j∈J along with the
following inequalities∑

j∈J
γj = 1 (1.18)

∀j∈J, δj 6 1−γj (1.19)
∀j∈J, t′j 6 pj + (1−γj) (p(J)−pj) (1.20)

69

More precisely, inequalities (1.18 – 1.19) ensure that γ designates one and only one task i0 among
those completing after d−a, i.e. among T (δ); while inequalities (1.20) ensure that i0 is the first
one, i.e. i0 = j0. Indeed, the latter ensure that t′i0 6 pi0 , and since t′i0 > pi0 by inequality (Q2’)
associated with the singleton {i0}, we deduce that t′i0 = pi0 . Then, for each task j such that δj = 0,
the inequality (Q2’) associated with a pair {i0, j} gives��

�t′i0 pi0 + tj pj >�
�p2
i0 +p2

j +pi0 pj, which suffices
to prove that task j completes after i0, i.e. tj>pi0 +pj. the following lemma sums up these results.
Lemma 1.15

Let (t′, δ,X, γ)∈RJ×{0, 1}J×[0, 1]J<×[0, 1]J .
(i) γ∈{0, 1}J and (γ, δ) satisfies (1.18)-(1.19) ⇔ ∃i0∈T (δ), γ=Ii0
(ii) If (i) holds and t′, δ,X satisfy (X.1)-(X.4), (1.20) and (Q2′),

then t′i0 =pi0 and ∀j∈T (δ), j 6= i0 ⇒ t′j> t
′
i0 +pj.

Thanks to γ which identifies j0, we can now ensure that j0 does not complete before d, (i.e.
d−a+t′j0>d, that is a6 t′j0 or even a6pj0 since pj0 = t′j0) using the following inequalities.

∀j∈J, a 6 pj+(1−γj) d (1.21)

Yet again, these inequalities are valid since d−a > 0. Indeed, for a task j 6= j0, γj = 0 and this
inequality gives a 6 pj+d.

• A linear objective function using e′,t′, a and b variables
Using e′ and t′ variables instead of e and t offers an easy way to ensure non-negativity, consistency,
and non-overlapping at the expense of a linearization of the product a δj. Indeed, in the objective
function, we need a linear expression for the earliness (resp. the tardiness) of any task j in J , which
is equal to e′j+a δj (resp. to t′j−a(1−δj)).

Therefore, for each task j in J , we introduce a variable bj to replace the product aδj. We add
the following inequalities to ensure that b variables take the expected values.

∀j∈J, bj > 0 (1.22)
∀j∈J, bj 6 a (1.23)
∀j∈J, bj 6 δj d (1.24)
∀j∈J, bj > a− (1−δj) d (1.25)

Since d is an upper bound of a by construction, we get the following lemma.
Lemma 1.16

Let (a, b, δ)∈R×RJ×{0, 1}J .
a, b and δ satisfy inequalities (1.22)-(1.25) ⇔ b= a δ.

Then the total penalty of a schedule encoded by (e′, t′, a, b) is given by the linear function hα,β defined
as follows.

hα,β(e′, t′, a, b) =
∑
j∈J

αje
′
j + βjt

′
j + (αj+βj) bj − βja

Note that, provided that the schedule satisfies the non-overlapping constraint, the function hα,β
provides the total penalty, even for a schedule admitting two different encodings, (i.e. for a d-schedule
with at least one tardy task). To enunciate formally this result, let us introduce θ′d (resp. θ̃′d) the
function which gives the first (resp. second) (e′, t′, a, b) encoding of a schedule from its completion
time vector C. Functions θ′d and θ̃′d are defined as follows.

70

θ′d(C) =
((

[d−a−Cj]+
)
j∈J

,
(
[Cj−(d−a)]+

)
j∈J

, a, a IE(C)

)
where a = d−min

i∈T (C)
Ci−pi

θ̃′d(C) =
((

[d−ã−Cj]+
)
j∈J

,
(
[Cj−(d−ã)]+

)
j∈J

, ã, ã I
Ẽ(C)

)
where ã = d−min

i∈T̃ (C)
Ci−pi

Note that if C encodes a schedule with a straddling task, both encodings coincide, i.e. θd(C)= θ̃′d(C),
since E (C) = Ẽ (C) and T (C) = T̃ (C). The following lemma gives the link between the objective
function hα,β and the previous objective function fα,β,d.
Lemma 1.17

Let C∈RJ . If C satisfies (1.1), then hα,β
(
θ′d(C)

)
=hα,β

(
θ̃′d(C)

)
=fα,β,d

(
θ′d(C)

)
.

• Formulation F 4

Let us first introduce the space of the variables introduced so far.

E = RJ×RJ×[0, 1]J×RJ<×R×RJ×[0, 1]J

Now we can describe the polyhedron defined by the linear inequalities introduced so far.

P 4 =
{

(e′, t′, δ,X, a, b, γ)∈E (1.5’ – 1.8’), (X.1 –X.4), (1.15 – 1.17), (1.21 – 1.22),
(1.18 – 1.21), (Q1’) and (Q2’) are satisfied

}
.

Note that this polyhedron depends on d, in addition to p, but neither on α nor on β. Inequalities
(Q1’) and (Q2’) require the same separation algorithm as for (Q1) and (Q2), which will be developed
in Section 2.1.
We introduce the operator intδ,γ, which only keeps points with integer δ and γ. of any set V ⊆E.

intδ,γ(V)=
{

(e′, t′, δ,X, a, b, γ)∈V
∣∣∣ δ∈{0, 1}J , γ∈{0, 1}J}

For the sequel, we also introduce π′e,t,a,b the projection of the whole variable space E to the (′e, t′)
variable space as follows.

π′e,t,a,b =
(

E −→ RJ×RJ
(e′, t′, δ,X, a, b, γ) 7−→ (e′, t′, a, b)

)

Finally, our formulation for CDDP is the following.

F 4 : min
(e′,t′,δ,X,a,b,γ)∈intδ,γ

(
extrP 4

)hα,β(e, t, a, b)

The following section shows the validity of F 4 following the same lines as Section 1.3.2 for F 3.

71

1.4.3 Validity of Formulation F 4

Let us start by summing up how we handle the non-overlapping4 in Formulation F 4. Thanks to
the natural variables e′ and t′, ensuring the non-overlapping constraint reduces to ensuring the non-
negativity and non-overlapping constraints for two subsets of tasks. In contrast with Formulation F 3

where these two subsets are the early and the tardy tasks (Cf. Lemma 1.9), in Formulation F 4, the
subsets to consider depend on the occurrence of a straddling or an on-time task, as detailed in the
following lemma.
Lemma 1.18

Let C∈RJ . Let (e′, t′, a, b)∈RJ×RJ×R×RJ .
(i) If (e′, t′, a, b)=θ′d(C), then the following equivalence holds.

C satisfies (1.1)
∀j∈J, Cj6d−a or Cj>(d−a)+pj

}
⇔

(e′+p)/E(C) satisfies (1.0) and (1.1)
t′/T (C) satisfies (1.0) and (1.1)

(ii) If (e′, t′, a, b)= θ̃′d(C), then the following equivalence holds.

C satisfies (1.1)
∀j∈J, Cj6d−a or Cj>(d−a)+pj

}
⇔

(e′+p)
/Ẽ(C) satisfies (1.0) and (1.1)

t′
/T̃ (C)

satisfies (1.0) and (1.1)

The following theorem establishes that a feasible schedule, under some assumptions, is encoded
by an integer point of P 4. In particular a d-or-left-block is encoded by an integer point of P 4.
Theorem 1.19

Let C∈RJ satisfying (1.0) and (1.1).
(i) If there exists js∈J such that Cjs−pjs<d<Cjs ,

and if ∀j∈J, d−p(J)6Cj−pj and Cj6Cjs− pjs+ p(J),
then there exists (e′, t′, δ,X, a, b, γ)∈ intδ,γ(P 4) such that θ′d(C)=(e′, t′, a, b).

(ii) If there exists jt∈J such that Cjt =d,
and if ∀j∈J, d−p(J)6Cj−pj and Cj6Cjt− pjt+ p(J),
then there exists (e′, t′, δ,X, a, b, γ)∈ intδ,γ(P 4) such that θ̃′d(C)=(e′, t′, a, b).

Proof : Let us start by proving (i).
From C, let us set: (e′, t′, a, b)=θ′d(C), δ=IE(C), X=

(
Iδi 6=δj

)
(i,j)∈J<

, γ=Ijs and Y =(e′, t′, δ,X, a, b, γ).

We will prove that Y ∈ intδ,γ(P 4). Since δ ∈ {0, 1}J and γ ∈ {0, 1}J by construction, we have to show
that Y satisfies all the inequalities defining P 4, i.e. Y ∈P 4.
Note that the definition of δ ensures that E(δ) = E (C) and T (δ) = T (C), which allows the notation E
and T for the sake of brevity. By Lemma 0.5(i), the definition of X ensures that inequalities (X.1–X.4)
are satisfied. By Lemma 1.15(i), the definition of γ ensures that inequalities (1.18 – 1.19) are satisfied,
since js∈T . By Lemma 1.16, inequalities (1.22 – 1.25) are satisfied, since b=a IE(C) =a δ, by definition
of θ′d.

Since C encodes a feasible schedule, the straddling task js satisfies Cjs− pjs = min
j∈T (C)

(Cj−pj).
Then a=d− (Cjs− pjs), by definition of θ′d.

We also have 06Cjs− pjs<d, then 0<a6d. Thus inequality (1.17) is satisfied, and for any task j 6=js,
γj =0 then a 6 d+pj = (1−γj) d+ pj . More precisely, task js starts after all early tasks, and since they
do not overlap, p(E)6Cjs− pjs = d−a, thus inequality (1.16) holds, since E=E(δ). Moreover, task js

4This paragraph, along with Lemma 1.18, is not placed before, since the complete encoding and the functions θ′d
and θ̃′d must be already introduced for a correct enunciation.

72

completes after d, i.e. Cjs>d , thus we get a = pjs + (d−Cjs) < pjs = pjs + (1−γjs) d, since γjs =1. We
deduce that inequalities (1.21) are satisfied.
Inequalities (1.5’) and (1.7’), are satisfied by construction of e′ and t′ (Cf. definition of θ′d).
Let us prove that Y satisfies inequalities (1.5’ – 1.8’), (1.15), and (1.20) by considering separately the
inequalities indexed by j ∈ E of those indexed by j ∈ T . We will say "the inequality (•)" meaning
implicitely "the inequality (•) indexed by j".
→ For a task j in E, Cj6Cjs− pjs = d−a since j and js do not overlap, then e′j =d−a− Cj and t′j =0.
Inequality (1.8’) is thus satisfied, along with (1.20) since pj + (1−γj)

(
p(J)−pj

)
= p(J) > 0= t′j .

By assumption Cj > d−p(J)+pj , thus e′j 6 d−a −
(
d−p(J)+pj

)
6 p(J)−pj , and inequality (1.6’) is

also satisfied. Moreover, d− e′j− pjδj = a+ Cj− pj , and by non-negativity constraint Cj− pj > 0, thus
d− e′j− pjδj > a and inequality (1.15) is satisfied .
→ For a task j in T , Cj > d > d−a, then e′j = 0 and t′j = Cj− (d−a). The inequality (1.6’) is thus
satisfied. Moreover, d − e′j− pjδj = d > a, then inequality (1.15) is satisfied for j. By assumption
Cj6(Cjs− pjs) + p(J)=(d−a) + p(J), thus t′j =Cj − (d−a)6p(J). We deduce that the inequality (1.8’)
is also satisfied, along inequality (1.20) if j 6= js, since pj + (1−γj)

(
p(J)−pj

)
= p(J) in this case. If

j=js, inequality (1.20) is also satisfied, since pjs + (1−γjs)
(
p(J)−pjs

)
= pjs = Cjs− (d−a) = t′js .

Since C encodes a feasible schedule, C satisfies (1.1). Moreover, by definition of θ′d, d−a is the starting
tie of a task (namely j0). We deduce that no task starts before d−a and completes after d−a, i.e.
∀j ∈ J, Cj 6 d−a or Cj > (d−a)+pj . Then Lemma 1.18(i) ensures that (e′+p)/E , along with t′/T ,
satisfies (1.0) and (1.1). Applying Property 1.1 to these two vectors, we deduce that they satisfy (Q0),
and using Lemma 1.10, that e′, δ,X satisfy (Q1’) and t′, δ,X satisfy (Q2’).
Thus, Y belongs to intδ,γ(P 4) and (i) is proved

Rewriting the proof by replacing θ′d by θ̃′d, E (C) by Ẽ (C), T (C) by T̃ (C), and the straddling task js
by the on-time task jt provides almost the proof of (ii). The only difference lies in the justification for
inequality (1.21) indexed by jt: in this case Cjt=d, and a = d+ (pjt−Cjt) = pjt = pjt + (1−γjt) d. �

The following theorem establishes that an optimal solution of formulation F 4 encodes a solution
for CDDP, and even a dominant solution since it encodes a d-or-left-block.
Theorem 1.20

Let assume that α∈R∗+J. Let Y ∗=(e′, t′, δ,X, a, b, γ)∈ intδ,γ(P 4).
If Y ∗∈extr(P 4) and (e′, t′, a, b) minimizes hα,β on π′e,t,a,b (intδ,γ(P 4)),
then Y ∗ encodes a d-or-left-block, by θ′d or θ̃′d.

Proof : Let us set, for any task j in J , C∗j = (d−a)− e′j + t′j . The first step of the proof is to show that C∗

gives the completion times of the schedule encoded by Y ∗ using θ′d or θ̃′d.
− Proving that (e′, t′, a, b)=θ′d(C∗) or (e′, t′, a, b)= θ̃′d(C∗)
First we derive from inequalities (1.5’ – 1.8’) that ∀j∈T (δ), e′j =0 and ∀j∈E(δ), t′j =0.
Since δ and γ are in {0, 1}J , and Y ∗ satisfies (X.1 –X.4), (1.18 – 1.20) and (Q2’), Lemma 1.15 ensures
that there exists j0∈T (δ) such that γ= I{j0}, t′j0= pj0 , and ∀j∈T (δ), j 6=j0, t

′
j > t′j0+ pj . Since j0 is in

T (δ), e′j0= 0, hence C∗j0− pj0 = d−a. Then for any other task j in T (δ), we have

C∗j − pj = (C∗j0− pj0) + t′j − pj > (C∗j0− pj0) + t′j0 = C∗j0 > C∗j0− pj0 .

We deduce that C∗j0− pj0 = min
j∈T (δ)

C∗j −pj , and then a=d− min
j∈T (δ)

C∗j −pj .

The question is whether T (δ) = T (C∗) or T (δ) = T̃ (C∗). Indeed, if T (δ) = T (C∗), the value of a is the
one expected with the encoding θ′d, whereas if T (δ)= T̃ (C∗), it is the one expected with θ̃′d.
For any task j 6=j0 in T (δ), C∗j = d−a+ t′j > d−a+ t′j0= d−a+pj0 . Since γj0= 1, inequality (1.21) gives
a 6 pj0 , thus C∗j > d. We deduce that T (δ)\{j0}⊆T (C∗). Conversely, for a task j in T (C∗), C∗j > d,

73

which is equivalent to t′j − e′j > a. Since a > 0 by inequality (1.17), t′j > e′j , which would be impossible
if j was in E(δ), according to inequalities (1.5’) and (1.8’). We deduce that T (C∗) ⊆ T (δ). Two cases
have to be considered.

→ If a<pj0 , then C∗j0>d, i.e. j0∈T (C∗), and then T (δ)=T (C∗) and E(δ)=E (C∗).

→ → If a = pj0 , then C∗j0= d and j0∈ T̃ (C∗), we deduce that T (δ)⊆ T̃ (C∗). For j in T̃ (C∗), either
j∈T (C∗)⊆T (δ) or C∗j =d , that is t′j = e′j+ a = e′j+ pj0 > e′j , and necessarily j∈T (δ). Therefore,
T̃ (C∗)⊆T (δ). We conclude that T (δ)= T̃ (C∗) and E(δ)= Ẽ (C∗).

For the remainder of the proof, we assume that we are in the first case. Then E (resp. T) will denote
E(δ) = E (C∗) (resp. T (δ) = T (C∗)), and we will use the encoding θ′d. To handle the second case, it
suffices to replace E (C∗) by Ẽ (C∗), T (C∗) by T̃ (C∗), and θ′d by θ̃′d to apply Lemma 1.18(ii) instead of
Lemma 1.18(i), and, in the third step, to use that j0 is the on-time task.
We can rewrite δ as IE(C∗), and thus b as a IE(C∗), since b=a δ by inequalities (1.22–1.25) and Lemma 1.16.
Using inequalities (1.5’-1.8’), it is easy to show that e′=

(
[d−a−C∗j]+

)
j∈J and t′=

(
[C∗j −(d−a)]+

)
j∈J .

Then we can conclude that (e′, t′, a, b)=θ′d(C∗), that is that C∗ and (e′, t′, a, b) encode the same schedule,
which will be denoted by S∗.
− Proving that S∗ is feasible

We have to prove that C∗ satisfies (1.0) and 1.1).
For a task j in E, inequality (1.15) ensures that pj 6 d−a− e′j = C∗j . For a task j in T , inequality (1.15)
ensures that a 6 d, then C∗j = d−a + t′j > t′j . Moreover, from inequality (Q2’) associated with {j}, we
have t′j> pj thus C∗ satisfies (1.0).
To show that C∗ satisfies (1.1) using Lemma 1.18(i), it remains to show that vectors (e′+p)/E and t′/T
satisfy (1.0) and (1.1). Since inequalities (Q1’) and (Q2’) are satisfied, we know from Lemma 1.10 that
(e′+p)/E and t′/T satisfy inequalities (Q0). First, these inequalities for the singletons ensure that both
vectors satisfy (1.0). Second, inequalities (Q0) allow us to show that both vectors satisfy (1.1) as follows
Let us assume that (e′+p)/E does not satisfy (1.1). Then there exist two tasks i and j in E such that
e′i+pi6e′j+pj<(e′i+pi)+pj . Three cases have to be considered.

→ If e′j+pj>p(J), then e′j+pj>p(E). Applying Lemma 1.5 to (e′+p)/E , we can construct a vector
e′− ∈ RJ which is component wise smaller than e′ and such that (e′−+p)/E satisfies (Q0). One
an check that Y −= (e′−, t′, δ,X, a, b, γ) is in intδ,γ(P 4) and hα,β(e′−, t′, a, b) < hα,β(e′, t′, a, b) since
α∈R∗+J . A contradiction since (e′, t′, a, b) minimizes hα,β on π′e,t,a,b

(
intδ,γ(P 4)

)
.

→ If e′j+pj =d−a, we can derive the same contradiction since d−a>p(E) from inequality (1.16).

→ If e′j+pj <p(J) and e′j+pj <d−a, according to Remark 1.4, we can force the parameter ε to be
smaller than min(p(J)− (e′j +pj), d−a − (e′j +pj)) > 0 when applying Lemma 1.3 to (e′+p)/E .
This way, we obtain two vectors e′+− ∈RJ and e′−+ ∈RJ such that (e′+−+p)/E and (e′−++p)/E
both satisfy (Q0), an such that Y +−= (e′+−, t′, δ,X, a, b, γ) and Y −+ = (e′−+, t′, δ,X, a, b, γ) are in
intδ,γ(P 4). Yet Y ∗ is the middle point of the segment [Y +−, Y −+]. this contradicts the extremality
of Y ∗.

Similarly, let us assume that t′/T does not satisfy (1.1). Then there exist two tasks i and j in T such
that t′i6 t′j<t′i+pj . By Lemma 1.15, ∀k∈T (δ), k 6= j0 ⇒ t′k > t′j0+ pk, we deduce that i 6= j0. Then for
tasks i and j, inequalities (1.8’) and (1.20) are equivalent, and t′i and t′j are only bounded from above
by p(J). Then two cases have to be considered.

→ If t′j>p(J), then t′j>p(T). Applying Lemma 1.5 to (e′+p)/E we can derive a contradiction to the
minimality of (e′, t′, a, b) on π′e,t,a,b

(
intδ,γ(P 4)

)
.

→ If t′j<p(J), applying Lemma 1.3 we can derive a contradiction to the extremality of Y ∗.

Finally, S∗ is feasible.

74

− Proving that S∗ is a d-or-left-block.
Let us denote by S the set of blocks satisfying at least one condition among: - the starting time is 0,

- there is an on-time task,
- α(E)=β(T).

From the proof of Lemma 0.2, S is a strictly dominant. Therefore, we can show that S∗ necessary
belongs to S as we proved that S∗ necessary was a d-block in Theorem 1.13’s proof. Indeed, if S∗
does not belongs S , there exists Ŝ having a lower penalty, an according to Theorem 1.19, this schedule
corresponds to a point in intδ,γ(P 4) which contradicts the minimality of (e′, t′, a, b).
Conversely, the set of d-or-left-blocks is not a strictly dominant set. To show that S∗ is a d-or-left-
block, we then use the extremality of Y ∗ as follows. Let us assume that S∗ is not a d-or-left-block. We
necessarily have α(E)=β(T) since S∗∈S . That implies that E 6=∅ since β 6=0 (resp. T 6=∅ since α 6=0).
Then in S∗, there is a straddling task (necessarily it is j0) and a tasks scheduled right before it. The first
completes at time d−a+pj0 while the second completes at time d−a, then we have pj0−a>0 and a>0.
Moreover, denoting by s the starting time of S∗, we have s>0. Then ε= 1

2 min(pj0−a, a, s) is positive.
Setting a−= a−ε and Y − = (e′, t′, δ,X, a−, a−δ, γ) (resp. a+= a+ε and Y + = (e′, t′, δ,X, a+, a+δ, γ)),
Y − (resp. Y +) encodes using θ′d the schedule obtained by shifting backward (resp. forward) the whole
block by ε time unit. By definition of ε, Y − (resp. Y +) still satisfies inequalities (1.15), (1.21), (1.16)
and (1.17), thus Y −∈ P 4 (resp. Y +∈ P 4). Since Y ∗ is the middle of [Y −, Y +], that contradicts the
extremality of Y ∗.
We deduce that Y ∗ encodes a d-or-left-block. �

• Dealing with zero unit earliness penalties
If some tasks have a zero unit earliness penalty, F 4 provides a vector Y ∗= (e′, t′, δ,X, a, b, γ) which
partially encodes an optimal schedule. Indeed, except for early tasks having a zero unit earliness
penalty, the completion time of a task j is given as previously by C∗j = (d−a)− e′j+ t′j. Conversely,
for an early task j such that αj =0, e′j could be d−pj for instance and the previous encoding would
give C∗j = pj. If there are several early tasks having zero unit earliness penalty, an overlap would
appear at time 0.
Since their unit earliness penalty is zero, the minimality of Y ∗ does not ensure that these tasks are
well spread out (in this context Lemma 1.5 cannot be applied). However, the minimality of Y ∗
ensures that the other early tasks (i.e. having a non-zero unit earliness penalty) are right-tight with
respect to d. Hence, using inequality (1.16), there is enough time between 0 and their processing
duration to process the overlapping tasks. Thus, it suffices to schedule these tasks in an arbitrary
order from time 0 to obtain a feasible schedule S. Since these tasks do not induce any penalty, the
total penalty of S is hα,β(Y ∗), regardless of their order. We deduce that S is an optimal schedule.

The following theorem establishes that CDDP reduces to solving formulation F 4. We omit the
proof since it follows the same lines as the one of Theorem 1.14.
Theorem 1.21

Any optimal d-or-left-block, is encoded by a vector minimizing hα,β on intδ,γ
(

extrP 4
)
.

Conversely, any vector minimizing hα,β on intδ,γ
(

extrP 4
)
, encodes an optimal d-or-left-block.

Formulations F 3 and F 4 are built and then proved to be valid using the same ideas. We recall
below these common ideas as it can be seen as a guideline to formulate a problem using natural
variables and non-overlapping inequalities. Of course, this method is not applicable to any scheduling
problem, but the following section gives insights of such possible extensions.

75

1.4.4 A guideline to provide a formulation using natural variables
1. Establish the dominance properties standing for the considered problem. Use them to

consider only a subset of schedules as solution set.

2. For such a schedule, choose how it can be cut in order to decompose the global non-overlapping
constraint into independent local non-overlapping constraints. The time axis is then decom-
posed into several half-axis. Each of them is characterized by a reference point, a direction
(left or right, i.e. before or after), and a machine (if several). Note that the total penalty has
to decrease (or at least not raise) when a task gets closer to its reference point.

3. If the reference point depends on the schedule (let us talk about floating reference point in
this case), introduce variables along with inequalities to manage this floating reference point.

4. Introduce boolean variables to encode the task partition induced by the decomposition.

5. Introduce for each part of the partition a family of natural variables measuring the distance
to the reference point.

6. Add inequalities to ensure that the natural variables are consistent with the partition variables.

7. Add non-overlapping inequalities for each family of natural variables, that is for each part.

8. If needed, add linearization variables, along with the needed linearization inequalities, so as
to obtain a linear objective function.

=⇒ The problem is then to minimize a linear function f over the integer extreme points of a
polyhedron.

9. Check that each dominant schedule is encoded by an integer point of the polyhedron.

10. Check that each integer extreme point of the polyhedron encodes a feasible schedule and even
a dominant schedule.

11. Show that each optimal schedule is encoded by an integer extreme point of the polyhedron
minimizing f , and conversely that such a point encodes an optimal schedule.

76

1.5 Using natural variables and non-overlapping inequali-
ties for related problems

In this section, we consider just-in-time scheduling problems similar to common due date problems,
where a formulation using natural variables and non-overlapping inequalities could be provided using
the ideas presented in the previous section. We give neither complete formulation nor validity proof,
but only give some hints.

1.5.1 Slight modifications of the penalty function
Let us consider again the situation of the joiner who wants to send its daily production at 4:00
pm (Cf. Page 12), and imagine other costs for the extra-deliveries, that is the delivery of furniture
completing after 4:00 pm.

• Extra-delivery cost with a setup cost
Let us assume that an extra-delivery does not only induce a cost proportional to the tardiness but
also a setup cost σj which depends on the piece of the furniture j which has to be delivered. In this
case, the total penalty is the following.∑

j∈E
αj Ej +

∑
j∈T

(βj Tj + σj)

Following the same line as for UCDDP (resp. CDDP), one can show that d-blocks (resp. d-or-left-
blocks) are dominant for this problem if the due date is unrestrictive (resp. even if it is not the case).
Moreover, using the already introduced variables, the objective function can be written as follows.∑

j∈J
αj ej + βj tj + σj (1−δj)

This is a linear function, which is in addition a non-increasing function of each variable ej or tj. That
suffices to use Formulation F 3 (resp. F 4) for this problem, changing only the objective function.

• Extra-delivery cost reduced to a setup cost
Let us assume that the cost of an extra-delivery is only a setup cost, that is a cost that does not
depend on the completion time. In this case, one can show that d-blocks are dominant, even if the
due date is unrestrictive. Indeed, if a straddling task js occurs in a block, right-shifting the whole
block so as to start js at time d does not increase the total penalty since it does not increase the
earliness penalty, there is no tardiness penalty, and the penalty due to the tardy task does not change.
Therefore, no matter the value of the due date, Formulation F 3 can be adapted for this problem
using the following objective function. ∑

j∈J
αj ej + σj (1−δj)

Variables (tj)j∈J , along with non-overlapping inequalities (Q2) can be removed, since tardy tasks can
be arbitrarily scheduled after d with no impact on the total penalty.

77

• Extra-delivery by batch
Let us now assume that the joiner chooses to deliver all the furniture completed after 4:00 pm at
one blow, instead of delivering each piece of furniture by bike. The joiner has then to wait that the
last piece of furniture completes. One can consider that the cost of this single extra batch delivery
is proportional to the tardiness of the last task. The total penalty function can then be written as
follows. ∑

j∈J
(αj Ej) + λ

[
max
j∈J

Cj − d
]+

Assuming that the due date is unrestrictive, one can show that the d-blocks are dominant. Therefore,
the positive part on the last term can be removed, since necessarily maxj∈J Cj > d. In order to
obtain a linear objective function, we have to introduce a single continuous variable tmax to represent
maxj∈J tj = maxj∈J Cj−d, along with the following single constraint.

tmax >
∑
j∈J

pj (1−δj)

Hence, the objective function is the the following linear function.∑
j∈J

(αj ej) + λ tmax

As previously, variables (tj)j∈J , along with non-overlapping inequalities (Q2) can be removed, since
tardy tasks can be arbitrarily sequence after d, as long as they form a block starting at d.

We proposed here only modification on the penalty due to tardy tasks, however, we could simi-
larly manage other penalties for the early tasks, provided they could be linearly expressed. Indeed,
variables (ej)j∈J and (tj)j∈J are almost independent once variables δj have fix the early-tardy parti-
tion.

1.5.2 From one machine to multi-machine

•What can model a multi-machine setting
Let us now assume that the joinery is divided into multiple workshops. We then have to decide in
which workshop each piece of furniture will be produced. If the different workshops are not located
in the same place, the delivery can start at different time in each one: for example at 4:00 pm in the
one while at 5:00 pm in the other which is located closer to the customers. Moreover, the congestion
in one workshop is independent to the other. Therefore, multiple workshops are modeled by multiple
machines, denoted by [1..m], and having their own due date denoted by (dk)k∈[1..m]. One can even
consider unit earliness and tardiness penalties depending on the machine. For example in a more
spacious workshop, the unit earliness penalty can be lower.

Let us assume that all the due dates are unrestrictive. In this multi-machine setting, one can show
a dominance property equivalent to the V-shaped d-block dominance property for UCDDP. Indeed,
the schedules such that, for each machine k ∈ [1..m], the tasks scheduled on k form a V-shaped
dk-block, are dominant. Therefore, Formulation F 3 can be adapted to this problem.

• Correspondence between natural variables families and half-axes
Each natural variable family, along with the associated non-overlapping inequalities, can be seen as
a way to manage tasks placed on an half-axis, whose origin is attractive for tasks, i.e. the closer
tasks are placed to the origin, the lower is the penalty they induced.

78

As represented below, variables (Cj)j∈J , along with Queyranne’s non-overlapping inequalities (Q0),
correspond to the half-axis [0,+∞[.

j

0
Cj

As represented below, variables (ei)i∈E(δ), or more precisely (ei+pi)i∈E(δ) (resp. (tj)j∈T (δ)), along with
non-overlapping inequalities (Q1) (resp. (Q2)), correspond to the half-axis]−∞, d[(resp. [d,+∞[).

i j

dd

0
|

e′i+pi t′j

Note that the passage from one axis to two axes require the introduction of a binary variable for
each task, indicating to which axis the task belongs. That allow to write non-overlapping inequalities
taking into account only the appropriate tasks for each axis, i.e. only those belonging to this axis. It
is exactly what allows δj on page 60. To be exact, an additional variable, along with four inequalities,
must be introduced for each pair of tasks, in order to produce linear non-overlapping inequalities. It
is exactly the role of X variables on page 60.

As represented below, withmmachines, 2m half-axes have to be considered: two for each machine,
one for the early tasks, the other for the tardy ones.

machine 1

d1d1

0
|

machine 2

d2d2

0
|

......

machine m

dmdm

0
|

Hence, we have to introduce 2m−1 binary variables for each task, 2m variables along with
four inequalities for each pair of tasks. We also introduce 2m families of natural variables indexed
by J , i.e. one continuous variable for each task and each half-axis, along with the corresponding
non-overlapping inequalities.

The resulting formulation, which is similar to F 3, was the subject of the internship of Alexandre
Heintzmann, advised by Pierre Fouillhoux and myself during summer 2019. [référence à venir]

79

1.5.3 From a common due date to a common due window
Let us forget the delivery problem and focus on the working day organization according to the
daylight. The joiner prefers to work in daylight rather than artificial light, especially for finishing
touches. If the time window [d@, dA] represents the period of the day where there is enough sunlight,
finishing touches for tasks completing in this time windows are not painful. Therefore, no penalty
will occur for such tasks in the model. Conversely, finishing a furniture before the sunrise (resp. after
the sunset) is painful. More precisely, the more it is early in the morning (resp. late at night) the
more painful it is. Therefore, each task j completing before d@ (resp. after dA) will incur a penalty
proportional to d@−Cj (resp. Cj−dA). A priori, one can think to symmetrical earliness and tardiness
unit penalties, i.e. ∀j∈J, αj =βj, to reflects this situation, but taking into account the eye fatigue at
the end of the day, one can also have ∀j∈J, αj6βj. Finally, the objective function is the following.∑

j∈J
αj [d@−Cj]++ βj [Cj−dA]+

Figure 1.11 represents the penalty incurred by a task j in function of its completion time Cj.

αj E
′
j

βj T
′
j

Cj

d@ dA

0
|

Figure 1.11: Earliness and tardiness penalties of j in function of Cj for a due window [d@, dA]

This problem is known in the literature as the common due window scheduling problem. Let us
denote it by CDWP . Kramer and Lee [29] study CDWP in the case of task independent earliness
and tardiness penalties, i.e. ∀j ∈ J, αj = α0 and βj = β0. They propose a dynamic programming
algorithm in O(n dA) that exactly solves CDWP. We consider a larger class of instances, since we
allow task-dependent unit earliness and tardiness penalties. Therefore, the dominance properties
announced in the following are less strong than the ones provided in [29].

The dominance properties for UCDDP and CDDP can be extended to this problem as proposed
in Lemma 1.22, where definitions have been adapted as follows. For a given instance, a schedule is a
d@-or-dA-block if it is a block and there exists a task completing at time d@ or a task completing at
time d2. A schedule is a d@-or-dA-or-left-block if it is a d@-or-dA-block or a left-block. A schedule
is said -shaped if the tasks completing before d@ are scheduled by non-decreasing α-ratio and the
tasks starting after dA are scheduled by non-increasing β-ratio. Moreover, for a given schedule, a
task is said early (resp. tardy) if it completes before d@ (resp. after dA). Note that there can be
some tasks which are neither early nor tardy.

Lemma 1.22

Let p∈RJ+ and (α, β)∈RJ+×RJ+. Let (d@, dA)∈R+
J×R+

J .
The set of blocks is strictly dominant for CDWP(p, α, β, d@, dA).
The set of d@-or-dA-or-left-blocks is dominant for CDWP(p, α, β, d@, dA).
Moreover, if d@>p(J) the set of d@-or-dA-blocks is dominant for CDWP(p, α, β, d@, dA)
The set of -shaped schedules is strictly dominant.

80

Proof : These properties can be shown using shifting and exchange arguments, as done for common due
date problems in Section 0.2. However, we develop the proof of the d@-or-dA-or-left-block dominance
property in order to convince the reader that we cannot ensure that an optimal schedule can be found
among the d@-blocks (resp. dA-blocks), even if d@>p(J). In other words, one cannot choose d@ or dA
as preferred reference point for dominant schedules.

Thanks to the block dominance properties, there exists an optimal schedule S∗, encoded by the comple-
tion times (Cj)j∈J , which is a block. Let us assume that S∗ is not d@-or-dA-or-left-block. As done to
prove the d-block dominance property on page 16, one can prove that S∗ can neither completes before
d@ nor starts after dA, by optimality. There exist necessarily a task j1∈J such that Cj1−pj1 <d@<Cj1 ,
and a task j2∈J such that Cj2−pj2 <d@<Cj2 . Possibly, j1 =j2.

→ If α(E) > β(T), let us set ε1 = d@ − (Cj1−pj1), ε2 = dA − (Cj2−pj2), and ε = min(ε1, ε2). By
definition of j1 and j2, ε1 > 0 and ε2 > 0, then ε> 0. By right-shifting the whole block by ε time
units, the total penalty reduces by ε(α(E)−b(T))>0. A contradiction since S is optimal.

E

j1 j2

T

d@ dA
0 ε1 ε2

→ If α(E)<β(T) let us set ε1 = Cj1−d@, ε2 =Cj2−dA, s the starting time of S, and ε=min(ε1, ε2, s).
Since S is not a left-block, s> 0, and by definition of j1 and j2, ε1> 0 and ε2> 0, then ε> 0. By
left-shifting the whole block by ε time units, the total penalty reduces by ε (β(T)−α(E))> 0. A
contradiction since S is optimal.

E

j1 j2

T

d@ dA
0 ε1 ε2s

→ If α(E)=β(T), there is an infinite number of optimal schedules which are not d@-or-dA-blocks: all
those obtained by right-shifting the whole block by ε<min (d−(Cj1−pj1), dA−(Cj2−pj2)) and all
those obtained by left-shifting the whole block by ε<min(s, Cj1−d@, Cj2−dA). Indeed, such shifting
operation induce no variation of the total penalty since α(E) = β(T). However, there also exists
an optimal d@-or-dA-block since there is at least the one obtained by a min(s, Cj1−d@, Cj2−dA)
left-shifting.

Finally, an optimal schedule can always be found among the d@-or-dA-or-left-blocks.
Moreover, if d@>p(J), the previous min is not reached by s, and we can transform any optimal block
into a d@-or-dA-block. �

81

In spite of the d@-or-dA-block dominance property, we cannot encode only schedules where tardy
tasks starts at time dA, since there can be a dA-straddling task in all the optimal schedule. We are
in the same situation as for CDDP with a restrictive due date, where the encoding had to manage
schedules where the first tardy task starts before d. As represented below, to address this issue we
proposed to introduce a new variable a so as to d−a represents the starting time of the first tardy
task.

j

a t′j

{k∈J | (1−δk)=1}

d

Roughly speaking, the variable a allowed to make floating the origin of the half-axis of the tardy
tasks, at the expense of the introduction of inequalities and variables ensuring that a takes the ap-
propriate value5.

For CDWP, we have to introduce a such variable a2 to make floating the half-axis of the tardy
tasks, even if dA> p(J). In addition, we also have to introduce a such variable a1 to make floating
the half-axis of the early tasks, since a d@-straddling task can occur in all the optimal schedules,
implying that the last early task do not complete at d@ but before. Moreover, since a non-early
task is not necessarily a tardy task, two binary variables are needed for each task j: δ1

j indicating
if j is early or not, and δ2

j indicating if j is tardy or not. The figure below represents the proposed
encoding.

i j

a1 a2e′i+pi t′j{
k∈J

∣∣ δ1
k=1

} {
k∈J

∣∣ 1−(δ1
k+δ2

k)=1
} {

k∈J
∣∣ δ2
k=1

} Cj

d@ dA

0
|

By adding for each pair of tasks i, j a variable X1
i,j (resp. X2

i,j) in order to linearize δ1
i δ

1
j (resp. δ2

i δ
2
j),

and the four associated inequalities, one should be able to write linear non-overlapping inequalities
managing variables (e′j)j∈J (resp. (t′j)j∈J). Using e′ and t′ varaibles, the total penalty of the
schedule can be written as follows.∑

j∈J
αj (e′j−a1δ1

j) + βj (t′j−a2δ2
j)

Adding variables and inequalities to linearize a δ terms as proposed on page 70, this function can be
turned into a linear function, resulting in a formulation for CDWP.

In this chapter formulations using natural variables have been introduced, and proved to be able to
formulate both UCDDP and CDDP. In the next chapter, we explain how such formulations combining
an exponential number of linear inequalities, integrity and extremality constraints can be solved in
practice.

5Cf. Section 1.4.2, variables (γj)j∈J and (bj)j∈J , and inequalities (1.16–1.17), (1.18–1.20), (1.21), and (1.22–1.25).

82

Chapter 2

How to deal with non-overlapping
inequalities in practice?

In the first section of this chapter, we propose a separation algorithm to handle the exponential
number of non-overlapping inequalities, while in the second one, we explain how to handle both
integrity and extremality constraints. This results in Branch-and-Cut algorithms for UCDDP and
CDDP, which are tested and compared to other MIP formulations on the Biskup and Feldmann’s
benchmark in the third section.

2.1 Separation algorithm for non-overlapping inequalities
Let us briefly explain how Queyranne [34] handles the separation of inequalities (Q0), before explain-
ing how to separate inequalities (Q1), (Q2), (Q1’), or (Q2’).

2.1.1 Inequalities (Q0) separation algorithm proposed by Queyranne [34]

Let us fix p ∈ R∗+J and C ∈ RJ . Deciding whether C satisfies inequalities (Q0) reduces to decide
whether the maximum of the set function ΓC is non-positive, where ΓC is defined from parameter C
as follows.

∀S⊆J, ΓC(S) = gp(S)−p∗C(S)

Indeed, if maxS⊆J ΓC(S) 6 0, then C satisfies inequalities (Q0), and if conversely there exists S⊆J
such that ΓC(S)>0, C does not satisfy the inequality (Q0) associated with S. Using the definition
of gp, Queyranne [34] shows the following property.
Property 2.1

Let S⊆J . If S maximizes ΓC , then ∀j∈J, j∈S ⇔ p(S) > Cj and j∈J\S ⇔ p(S) 6 Cj−pj.

As a consequence of Property 2.1, a subset S maximizing ΓC is downward closed with respect to
C, i.e. (Ck′6 Ck and k∈S) ⇒ k′ ∈ S, which justifies an O(n log n) separation algorithm for in-
equalities (Q0). Indeed, once an order ρ∈F

(
[1..n], J

)
such that

(
Cρ(k)

)
k∈[1..n]

is non-decreasing, is

computed, it suffices to compute and compare the values ΓC
(
ρ([1..k])

)
for all k∈ [0..n], since a subset

maximizing ΓC is necessary of the form ρ([1..k]).

For the non-overlapping inequalities that we propose, no property similar to Property 2.1 holds,
therefore this separation algorithm cannot be adapted. However, the separation problems for inequal-
ities (Q1), (Q2), (Q1’), or (Q2’) can also be solved in polynomial time using a different approach, as
explained in the following.

83

2.1.2 Separation algorithm for inequalities (Q1), (Q2), (Q1’), or (Q2’)
We write the following development for inequalities (Q1) and (Q2), but a rewriting exercise suffices
to obtain the equivalent results for inequalities (Q1’) and (Q2’). For any parameters (c, q)∈RJ×RJ< ,
let us denote by Γ c,q the set function defined as follows.

∀S⊆J, Γ c,q(S) =
∑

(i,j)∈S<
qi,j +

∑
i∈S

ci

Let Y =(e, t, δ,X)∈RJ×RJ×[0, 1]J×RJ< a vector satisfying inequalities (1.5–1.8) and (X.1–X.4).
The separation problem for inequalities (Q1) is to find a subset S of J such that Y does not satisfy
the associated inequality (Q1) or to guarantee that Y satisfies all inequalities (Q1). It reduces to the
maximization of Γc1,q1 for the following parameters (c1, q1).

c1 =−2
(
pj ej

)
j∈J

and q1 =
(
pi pj (δi+δj−Xi,j)

)
(i,j)∈J<

If maxS⊆J Γc1,q1(S) 6 0, then C satisfies inequalities (Q1), and if conversely there exists S⊆J such
that Γc1,q1(S) > 0, C does not satisfy the inequality (Q1) associated with S. Indeed, we have the
following equivalences.

Y satisfies (Q1)⇔ ∀S ⊆ J,
∑

(i,j)∈S<
pi pj

δi+δj−Xi,j

2 6
∑
j∈S

pj ej

⇔ ∀S ⊆ J,
∑

(i,j)∈S<
pi pj (δi+δj−Xi,j)− 2

∑
j∈S

pj ej︸ ︷︷ ︸
Γc1,q1 (S)

6 0

Similarly, the separation problem of inequalities (Q2), is equivalent to the maximization of Γc2,q2

for the following parameters (c2, q2).

c2 =2
(

(1−δj) p2
j − pj tj

)
j∈J

and q2 =
(
pi pj (2−

(
δi+δj)−Xi,j

))
(i,j)∈J<

Note that in both definitions of Γc1,q1 and Γc2,q2 , the parameter q is non-negative since δ and X
satisfy inequalities (X.3 –X.4). Therefore, let us now explain how to reduce the maximization of
Γ c,q for (c, q) ∈ RJ× (R∗+)J< to a min-cut problem in an undirected graph as proposed by Picard
and Ratliff [32]. Let us assume that J = [1..n] for the sake of brevity. We consider the weighted
undirected graph G=(V,A,w) defined as follows.

V =[0..n+1]
A={{i, j} | (i, j)∈V 2 such that {i, j} 6={0, n+1}}
∀(i, j)∈J<, w{i,j}=qi,j

∀j∈J, w{0,j}=[kj]+, w{j,n+1}=[kj]− where kj =2ci +
j−1∑
i=1

qi,j +
n∑

k=j+1
qj,k

Note that V and A only depend on J , while w depends on parameters c and q. Figure 2.1 gives an
illustration of such a graph for n=5.

84

wi,j =qi,j

0
w
{0,j} =[k

j] +

•
n+1

w{i
,n+1}

=[k i]
−

•

•

••

••
j i

Figure 2.1: Illustration of the weighted undirected graph G=(V,A,w) for n=5

For (W,W) a bi-partition of J , let w(W,W) denote the weight according to w of the corresponding
cut, i.e.

W : W =
{
{u, v}

∣∣∣u∈W, v∈W}
and w(W,W) =

∑
i,j∈W :W

w{i,j}.

In addition, let us introduce the three following quantities, which only depend on parameters (c, q).

Q=
∑

(i,j)∈J<
qi,j C=

∑
j∈J

cj K=
∑
j∈J
|kj|

The following property establish, for each subset S ⊆ J , the link between the value of Γ c,q(S) and
the weight of the cut separating s and 0 from the other nodes in G. The proof follows the line of
the proof that max-cut can model [6] However, the idea to use positive and negative parts to obtain
only non-negative weights on the edges is from Picard and Ratliff [32]. This proof is given on the
next page.
Property 2.2 ([32])

For any S⊆J , Γ c,q(S) = −1
2 w

(
S∪{0}, [1..n+1]\S

)
+ Q+C

2 + K

4

Since Q,C,K do not depend on S, finding a subset S maximizing Γ c,q is equivalent to finding
a minimum cut separating the additional vertices 0 and n+1. Since w is positive, this problem is
solvable in polynomial time, using the Gomory and Hu’s algorithm [17], as explained below.

• Implementation of the separation algorithm
Each family of non-overlapping inequalities, i.e. (Q1), (Q2), (Q1’), or (Q2’), correspond to a differ-
ent separation algorithm, however these algorithms are similar and consist in the same following steps.
1. Computing the weights w{i,j} according to the value of variables e, t, δ,X (resp. e′, t′, δ,X) in

the solution provided by the solver.
2. Running the Gomory and Hu’s algorithm [17] provided by the open source C++ optimization

library LEMON [1], in order to obtain T the Gomory-Hu tree rooted in 0 .
3. Finding all minimum cost edges along the path between 0 and n+1 in T .
4. For any of such edge e, testing whether the weight of the related cut is negative enough, more

precisely for W the connected component of 0 in T \{e} testing if −1
2 w(W,W) + Q+C

2 + K
4 >0.

If so, adding in the model the inequality (Q1) (resp. (Q2),(Q1’),(Q2’) associated with S =
W \{0}.

85

Proof of Property 2.2 : The following equations show a result slightly different from the one claimed in
the property. Indeed, S is a given parameter in the property while S is a minimization variable in the
following computations, which allows to show how a set function maximization problem is turned into a
minimization problem over cuts. However, these computations enclosed a proof of the property.

max
S∈P(J)

Γ c,q(S) = max
δ∈{0,1}J

 ∑
(i,j)∈J<

qi,j δi δj +
∑
i∈J

ci δi


= max

s∈{−1,1}J

 ∑
(i,j)∈J<

qi,j

(
si+1

2

)(
sj+1

2

)
+

∑
i∈J

ci

(
si+1

2

)
= max

s∈{−1,1}J

 ∑
(i,j)∈J<

qi,j
4 [si sj + si + sj + 1] +

∑
i∈J

ci
2 [si+1]



= max
s∈{−1,1}J


∑

(i,j)∈J<

qi,j
4 si sj +

∑
i∈J

∑
j>i

qi,j
4 +

∑
j<i

qj,i
4 + ci

2

si + 1
4

∑
(i,j)∈J<

qi,j

:=Q

+ 1
2
∑
i∈J

ci

:=C



= 1
4 max
s∈{−1,1}J

 ∑
(i,j)∈J<

qi,j
:=wi,j

si sj +
∑
i∈J

2 ci +
∑
j>i

qi,j +
∑
j<i

qj,i


:=αi

si

+ Q

4 + C

2

= 1
4 max
s∈{−1,1}J

 ∑
(i,j)∈J<

wi,j si sj +
∑
i∈J

[w0,i − wi,n+1] si

+ Q

4 + C

2 since
{
w0,i=[αi]+

wi,n+1 =[αi]−

= 1
4 max

s0=1
s∈{−1,1}J
sn+1=−1


∑

(i,j)∈J<
wi,j si sj

↑
=1 if si=sj

=−1 otherwise

+
∑
i∈J

w0,i s0 si
↑

=1 if si=s0
=−1 otherwise

+
∑
i∈J

wi,n+1 si sn+1
↑

=1 if si=sn+1
=−1 otherwise


+ Q

4 +C

2

= 1
4 max

s0=1
s∈{−1,1}J
sn+1=−1

 ∑
(i,j)∈J<

wi,j − 2
∑

(i,j)∈J<
si 6=sj

wi,j +
∑
i∈J

w0,i − 2
∑
i∈J
si 6=s0

w0,i +
∑
i∈J

wi,n+1 − 2
∑
i∈J

si 6=sn+1

wi,n+1

+ Q

4 +C

2

= −2
4 min

s0=1
s∈{−1,1}J
sn+1=−1

 ∑
(i,j)∈V <
si 6=sj

wi,j

 + 1
4

∑
(i,j)∈J<

wi,j

=Q

+ 1
4
∑
i∈J

[w0,i + wi,n+1]
=[αi]++[αi]−

+ Q

4 + C

2

= −1
2 min

s0=1
s∈{−1,1}J
sn+1=−1

 ∑
(i,j)∈V <
si 6=sj

wi,j

 + Q

4 + 1
4
∑
i∈J

∣∣2ci +
∑
j>i

qi,j +
∑
j<i

qj,i
∣∣

=K

+ Q

4 + C

2

= −1
2


minimum weight of a cut
in the complete undirected graph
over the vertex set J ∪ {0, n+1}
for the edge weight w

 + Q

2 + C

2 + K

4

�

86

2.2 Extremality and integrality constraints
The aim of this section is to show that Formulations F 3 and F 4 can be solved by a classical Branch-
and-Cut algorithm, despite they combine extremality and integrity constraints. Let us show this
result only for Formulation F 3, since the arguments used can easily be extended to Formulation F 4.
Let us consider the three following relaxations of F 3.

F 3-lp : min
(e,t)∈πe,t(P 3)

gα,β(e, t)

F 3-extr : min
(e,t)∈πe,t

(
extrP 3

) gα,β(e, t)

F 3-int : min
(e,t)∈πe,t

(
intδP 3

) gα,β(e, t)

The formulation F 3-lp is obtained by relaxing both integrity and extremality conditions. It is a
linear program defined by an exponential number of inequalities. As explain in the previous section,
the separation problem associated with the non-overlapping inequalities defining P 3 is solvable in
polynomial time. Therefore, F 3-lp can be solved in polynomial time using a cutting plane algo-
rithm [19].

Moreover, using the simplex algorithm to solve each LP-relaxation of the cutting plane algo-
rithm, the extremality of the global solution is ensured. Indeed, such a solution is then an extreme
point of the last polyhedron P considered by the algorithm, which necessarily contains P 3 (Cf.
Lemma CA.32). Then in this case, solving F 3-lp is equivalent to solving F 3-extr.

A classical way to manage the integrity constraint is to use a Branch-and-Bound algorithm, and
even a Branch-and-Cut algorithm when an exponential number of inequalities has to be managed.
That means that each node of the Branch-and-Bound algorithm consists in a cutting plane algorithm.
In general, even if the algorithm used to solve each linear relaxation provides an extreme point, the
final solution provided by the Branch-and-Cut algorithm is not an extreme point of the initial poly-
hedron. Example 5 illustrates such a case. However, since the integrity constraint in F 3 applies only
on boolean variables, the problem cannot appear, as stated in the following property.

Property 2.3
Let us consider a Branch-and-Bound algorithm A, where the LP-relaxation at each node provides
an extreme point. Using A to solve F 3-int by branching on δ variables solves F 3.

Proof : By assumption, the solution provided at each node of the Branch-and-Bound tree is an extreme
point of the polyhedron defined by the decisions previously taken, and we will prove that this solution
is also an extreme point of P 3.
Formally, if variables δj for j ∈ J0 (resp. for j ∈ J1) have been fixed to 0 (resp. to 1), the polyhedron
considered is P 3∩ F J0,J1 where:

F J0,J1 ={ (e, t, δ,X)∈RJ× RJ× [0, 1]J× [0, 1]J< | ∀j∈J0, δj =0 and ∀j∈J1, δj =1 }
We consider an arbitrary node defined by J0 and J1, and a vector Y =(e, t, δ,X)∈extr

(
P 3 ∩ F J0,J1

)
.

By definition of E(δ) and T (δ), Y ∈P 3∩ F T (δ),E(δ). Moreover, J1 ⊆E(δ) and J0 ⊆ T (δ), thus we have
P 3 ∩ F T (δ),E(δ) ⊆ P 3 ∩ F J0,J1 . Using Lemma CA.32, we deduce that Y ∈extr

(
P 3∩ F T (δ),E(δ)).

Since P 3 ∩ F T (δ),E(δ) is exactly the set denoted by P δ in the proof of Theorem 1.14, we can similarly
show that extr(P 3 ∩ F T (δ),E(δ)) ⊆ extr(P 3). We deduce that Y ∈extr(P 3). �

87

Example 5 : A formulation combining extremality and integrity constraints which cannot be solved
by a standard Branch-and-Bound algorithm

Let us consider the following formulation which presents both integrity and extremality constraints,
where inty denotes the operator keeping only the points (y, z) such that y is an integer.

F : max
(y,z)∈inty(extrP)

z where P =
{

(y, z)∈R+× R+ | z62 y, z6−2y+7
}

Let us consider a Branch-and-Bound algorithm A, where the LP-relaxation at each node provides an
extreme point. For formulation F , A provides a solution which does not belong to extr(P), and a value
which is larger than the true optimum.
Indeed, since (3

2 , 3) is the solution at the root node, the search space is divided into P ∩] −∞, 1]×R
and P ∩ [2,+∞[×R, and the extreme points maximizing z in these polyhedra are respectively (1, 2), and
(2, 2). Since they are integer, the Branch-and-Bound stops at these depth, and the solution returned is
one of these two points, which are not extreme points of P . Moreover, the returned optimal value is 2,
whereas the true optimal value is 0, since P admits only two integer extreme points, (0, 0) and (3, 0).
The figure below represents the polyhedra considered at each node of the algorithm A, and for each one
the extreme optimal point obtained is represented with a star. Dots represent integer points, and bullet
points the integer points in each polyhedron.

y

z

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

• • • •

•

•

•

•

F (3
2 , 3)

y

z

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

• •

•

•

• •

•

•F
(1, 2)

F
(2, 2)

y61 y>2

Integer points and maximizer at the root node (left) or for nodes of depth 1 (right)

Remark 2.4
Note that we have already shown, in the proof of Theorem 1.12, that F 3 and F 3-int have the same
optimal value, i.e. val(F 3) = val(F 3-int). However, this observation on the optimal values is not
sufficient when a feasible solution for UCDDP has to be found. Therefore, we have explained in this
section, how to solve F 3-int to obtain a solution of F 3, that is a vector encoding an optimal schedule.

Using the results of these last two sections, we have implemented Branch-and-Cut algorithms for
Formulations F 3 and F 4, using the MIP solver cplex. The next section presents and compares their
performances.

88

2.3 Experimental results
In order to assess the efficiency of Formulations F 2, F 3, and F 4, we compare them to other MIP
formulations proposed in the literature. Therefore, we have implemented Formulations FLO and FTI
presented in Section 0.4.

All the experiments presented in this section are conducted on a single thread on a machine with
Intel(R) Xeon(R) CPU E5-2630 v2 @2.60GHz, and 16Gb RAM. We use the MIP solver cplex version
12.6.3.0. The branching scheme and the management of the current bounds are done by cplex. Note
that only δ variables are set as integer variables for F 2, F 3, and F 4, hence the branching decision
only involves δ, not X. For Formulations F 3, and F 4, the separation of inequalities (Q1) and (Q2)
(resp. (Q1’) and (Q2’) is implemented within the so-called Callback functions proposed by cplex,
using the open source C++ optimization library LEMON [1] (Cf. Section 2.1). For the the sake of
comparison, all the formulations use cplex Default. Moreover, the time limit is set to 3600 seconds.

2.3.1 Benchmarks used to compare formulations

• Biskup and Feldmann’s benchmark
We test the different formulations on the benchmark proposed by [9], available online on OR-
Library [8]. For each number of tasks n ∈ {10, 20, 50}, ten triples (p, α, β) of

(
Nn∗
)3

are given.
For each one, setting d = bh p(J)c for h ∈ {0.2, 0.4, 0.6, 0.8, 1}, gives five instances, including one
with an unrestrictive due date corresponding to h=1. We obtain 30-task and 40-task instances, by
considering only the first tasks of 50-task instances. In the following, the average values considered
are computed over the ten instances proposed by this benchmark for fixed values of n and h, unless
otherwise specified.

Sourd [41] succeeded in solving instances of this benchmark having up to 1000 tasks. The run-
ning time does not exceed 1400 seconds, and the average running time for 1000-tasks instances is
between 611 and 918 seconds depending on the value of h. He obtained these results thanks to
a dedicated Branch-and-Bound algorithm using Lagrangian relaxation and dynamic programming.
However, Sourd’s approach is based on a time-indexed formulation which involves O(n p(J)) vari-
ables and hence nodes in the graph used for computing the Lagrangian lower bound. The Biskup
and Feldmann’s benchmark considers small values for the task processing times, which ensures a fast
computation time of the Lagrangian lower bound.

• A new benchmark with long processing times
We propose a benchmark where processing times are randomly drawn from the uniform distribution
U
[
pmax

10 , pmax
]
for pmax∈{100, 200, 300}. We talk about "long processing times" by comparison with

processing times in the Biskup and Feldmann’s benchmark, whose ranges are [1, 20].
For each pmax∈{100, 200, 300} and each n∈{10, 20, 30, 40, 50}, we randomly generate ten triples

(p, α, β) of
(
Nn∗
)3
. For each task j, αj and βj are randomly drawn from the uniform distribution

U [1..20]. By setting d = bh p(J)c for h ∈ {0.2, 0.4, 0.6, 0.8, 1}, each triple gives five instances,
including one unrestrictive, which results in 750 instances.

89

• Entries of the following tables
n: the number of tasks
h: the parameter setting the due date d to bh p(J)c (for CDDP only)

#opt: number of instances optimally solved under the 3600 seconds time limit
(among the 10 proposed by the benchmark)

avg-T: the average running time in seconds over the optimally solved instances
gap : the average gap over the instances not solved to optimality,

that is the relative gap between the best lower and upper bounds

2.3.2 Formulations for UCDDP
In this section, we compare Formulations F 3, F 2,FLO and FTI for UCDDP instances. Table 2.1
presents the results obtained on Biskup and Feldmann’s benchmark, while Table 2.2 presents those
obtained on long processing times instances, for pmax∈{100, 200, 300}.

n

FLO FTI F 3 F 2

#opt avg-T gap #opt avg-T gap #opt avg-T gap #opt avg-T gap

10 10 9 - 10 1 - 10 0 - 10 3 -
20 0 - 144% 10 4 - 10 2 - 10 3 -
30 10 15 - 10 44 - 10 7 -
40 10 40 - 10 637 - 10 106 -
50 10 41 - 1 1388 16% 10 1315 -

Table 2.1: Solving Biskup and Feldmann’s unrestrictive instances using FLO, FTI, F 3 and F 2

As shown in Table 2.1, FLO is unable to solve any 20-task instance within the time limit. Thus,
FLO is not used neither for larger instance size, nor for the new benchmark. Other experiments show
that FLO can only solve 5 over 10 instances for n= 15. FTI is able to optimally solve Biskup and
Feldmann’s instances up to size 50 in less than 40 seconds. F 3 is able to optimally solve instances
up to size 30 in around 40 seconds. In contrast, ten minutes are required to optimally solve 40-task
instances and F 3 fails to solve 50-task instances within the time limit. However, other experiments
show that, under a time limit of 10 000 seconds, F 3 solves 9 over 10 instance for n = 50, with an
average computation time of 4721 seconds. F 2 is able to optimally solve all instances up to size 50
within the time limit. Other experiments conducted without cplex features show that F 2 can be
faster: 22 seconds for n=40, 215 seconds for n=50 and 4063 seconds for n=60.

As shown in Table 2.2, the efficiency of FTI greatly depends on the value of parameter pmax,
which was expected since the number of variables is related to the length of the horizon, i.e. 2 p(J).
While FTI only takes 40 seconds in average to solve all the 50-task Biskup and Feldmann’s instances,
it only solves 8 over 10 instances for n=50 in the new benchmark for pmax=100, within 690 seconds
in average. In addition, FTI fails at solving any instance for pmax = 300 due to memory limitations.
cplex could not even provide a solution or a lower bound in this case. We can notice that for 20-
task instances, the computation time required is at least 360 seconds for pmax=200 and pmax=300.
Conversely, F 3 is able to optimally solve all instances up to size 30 regardless of pmax value, faster
that FTI. The same observation holds for F 2 up to size 40 regardless of pmax value.

90

pmax n

FTI F 3 F 2

#opt avg-T gap #opt avg-T gap #opt avg-T gap

100 10 10 6 - 10 0 - 10 3 -
20 10 74 - 10 3 - 10 3 -
30 10 186 - 10 68 - 10 13 -
40 10 494 - 8 1335 4% 10 294 -
50 8 690 0% 0 - 22% 9 1743 2%

200 10 10 15 - 10 0 - 10 3 -
20 10 361 - 10 3 - 10 3 -
30 10 886 - 10 56 - 10 12 -
40 7 1322 0% 6 1173 8% 10 359 -
50 7 1289 2% 1 1859 29% 4 1738 6%

300 10 10 27 - 10 0 - 10 3 -
20 10 380 - 10 4 - 10 3 -
30 6 1508 3% 10 87 - 10 15 -
40 8 2533 0% 9 1572 11% 10 210 -
50 x x x 0 - 29% 5 2662 5%

Table 2.2: Solving unrestrictive instances generated with pmax 100, 200, 300 using FTI, F 3 and F 2

To sum up for the unrestrictive case, FTI gives the bests results for the Biskup and Feldmann’s
benchmark. However, this formulation is sensitive to the total length of the processing times (i.e.
p(J)), and is unable to solve the 50-task instances with long processing times (pmax = 300). In
contrast, the results obtained with F 3 and F 2 do not significantly get worse with processing time
increase.

2.3.3 Formulations for CDDP
In this section, we compare Formulations F 4, FLO and FTI for CDDP instances. Table 2.3 presents
the results obtained on the Biskup and Feldmann’s benchmark, while Table 2.4 presents those ob-
tained on long processing times instances, for pmax=200.

As shown in Table 2.3, FLO is unable to solve any CDDP instance for n = 20 within the time
limit. Thus, FLO is not used neither for larger instance size, nor for the new benchmark. Other
experiments show that FLO can solve no 15-task instance when h= 0.2 and h= 0.4. When h= 0.6
(resp. h= 0.8), FLO solves 5 over the 10 instances for n= 15, using in average 2278 seconds (resp.
1575 seconds).

FTI is able to optimally solve all the Biskup and Feldmann’s CDDP instances. Moreover, the
computation times are similar to those obtained for the UCDDP instances: less than 22 seconds for
30-task instances.

F 4 is able to optimally solve all the instances up to size 20 along with the 30-task instances when
h= 0.2. However, the computation time is much larger than for FTI: around 2 minutes for n= 20
and 20 minutes for n=30 and h=0.2.

91

n h

FLO FTI F 4

#opt avg-T gap #opt avg-T gap #opt avg-T gap

10 0.2 10 1 - 10 1 - 10 0 -
0.4 10 1 - 10 1 - 10 1 -
0.6 10 1 - 10 1 - 10 1 -
0.8 10 1 - 10 1 - 10 1 -

20 0.2 0 - 437% 10 3 - 10 36 -
0.4 0 - 245% 10 4 - 10 116 -
0.6 0 - 159% 10 4 - 10 125 -
0.8 0 - 145% 10 3 - 10 118 -

30 0.2 10 17 - 10 1255 -
0.4 10 22 - 3 1620 6%
0.6 10 9 - 4 962 8%
0.8 10 13 - 5 1405 9%

Table 2.3: Solving Biskup and Feldmann’s restrictive instances using FLO, FTI and F 4

As shown in Table 2.4, for long processing time instances with pmax = 200, FTI optimally solves
almost all the instances within the time limit up to size 20. It is important to notice that, for similar
sizes, FTI computation time is significantly larger for long processing time instances than for Biskup
and Feldmann’s ones: for n=20, at least 116 seconds against a few seconds. In contrast, F 4 optimally
solves instances up to size 20, along with 30-task instances when h= 0.2. Note that, for the long
processing time instances considered here, F 4 is rather faster than FTI up to size 20. However, F 4

fails to solve instances with n=30.

pmax n h

FTI F 4

#opt avg-T gap #opt avg-T gap

200 10 0.2 10 22 - 10 1 -
0.4 10 24 - 10 1 -
0.6 10 15 - 10 1 -
0.8 10 14 - 10 1 -

200 20 0.2 10 116 - 10 30 -
0.4 9 343 1% 10 91 -
0.6 10 299 - 10 93 -
0.8 10 333 - 10 89 -

200 30 0.2 8 821 2% 10 1377 -
0.4 7 1293 3% 4 1143 4%
0.6 10 803 - 7 1479 5%
0.8 10 740 - 7 1166 6%

Table 2.4: Solving restrictive instances generated with pmax=200 using FTI and F 4

For CDDP instances, we obtain the same conclusion as the one drawn for UCDDP instances. FTI
is faster than F 4 for Biskup and Feldmann’s instances, while this is not the case for long processing
times instances.

92

Other experiments show that F 4 used on unrestrictive Biskup and Feldmann’s instances (i.e.
with h=1) is less efficient than F 3: 77 seconds in average for the 20-task instances, and more than
1300 seconds for the six optimally solved 30-task instances. The following paragraph will exploit this
remark.

•What is really an unrestrictive instance?
We have defined (Cf. page 12) an unrestrictive due date as a due date larger than the total length
of tasks, i.e. d>p(J). It is a common definition. However, according to Biskup and Feldmann [9], a
due date d must be said unrestrictive if solving the problem for an arbitrarily large due date d gives
a solution which can be transposed for d (Cf. page 24).

This definition raises two issues. First, since for some instances there exist several optimal so-
lutions whose early tasks do not have the same total length. Therefore, this definition depends on
the algorithm chosen to solve, and even sometimes on the execution of this algorithm. Second, this
definition requires an optimal solution to be found to say if the instance is unrestrictive or not.
Therefore, the prior definition is more convenient. However, considering the point of view of the
second definition leads to the following F 2-F 4 procedure to solve a CDDP instance.
1. Solving the instance as an UCDDP instance (i.e. without considering d) using Formulation F 2.
2. Testing if the total duration of early tasks is smaller than the due date i.e. ∑

δj=1
pj6d.

If it is the case, then the solution obtained is optimal.
Otherwise solving the instance as a CDDP instance (i.e. by considering d) using F 4.
For the Biskup and Feldmann’s benchmark, the total length of the early tasks in the optimal

solutions is, on average, 60% of the total length. That means that in this benchmark, instances with
h> 0.6 (i.e. d> 0.6 p(J)) are mostly unrestrictive as defined in [9]. For these instances, the F 2-F 4

procedure can be relevant.

As shown by the previous experiments, Formulation F 2 is more promising than Formulation F 3

and F 4. Furthermore, other experiments show that F 2 relaxation value is very low (the gap to the
optimal value is about 90% for n= 60, Cf. Section 6.2), which let us think that there is a room of
improvement for F 2 regarding its linear relaxation value.
Therefore, we focus in the next parts on the reinforcement of Formulation F 2. Another reason to
focus on this formulation, is that valid inequalities for F 2 are also valid inequalities for F 3 and F 4,
since variables δ,X are used as partition variables in the three formulations. Actually, this kind of
partition variables are also used to formulate the max-cut problem, as proposed by Padberg [31].
The next chapter aims at transpose known results for the max-cut formulations to F 2.

93

94

PART B

Reinforcement inequalities
for δ,X variables

In Section 0.5, we have introduced δ,X variables to encode the ordered bi-partitions of J , in or-
der to reformulate UCDDP as a MIP. This way, we proposed Formulation F 2. Subsequently, δ,X
variables were also used in F 3 and F 4. In these three formulations, the consistency between δ and
X values was dealt using only inequalities (X.1–X.4), since they are sufficient when δ is {0, 1}-valued.

However, when δ is no longer subject to an integrity constraint, these inequalities appear to be
poor, in the sense that the optimal value for F 2-lp, the linear relaxation of F 2, is much lower than
the one for F 2. Indeed, the underlying polyhedron P n

F 2 admits fractional extreme point — typically
points where some δ variables take the value 1/2 — leading to an artificially low value according
to the hα,β). Therefore, it is interesting to study P n

δ,X , the convex hull of integer points (δ,X) that
encode an ordered bi-partition of [1..n]. Any valid inequality for P n

δ,X can be used to reinforce For-
mulations F 2, F 3, and F 4.

In Chapter 3, we present valid inequalities for P n
δ,X deduced from the literature for two related

polytopes: the cut polytope CUT n and the Boolean quadric polytope QP n. Indeed, if (δ,X)∈P n
δ,X

encodes the ordered bi-partition (E, T) of [1..n], then the set {{i, j} | (i, j)∈ [1..n]<, Xi,j =1} is the cut
induced by the partition {E, T} in the complete graph on [1..n], consequently X∈CUT n. However,
note that projecting on X variables causes a loss of information: while (δ,X) encodes an ordered
bi-partition (E, T), X only encodes a partition {E, T}={T,E}, where E and T are interchangeable.
Conversely, points in QP n also encode ordered bi-partitions.

Even if Chapter 3 is mainly a state of the art about facet inequalities of CUT n and QP n, we also
propose a framework to transpose inequalities from a polytope to another. We focus on transpositions
for CUT n, QP n and P n

δ,X , since our aim is to reinforce Formulation F 2. We present experimental
results that show an improvement in the linear relaxation value, but also an increase in the solving
time when reinforcement inequalities are added.

In Chapter 4, we propose another approach to reinforce F 2, by taking into account the objective
function, and not only the structure of P n

δ,X . The idea — which also leads Part C— is to cut off
the integer points that have an high value according to the objective function instead of cutting off
fractional points. Chapter 4 is a first application of this idea: we provide inequalities that cut off the
integer point 0, since it encodes a solution having a too high value. More precisely, we provide facet
defining inequalities of the polytope of non-trivial cuts encoded by δ,X variables in a complete graph.

NB: In Chapters 3 and 4, the scheduling notations (J, n, d, α, β, p, E, T, f, . . .) no longer apply,
and these symbols may even be used for different purposes.

95

96

Chapter 3

Bridging polytopes CUTn, QPn and Pnδ,X

In Section 3.1, we present the cut polytope and the Boolean quadric polytope, i.e. CUT n and QP n,
before giving, in Section 3.2, some valid and facet defining inequalities for each one. In Section 3.3,
we give further results about the inequalities mentioned for QP n. These results are established by
Padberg in [31], however we provide a new explicit proof for some of them. In Section 3.4, we give
a formal framework to transpose valid and facet defining inequalities from a polyhedron to a similar
one in general. This framework can be used between a polyhedron and its projection, between two
polyhedra that are equivalent after a change of variables, or even between a polyhedron and itself
when it presents some symmetries. At the end of the section, we use it in these three ways for CUT n,
QP n and P n

δ,X . Our aim is to use the facet defining inequalities provided in the literature, to reinforce
Formulation F 2 in Section 3.5. Some experimental results are reported.

Before introducing CUT n and QP n, let us introduce some notations.

For two given disjoints sets A and B, let us denote by A :B the set of all the pair sets that have one
element in A and the other in B, i.e. A :B = {{u, v} |u∈A, v∈B} .
As previously, if a vector a is indexed by a set S, for any subset T ⊆ S, a(T) is the sum of the a
components whose index is in T , i.e. a(T)= ∑

i∈T
ai.

In particular, for two disjoint sets A and B, a(A :B)= ∑
u∈A

∑
v∈B

a{u,v}.

In part B, we consider only undirected graphs. Then, for any node set V ⊆N, there is a one-to-one
correspondence between the edge set E and the pair set V < defined as follows.

E=
{
{u, v}

∣∣∣ (u, v)∈V 2
}

and V <=
{

(u, v)
∣∣∣ (u, v)∈V 2 s.t. u<v

}
Following the same line, we introduce the following set of 3-tuples to represent the set of 3-node
subsets.

V << =
{

(i, j, k)∈V 3
∣∣∣ i<j<k}

We use such tuple sets to describe inequality families. For example, we will write the two inequality

families
{
∀(i, j)∈V <, Xi,j6 δi

∀(i, j)∈V <, Xi,j6 δj
instead of the single inequality family ∀{i, j}∈V <, X{i,j}6 δi.

However, for sake of brevity, if a is a vector indexed by V < and (u, v)∈V 2 an arbitrary pair of nodes,
we simply denote by au,v the component of a indexed by (min(u, v),max(u, v)).
Finally, for any graph G, let us denote by Cy(G) the set of elementary cycles of G.

97

3.1 Polytopes CUT n, QP n and P n
δ,X

Let us fix n∈N∗. We denote by Kn=(V,E) the complete undirected graph on [1..n], i.e. V =[1..n]
and E can be identified to V <. Moreover, we denote by m the number of edges, i.e. m= |E|= n (n−1)

2 .

• CUT n definition
For any S⊆V , we define χS∈RE as χS=IS:V\S.
The cut polytope CUT n is then defined as follows.

CUT n=conv (S n
X) where S n

X =
{
χS
∣∣∣S⊆V }

• QP n definition
For any S⊆V , we define zS∈RV×RE as zS=(IS, IS<).
The following lemma is the equivalent of Lemma 0.5 for new binary variables x, y.
Lemma 3.1

Let z=(x, y) ∈ RV×RE.
If x∈{0, 1}V and (x, y) satisfies the following inequalities, called trivial inequalities:

∀(i, j)∈V <, yi,j > (xi+xj)− 1 (3.1)
∀(i, j)∈V <, yi,j 6 xi (3.2)
∀(i, j)∈V <, yi,j 6 xj (3.3)
∀(i, j)∈V <, yi,j > 0 (3.4)

then ∀(i, j)∈J<, yi,j =
{
1 if xi=1 and xj =1
0 otherwise , therefore z=zS for S={u∈V |xu=1}.

Conversely, for any S⊆V , zS satisfies inequalities (3.1 – 3.4).

Note that x variables are equivalent to δ variables, but y variables identify the pair of nodes having
the same value 1 according to x, while X identifies the pair of nodes having different values according
to δ. Thanks to this lemma, we can define the set S n

x,y in a twofold manner as follows.

S n
x,y =

{
zS
∣∣∣S⊆V } =

{
(x, y)∈{0, 1}V×{0, 1}E

∣∣∣ (x, y) satisfies (3.1 – 3.4)
}

The boolean quadric polytope QP n and its linear relaxation QP n
LP are then defined as follows.

QP n=conv
(
S n
x,y

)
and QP n

LP =
{

(x, y)∈RV×RE
∣∣∣ (x, y) satisfies (3.1 – 3.4)

}
Remark 3.2

Using points zS where S is a singleton or a pair, it can be shown that dim(S n
x,y)=dim(RV×RE)= n (n+1)

2 .
Moreover, it can be shown that points zS are extreme points in QPnLP, consequently S n

x,y=extr(QPn)

• P n
δ,X definition

In order to have homogeneous notations in this chapter, we introduce the following notations.

P n
δ,X =conv

(
S n
δ,X

)
where S n

δ,X =
{

(δ,X)∈{0, 1}V×{0, 1}E
∣∣∣∀(i, j)∈E, Xi,j =1⇔ δi 6=δj

}
According to Lemma 0.5, the set S n

δ,X is exactly the set of integer points in P n
F 2 , i.e. S n

δ,X = intδ(P n
F 2).

98

3.2 Classical inequalities for QP n and CUT n

In this section, we just give some classical inequalities for QP n and CUT n, presented in [7] and [31].

• Triangle inequalities for x, y variables
∀(i, j, k)∈V <<, xi + xj + xk 6 1 + yi,j+yi,k+yj,k (3.5)
∀(i, j, k)∈V <<, + yi,j + yi,k − yj,k 6 xi (3.6)
∀(i, j, k)∈V <<, + yi,j − yi,k + yj,k 6 xj (3.7)
∀(i, j, k)∈V <<, − yi,j + yi,k + yj,k 6 xk (3.8)

• Clique inequalities for x, y variables
∀S⊆V, ∀θ∈

[
1 .. |S|−2

]
, θ x(S)− y(S<) 6 θ (θ+1)

2 (3.9)

• Cut inequalities for x, y variables
∀(S, T)⊆P(V)2 s.t. S∩T 6=∅, |S|>1, |T |>2, −x(S)− y(S<)− y(T<) + y(S :T) 6 0 (3.10)

• Generalized cut inequalities for x, y variables

∀(S, T)⊆P(V)2 s.t. S∩T 6=∅, s= |S|>1, t= |T |>2,
(s−t)x(S) + (t−s−1)x(T)− y(S<)− y(T<) + y(S :T) 6 (t−s) (t−s−1)

2 (3.11)

• Odd cycle inequalities for x, y variables
∀C⊆Cy(Kn), ∀F ⊆C s.t. |F | is odd, x(S0)− x(S2) + y(C\F)− y(F) 6

⌊
|F |
2

⌋
(3.12)

where
{
S0 ={u∈supp(C) |u is adjacent to 0 edges in C\F}
S2 ={u∈supp(C) |u is adjacent to 2 edges in C\F}

Property 3.3 (Padberg [31])
Inequalities (3.5 – 3.8), (3.9), (3.10), and (3.11) define facets of QP n.

• Triangle inequalities for X variables
∀(i, j, k)∈V <<, +Xi,j −Xi,k −Xj,k 6 0 (3.13)
∀(i, j, k)∈V <<, −Xi,j +Xi,k −Xj,k 6 0 (3.14)
∀(i, j, k)∈V <<, −Xi,j −Xi,k +Xj,k 6 0 (3.15)
∀(i, j, k)∈V <<, +Xi,j +Xi,k +Xj,k 6 2 (3.16)

• Odd sub-cycle inequalities for X variables
∀C⊆Cy(Kn), ∀F ⊆C s.t. |F | is odd, X(F)−X(C\F) 6 |F |−1 (3.17)

• Clique inequalities for X variables

∀S⊆V, X(S<) 6
⌊
|S|
2

⌋ ⌈
|S|
2

⌉
(3.18)

Property 3.4 (Barahona and Mahjoub [7])
Inequalities (3.13 – 3.16) and (3.18) associated with a set S such that |S| odd, define facets of
CUT n.

99

3.3 Some results about QP n
LP

We present in this section some results about QP n
LP given in [31] that enlighten the link between

trivial, triangle and odd sub-cycle inequalities. More precisely Property 3.8 states that odd sub-cycle
inequalities are redundant with triangle inequalities, and Corollary 3.9 specifies in which manner
triangle inequalities reinforce trivial inequalities.

Corollary 3.9 relies on Properties 3.5 and 3.8, which are proved in [31], but also on the fact that
an extreme point of QP n

LP violates at least one odd sub-cycle inequality. Since we did not find the
proof of this fact in [31], we propose to prove it in two steps, namely Lemmas 3.6 and 3.7.

Property 3.5 (Padberg [31])
The extreme points of QP n

LP are {0, 1, 1
2}-valued, i.e. ∀z∈extr(QP n

LP), z∈{0, 1, 1
2}

V×{0, 1, 1
2}

E.

Lemma 3.6

Let z=(x, y)∈RV×RE. Let S=
{
u∈V

∣∣∣xu= 1
2

}
.

If z∈extr (QP n
LP), then either |S|=0 and z∈S n

x,y, or |S|>3.

Proof : Let us introduce additional notations: S0 ={i∈V |xi=0} and S1 ={i∈V |xi=1}.
Then, according to Property 3.5, the node (resp. edge) set of Kn can be decomposed as follows.

V =StS0tS1 and E=S< t (S :S0) t (S :S1) t (S0)< t (S0:S1) t (S1)<

Thanks to Lemma 3.1, we have yi,j =1 for any (i, j)∈(S1)< and yi,j =0 for any (i, j)∈S0:S1 t (S0)<.
Moreover, for (i, j)∈S :S0, we have yi,j6xj =0 from inequality (3.3) and yi,j>0 from (3.4), thus yi,j =0.
For any (i, j)∈S :S1, we have yi,j6xi= 1

2 from (3.2) and yi,j>(xi+xj)−1= 1
2+1−1 from (3.1), thus yi,j = 1

2 .

For |S| ∈ {1, 2}, the idea is to exhibit two points of S n
x,y whose middle is z, which contradicts the ex-

tremality of z. We build these points from z by only changing its 1
2 -valued components.

• Let us assume that |S|=1. Let us denote by i0 the single element of S, i.e. S={i0}.
We define two points z1 =(x1, y1) and z0 =(x0, y0) as follows.

x1
i0 =1, ∀i∈V \S, x1

i =xi, ∀j∈S1, y1
i0,j =1, ∀(i, j)∈E\(S :S1), y1

i,j =yi,j

x0
i0 =0, ∀i∈V \S, x0

i =xi, ∀j∈S1, y0
i0,j =0, ∀(i, j)∈E\(S :S1), y0

i,j =yi,j

Using the tables on the right that sum up
the values of z, z1, and z0, one can easily
check that z= z1+z0

2 .
Moreover, using Lemma 3.1, one can
also check that z0 ∈ S n

x,y ⊆ QPnLP and
z1∈S n

x,y⊆QPnLP.

Then z is the middle of two other points in
QPnLP. A contradiction.

i xi x1
i x0

i

S 1/2 1 0
S0 0 0 0
S1 1 1 1

e ye y1
e y0

e

S :S0 0 0 0
S :S1 1/2 1 0
(S0)< 0 0 0
S0 :S1 0 0 0
(S1)< 1 1 1

• Let us assume that |S|=2. Let us denote by i0 and j0 the two elements of S, i.e. S={i0, j0}.
We have yi0,j06xi0 = 1

2 from (3.2) and yi0,j0>(xi0 +xj0)−1= 1
2 + 1

2−1 from (3.1), thus yi0,j0 ∈ [0, 1
2].

Since z is an extreme point, necessarily yi0,j0 ∈{0, 1
2}, otherwise for ε∈R∗+ small enough, z+ε Ii0,j0 and

z+ε Ii0,j0 would satisfy (3.1 – 3.4) and z would be the middle of two other points in QPnLP.
Therefore, we have two cases to consider.

100

− If yi0,j0 =0, then we define two points z1 =(x1, y1) and z2 =(x2, y2) as follows.

x1
i0 =1, x1

j0 =0, ∀i∈V \S, x1
i =xi, ∀j∈S1, y1

i0,j =1, y1
j0,j =0, ∀(i, j)∈E\(S :S1), y1

i,j =yi,j

x2
i0 =0, x2

j0 =1, ∀i∈V \S, x2
i =xi, ∀j∈S1, y2

i0,j =0, y2
j0,j =1, ∀(i, j)∈E\(S :S1), y2

i,j =yi,j

Using the tables on the right that sum up
the values of z, z1, and z2, one can easily
check that z= z1+z2

2 .
Moreover, using Lemma 3.1, one can
also check that z1 ∈ S n

x,y ⊆ QPnLP and
z2∈S n

x,y⊆QPnLP.

Then z is the middle of two other points in
QPnLP. A contradiction.

i xi x1
i x2

i

{i0} 1/2 1 0
{j0} 1/2 0 1
S0 0 0 0
S1 1 1 1

e ye y1
e y2

e

{i0, j0} 0 0 0
{i0} :S0 0 0 0
{i0} :S1 1/2 1 0
{j0} :S0 0 0 0
{j0} :S1 1/2 0 1
(S0)< 0 0 0
S0 :S1 0 0 0
(S1)< 1 1 1

− If yi0,j0 = 1
2 , then we define two points z1 =(x1, y1) and z0 =(x0, y0) as follows.

x1
i0 =1, x1

j0 =1, ∀i∈V\S, x1
i =xi, y1

i0,j0 =1, ∀j∈S1, y1
i0,j =y1

j0,j =1, ∀(i, j)∈E\(S<tS :S1), y1
i,j =yi,j

x0
i0 =0, x0

j0 =0, ∀i∈V\S, x0
i =xi, y1

i0,j0 =1, ∀j∈S1, y0
i0,j =y0

j0,j =0, ∀(i, j)∈E\(S<tS :S1), y0
i,j =yi,j

Using the tables on the right that sum up
the values of z, z1, and z0, one can easily
check that z= z1+z0

2 .
Moreover, using Lemma 3.1, one can
also check that z1 ∈ S n

x,y ⊆ QPnLP and
z0∈S n

x,y⊆QPnLP.

Then z is the middle of two other points in
QPnLP. A contradiction.

i xi x1
i x0

i

{i0} 1/2 1 0
{j0} 1/2 1 0
S0 0 0 0
S1 1 1 1

e ye y1
e y0

e

{i0, j0} 1/2 1 0
{i0} :S0 0 0 0
{i0} :S1 1/2 1 0
{j0} :S0 0 0 0
{j0} :S1 1/2 1 0
(S0)< 0 0 0
S0 :S1 0 0 0
(S1)< 1 1 1

Finally, |S| 6∈{1, 2}, then either S=∅ or |S|>3. �

Lemma 3.7

If z=(x, y)∈extr (QP n
LP) such that, for S=

{
i∈V

∣∣∣xi= 1
2

}
, |S|>3,

then there exist C∈Cy(Kn) and F ⊆C with |F | odd such that z does not satisfies (3.12)C,F .

Proof : Since |S|>3 and Kn is complete, there exists C∈Cy(Kn) that covers S, i.e. supp(C)=S.
Note that for any (i, j)∈S<, yi,j∈ [0, 1

2] from inequalities (3.1 – 3.2), thus yi,j∈{0, 1
2} since z is extreme.

We define F as the subset of 0-valued edges of C, i.e. F ={e∈C | ye=0}. Then for any e∈C\F, ye= 1
2 .

Let us partition the nodes of C, i.e. S, depending on how many incident C edges belong to C \F , as
done for inequalities (3.12), that is as follows.

S0 ={i∈S | ∃(e, f)∈F×F s.t. e 6=f, i∈e∩f}

S1 ={i∈S | ∃(e, f)∈(C\F)×F s.t. e 6=f, i∈e∩f}

S2 ={i∈S | ∃(e, f)∈(C\F)×(C\F) s.t. e 6=f, i∈e∩f}

101

By counting, for each node on C, how many incident edges on C belong to F , each edge in F is counted
twice. Therefore, we have the following equation.

2|F | = |S0|×2 + |S1|×1 + |S2|×0 = |S0|+ (|S0|+|S1|+|S2|︸ ︷︷ ︸
=|S|

)− |S2|

Since C is a cycle and S is its support, we have |C|= |S|. Moreover, since F ⊆C, |C|= |C\F |+|F |.
We deduce that 2|F | = |S0|−|S2|+ |C\F |+|F |, that is |S0|−|S2|+ |C\F |= |F |.
Therefore, using the definitions of S0, S2, and F we have the following equation.

x(S0)− x(S2)︸ ︷︷ ︸
= 1

2 (|S0|−|S2|)

+ y(C\F)︸ ︷︷ ︸
= 1

2 |C\F |

− y(F)︸ ︷︷ ︸
=0

= 1
2
(
|S0|−|S2|+ |C\F |

)
= |F |

2

• If |F | is odd,
⌊
|F |
2

⌋
= |F |2 −1, then |F |2 >

⌊
|F |
2

⌋
.

The previous equation shows that z does not satisfy the inequality (3.12) associated with C and F .

• If |F | is even,
⌊
|F |
2

⌋
= |F |2 , then we cannot similarly conclude.

We will exhibit another cycle on 1
2 -valued nodes that contains an even number of 0-valued edges.

Note that, since |F | is even, the numbers of F edges in the two paths along C between two nodes of
S have the same parity, i.e. either both are even or both are odd, since their sum is |F |. This remark
allows to enunciate the following claim without ambiguity.

Claim
There exists {T,U} a bi-partition of S such that, for any (s, s′)∈S×S, s and s′ are in the same
part if and only if the number of F edges on a path along C between s and s′ is even

Proof : Let us denote by (sk)k∈[1..K] the nodes in S such that

C=
{
{sk, sk+1}

∣∣ k ∈ [1..K−1]
}
∪
{
{sK , s1}

}
To formally build {T,U}, we recursively assign sk to T or U according to the following rules.

s1∈U and ∀k∈ [1..K−1],


sk+1∈U if sk∈U and {sk, sk+1} 6∈F
sk+1∈U if sk∈T and {sk, sk+1}∈F
sk+1∈T otherwise

This procedure is equivalent to color S nodes using two colors, starting from an arbitrary point
on C, and going along C by changing color at each F edge. The following figure is provided to
illustrate this construction for |F |=4.

♣ ♣

♣

♣

♣♣

♣

♣

♣ ♣

♣

♣

♥

♥

♥

♥

1
2

1
2

1
2

1
2

0

0

0

0

F edge

C\F edge

♣ U node

♥ T node

One can check by induction on path length, that any path along C between two nodes s and s′
contains an even number of edges in F if and only if (s, s′)∈(U×T)∪(T×U). �

102

Since S is partitioned into TtU , the edges in S< are partitioned into T<t U<t T:U .
Let us recall that for any e∈S<, ye∈{0, 1

2}.

Let us assume that
{
∀e∈T:U, ye=0
∀e∈T<t U<, ye= 1

2
then we define z1 =(x1, y1) and z2 =(x2, y2) as follows.

∀u∈U, x1
u=0, ∀t∈T, x1

t =1, ∀i∈V\S, x1
i =xi, ∀e∈U<, y1

e =0, ∀e∈T<, y1
e =1, ∀e∈E\(U<tT<), y1

e =ye

∀u∈U, x2
u=1, ∀t∈T, x2

t =0, ∀i∈V\S, x2
i =xi, ∀e∈U<, y2

e =1, ∀e∈T<, y2
e =0, ∀e∈E\(U<tT<), y2

e =ye

One can easily check that z= z1+z2

2 .
Moreover, using Lemma 3.1, one can also check that z1∈S n

x,y⊆QPnLP and z2∈S n
x,y⊆QPnLP.

Then z is the middle of two other points in QPnLP. A contradiction.

We deduce that there necessarily exits either e ∈ T< such that ye = 0 or e ∈ U< such that ye = 0, or
e∈U :T such that ye= 1

2 .
− Let us assume that e∈U :T such that ye= 1

2 . By definition of {T,U}, we have e 6∈C.
Indeed, if e∈C, we have e∈C\M since ye 6=0. Then {e} is a path of length 1 between a node of U and
a node of T that contains 0 M -edge. A contradiction since 0 is even.
Let us denote by µ one of the two paths along C between both e endpoints.
We define C ′=µ∪{e} and M ′={f ∈C ′ | yf =0}. Note that supp(C ′)⊆S and M ′⊆C ′.
Since ye 6=0, M ′=M∩µ. Therefore, by definition of {T,U}, |M ′| is odd.
Hence, we can use for (C ′,M ′) the same arguments as for (C,M) previously.
We deduce that z does not satisfy the inequality (3.12) associated with C ′ and M ′.

− Let us assume that e∈U< such that ye=0. By definition of {T,U}, we have e 6∈C.
Indeed, if e∈C, we have e∈M since ye=0. Then {e} is a path of length 1 between two nodes of U that
contains 1 M -edge. A contradiction since 1 is odd.
Let us denote by µ one of the two paths along C between both e endpoints.
We define C ′=µ∪{e} and M ′={f ∈C ′ | yf =0}. Note that supp(C ′)⊆S and M ′⊆C ′.
Since ye=0, M ′=M∩µt{e}. We deduce that |M ′| is odd, since |M∩µ| is even, by definition of {T,U}.
Hence, we can use for (C ′,M ′) the same arguments as for (C,M) previously.
We deduce that z does not satisfy the inequality (3.12) associated with C ′ and M ′.

− If e∈T< is such that ye=0, we conclude similarly. �

By combining Lemmas 3.6 and 3.7, we deduce that all the fractional extreme points of QP n
LP are

cut off by the odd sub-cycle inequalities. The following property states that these inequalities can
be obtained by linear combination from triangle inequalities, therefore, the fractional extreme points
of QP n

LP are even cut off by triangles inequalities.

Property 3.8 (Padberg [31])
Let C ⊆ Cy(Kn) and M⊆C such that |M | is odd.
If |C|=3, then (3.12)C,M is one of the triangle inequalities (3.5 – 3.8) for the three nodes of C.
If |C|>3, then (3.12)C,M is a linear combination of the triangle inequalities (3.5 – 3.8).

Corollary 3.9
All the fractional extreme points of QP n

LP are cut off by triangle inequalities (3.5 – 3.8).

103

3.4 Facets transposition
In this section, we propose a property to transpose valid or facet defining inequalities from a poly-
hedron to another. The proof is based on elementary properties of convex hull and polyhedron that
are recalled in appendix, in Section CA.4. Note that this property only gives a formal synthesis of
a common knowledge. We present it since we have not found an explicit and ready-to-use writing
of this property. As it is enunciated below, Property 3.10 defines a framework that covers different
results, such as symmetry or lifting properties. The second part of this section proposes several
application of Property 3.10.

•What means transposing inequalities
Let assume that we have an affine map ψ that maps points of a space E1 to a space E2.
We are interested in a way to transform any inequality (I ′) of E2 into an inequality (I) of E1 such
that they are "equivalent for ψ", that is ∀X∈E1, X satisfies (I)⇔ ψ(X) satisfies (I ′).
Let us denote this "equivalence" by (I) ψ⇔ (I ′).

To transform E2 inequalities into E1 inequalities, we use two functions: ϕ, which maps vectors of
E2 to those of E1, and f which map vectors of E2 to values. For any (a, α)∈E2×R, the inequality
(I ′) : a·Y 6α of E2 is transformed into the inequality (I) : ϕ(a)·X6α−f(a) of E1.
Let us denote this transformation by (I) ϕ,f−→ (I ′), and called it transposition in the sequel.

Property 3.10 states that, under some assumption (F), ϕ and f transpose valid (resp. facet defining)
inequalities for ψ(P) into valid (resp. facet defining) inequalities for P any polyhedron of E1. This
assumption means that transposing inequalities using (ϕ, f) provides equivalent inequalities for ψ.
Let us synthesized it as follows. (F) : If (I) ϕ,f−→ (I ′), then (I) ψ⇔ (I ′).

3.4.1 A practical property to transpose valid or facet inequalities

Property 3.10
Let E1 and E2 two Euclidian spaces. Let ψ an affine map from E1 to E2.
Let S1⊆E1, P 1 =conv(S1), S2 =ψ(S1) and P 2 =conv(S2).
If there exist ϕ∈F(E2, E1) and f ∈F(E2,R) such that ∀X∈E1,∀a∈E2, a·ψ(X)=ϕ(a)·X+f(a) (F),
then for any a∈E2 and any α∈R we have:
(i) a·Y 6α is a valid inequality for P 2 ⇔ ϕ(a)·X6α−f(a) is a valid inequality for P 1.
(ii) a·Y 6α defines a face of P 2 ⇔ ϕ(a)·X6α−f(a) defines a face of P 1.

If in addition to (F), we assume that dim(P 1)=dim(P 2),
then for any a∈E2 and any α∈R we have:
(iii) a·Y 6α defines a facet of P 2 ⇒ ϕ(a)·X6α−f(a) defines a facet of P 1.

If in addition to (F), we assume that ψ is bijective,
then dim(P 1)=dim(P 2) and for any a∈E2 and any α∈R we have:
(iv) a·Y 6α defines a facet of P 2 ⇔ ϕ(a)·X6α−f(a) defines a facet of P 1.

Proof : Let a∈E2 and α∈R.
Let us denote by H1 the hyperplane of E1 defined by the inequality ϕ(a)·X6α−f(a) and by H1>⊆ E
the set of points that do not satisfy this inequality (nb: H1> is not an half-space, but the complement
of an half-space).

H1 =
{
X∈E1 |ϕ(a)·X=α−f(a)

}
and H1>=

{
X∈E1 |ϕ(a)·X>α−f(a)

}
104

We introduce similarly H2 and H2> for the inequality a·Y 6α in E2.
H2 =

{
Y ∈E2 | a·Y =α

}
and H2>=

{
Y ∈E2 | a·Y >α

}
Since ψ is linear, we have ψ

(
conv(S1)

)
=conv

(
ψ(S1)

)
=conv

(
S2), then ψ(P 1)=P 2.

Moreover, using the assumption (F), one can check that ψ(H1)=H2 and ψ(H1>)=H2>.
Let us show that ψ(S1∩H1)=S2∩H2.
By definition of the image of a subset, we have ψ(S1∩H1)⊆ψ(S1)∩ψ(H1).
Then, according to the previous remark, we have ψ(S1∩H1)⊆S2∩H2.
Let us show the reverse inclusion. Let Y ∈S2∩H2.
Since S2 =ψ(S1), there exists X∈S1 such that Y =ψ(X).
By definition of H2, we have a·Y=α, that is a·ψ(X)=α.
By assumption (F), we deduce that ϕ(a)·X+f(a)=α.
Hence X∈H1, and then X∈H1∩S1. Thus, Y ∈ψ(H1∩S1). This shows that S2∩H2⊆ψ(S1∩H1).
Finally we have S2∩H2 =ψ(S1∩H1).
Similarly, one can show that ψ(P 1∩H1)=P 2∩H2 and ψ(P 1∩H1>)=P 2∩H2>.

• By definition, a·Y 6α is valid for P 2 if and only if P 2∩H2>=∅, that is if ψ(P 1∩H1>)=∅.
Similarly, ϕ(a)·X6α−f(a) is valid for P 1 if and only if P 1∩H1>=∅, which is equivalent to ψ

(
P 1∩H1>)=∅

by definition of the image of a subset. We deduce that (i) is true.

• By definition, a·Y 6α defines a face of P 2 if and only if H2>∩P 2 =∅ and H2∩P 2 6=∅.
Similarly, ϕ(a)·X6α−f(a) defines a face of P 1 if and only if H1>∩P 1 =∅ and H1∩P 1 6=∅.
Therefore, since (i) is true, to prove (ii) it suffices to show that H2∩P 2 6=∅ ⇔ H1∩P 1 6=∅.
Since we have ψ(P 1∩H1)=P 2∩H2, this is true by definition of the image of a subset.
Thus, (ii) is true.

• Let us denote by d the dimension of both P 1 and P 2.
By definition, a·Y 6α defines a facet of P 2 if and only if H2>∩P 2 =∅ and dim(H2∩P 2)=d−1.
Similarly, ϕ(a)·X6α−f(a) defines a facet of P 1 if and only if H1>∩P 1 =∅ and dim(H1∩P 1)=d−1.
Therefore, since (i) is true, to prove (iii) it suffices to show that dim(H2∩P 2)=d−1⇒ dim(H1∩P 1)=d−1.
According to Corollary CA.57(ii), it is equivalent to show that dim(H2∩S2)=d−1⇒ dim(H1∩S1)=d−1.
Let assume that dim(S2∩H2)=d−1.
Since S2∩H2 =ψ(S1∩H1), by Corollary CA.53 we have d−1=dim(S2∩H2)6dim(S1∩H1).
Since dim(S1∩H1)6dim(S1)=dim(P 1)=d, we then have dim(S1∩H1)∈{d−1, d}.
Let assume that dim(S1∩H1)=d=dim(P 1)=dim(S1).
The inclusion aff(S1∩H1)⊆aff(S1) is then an equality, i.e. aff(S1∩H1)=aff(S1).
Then we have S1⊆aff(S1)=aff(S1∩H1)⊆aff(H1)=H1, and thus S2 =ψ(S1)⊆ψ(H1)=H2.
The latter inclusion implies that S2∩H2 =S2, and thus dim(S2∩H2)=dim(S2)=dim(P 2)=d.
A contradiction. Then necessarily dim(S1∩H1)=d−1.
• If ψ is bijective, then according to Corollary CA.53(ii) we have dim(ψ(S1)) = dim(S1), and since
ψ(S1)=S2, we deduce that dim(S2)=dim(S1). It follows that dim(P 2)=dim(P 1).
Similarly, dim(P 1∩H1)=dim(ψ(P 1∩H1)), then dim(P 1∩H1)=dim(P 2∩H2) since ψ(P 1∩H1)=P 2∩H2.
Therefore, dim(P 1∩H1)=dim(P 1)−1⇔ dim(P 2∩H2)=dim(P 2)−1, and (iv) follows. �

In the sequel we provide different examples where inequalities are transposed from a polyhedron
P to a polyhedron P ′, and then where Property 3.10 allows to derive facet defining inequalities for P
from those for P ′. For each example, we proceed in three steps:
→ identify an affine map ψ which map of P to P ′,
→ identify the function ϕ and f such that (F) is satisfied,
→ transpose the inequalities using ϕ and f .

105

3.4.2 Application to QP n and CUT n+1

In [12], De Simone establishes the link between the Boolean quadric polytope for an arbitrary graph
G, and the cut polytope of the graph obtained by adding to G a node together with an edge from
this node to each other node. Let us present this link for the particular case of complete graph using
the framework of Property 3.10.

• Notations
We denote by Kn+1 = (Ṽ , Ẽ) the complete undirected graph on [1..n+1], which corresponds to the
following sets.

Ṽ = [1..n+1] = V t{n+ 1} and Ẽ = Ṽ < = E t
(
V :{n+1}

)
Moreover, for any S ⊆ Ṽ , we define χ̃S ∈ RẼ as χ̃S = I

S:Ṽ\S. This way we have CUT n+1 =
conv

({
χ̃S
∣∣∣S⊆ Ṽ }).

• Identifying the affine map ψ
Let us define the covariance map ψ̃ and its inverse function ψ̃−1 as follows.

ψ̃ =
(
RV×RE −→ RẼ

(x, y) 7−→ X

)
where ∀(i, j)∈ Ẽ, Xi,j =

{
xi+xj−2 yi,j if (i, j)∈E
xi if j=n+1

ψ̃−1 =
(
RẼ −→ RV×RE
X 7−→ (x, y)

)
where


∀i∈V, xi=Xi,n+1

∀(i, j)∈E, yi,j =−Xi,j +Xi,n+1 +Xj,n+1

2

One can check that ψ̃ is a bijective linear map and that ∀S⊆V, ψ̃(zS)= χ̃S.

We deduce that ψ̃(S n
x,y)=Sn+1

X and ψ̃(QP n)=CUT n+1 .

• Identifying functions "ϕ and f"
By rewriting the expression a·ψ̃(x, y) as a weighted sum of variables x and y, we identify the coeffi-
cient of a vector b such that a·ψ̃(z)=b·(x, y). Therefore, we introduce the following function ϕ̃.

ϕ̃ =
(
RẼ −→ RV×RE
a 7−→ b

)
where

{
∀i∈V, bi=a

(
{i} : Ṽ \{i}

)
∀e∈E, be=−2 ae

By construction of ϕ̃, we have ∀a∈RẼ,∀z∈RV×RE, a·ψ̃(z)= ϕ̃(a)·z.
To stick to the Property 3.10’s framework, we could set additionally f̃=0.

• Transposing inequalities using "ϕ and f"

Transposition 3.11 (Triangle and trivial inequalities)
Let (i, j, k)∈V <<.

If k 6=n+1, then

(3.13)i,j,k
(3.14)i,j,k
(3.15)i,j,k
(3.16)i,j,k


ϕ̃,0−→


(3.5)i,j,k
(3.6)i,j,k
(3.7)i,j,k
(3.8)i,j,k

otherwise

(3.13)i,j,k
(3.14)i,j,k
(3.15)i,j,k


ϕ̃,0−→


(3.2)i,j
(3.3)i,j
(3.4)i,j

(3.16)i,j,k
ϕ̃,0−→ (3.1)i,j

Triangles inequalities for CUTn+1 are equivalent to both trivial and triangle inequalities for QPn.

106

Transposition 3.12 (Odd sub-cycle inequalities)
Let C∈Cy(Kn+1). Let S=supp(C). Let F be an odd sub-cycle of C, i.e. F ⊆C s.t. |F | is odd.

If n+1 6∈S, then (3.17)C,F
ψ̃⇔ (3.12)C,F .

Otherwise, let us denote by e={k, n+1} and e′={k′, n+1} the two edges in C incident to n+1.
Let us introduce the edge f={k, k′} and the cycle C ′=C∪{f}\{e, e′}. We then have:

- if e∈F and e′∈F , (3.17)C,F
ψ̃⇔ (3.12)C′,F ′ + (3.1)k,k′ for F ′=F \{e, e′}

- if e 6∈F and e′∈F , (3.17)C,F
ψ̃⇔ (3.12)C′,F ′ + (3.2)k,k′ for F ′=F∪{f}\{e′}

- if e∈F and e′ 6∈F , (3.17)C,F
ψ̃⇔ (3.12)C′,F ′ + (3.3)k,k′ for F ′=F∪{f}\{e}

- if e 6∈F and e′ 6∈F , (3.17)C,F
ψ̃⇔ (3.12)C′,F ′ + (3.4)k,k′ for F ′=F

Odd sub-cycle inequalities for CUTn+1 are equivalent to a sum of an odd sub-cycle inequalities and a
trivial inequality for QPn.

Transposition 3.13 (Clique inequalities)
Let S⊆V such that |S| is odd.
If n+1 6∈S, then (3.18)S

ψ̃⇔ (3.9)S,θ for θ=
⌊
|S|
2

⌋
, otherwise (3.18)S

ψ̃⇔ (3.9)S′,θ′ for
S
′=S\{n+1}

θ′=
⌊
|S′|
2

⌋
Clique inequalities over an odd subset for CUTn+1 are transposed into clique inequalities for QPn.

Note that the clique inequalities for QP n as defined by Padberg in [31], i.e. (3.9) are a generalization
of the clique inequalities for CUT n+1, i.e. (3.18). For example, inequalities (3.9) for a parameter θ
that is not

⌊
|S|
2

⌋
are not the transposition of any inequality (3.18).

107

3.4.3 Application to QP n

In this section, we do not transpose inequalities from one polyhedron to another, but from a poly-
hedron to itself. Indeed, for a given M ⊆ V , Padberg introduces in [31] an affine transformation
of RV×RE which maps QP n to itself. Such a transformation can be seen as a symmetry of QP n,
or even as a symmetry on the set of ordered bi-partitions. Let us consider a partition (S, T). By
changing the part to which each node of M belongs, we obtain the partition (S4M,T4M), and
by applying again the same operation, we obtain back (S, T). Therefore, this operation is a kind
of symmetry over the ordered bi-partitions. The equivalent of this operation on vectors (x, y) that
represent partitions is the map ψM introduced below.

• Identifying the affine map ψ

ψM =
(
RV×RE −→ RV×RE

(x, y) 7−→ (x′, y′)

)
where



∀i∈V, x′i=
{

1− xi if i∈M
xi otherwise

∀(i, j)∈E, yi,j =


−yi,j + xj if i∈M and j 6∈M
1−(yi,j+xi+xj) if i∈M and j∈M
yi,j otherwise

One can check that ψM is an affine map and that ∀S ∈ V, ψ(zS) = zS4M , where S4M denotes
the symmetric difference of sets S and M . The latter point shows that the image of ψM is fully
dimensional, since the points zS for all S ⊆ V generate RV×RE, and any S ⊆ V can be written as
(S4M)4M . Since ψM is an affine map of RV×RE whose image is RV×RE, it is even an affine
transformation. Moreover, this point shows that ψM(QP n)=QP n .

• Identifying functions "ϕ and f"
As previously, by rewriting the expression a ·ψM(x, y) as a weighted sum of variables x and y, we
identify the coefficient of a vector b such that a·ψM(x, y)=b·(x, y) + c where c is a constant, in the
sense that it does not depends on (x, y). This way, we introduce the following functions ϕM and fM .

ϕM =
(
RV×RE −→ RV×RE

a 7−→ b

)
where


∀i∈V, bi =

{
−ai − a

(
i :M \{i}

)
if i∈M

ai + a(i :M) otherwise

∀e∈E, be=
{
−ae if e∈M :V \M
ae otherwise

fM =
(
RV×RE −→ R

a 7−→ a(M)+a(M<)

)

By construction of ϕM and fM , we have ∀a∈RV×RE,∀z∈RV×RE, a·ψM(z)=ϕM(a)·z + fM(a).

• Transposing inequalities using ϕ and f

Transposition 3.14 (Clique inequalities)
Let S⊆V such that |S|>2, and α∈ [1..|S|−2]. We have (3.9)S,α

ϕV,fV−→ (3.9)S,β where β= |S|−1−α.
The clique inequalities are stable for the transposition using ϕV and fV .

Transposition 3.15 (Cut inequalities)
Let (S, T)⊆P(V)2 such that S∩T 6=∅, |S|>1, and |T |>2. We have (3.10)S,T

ϕV,fV−→ (3.11)S,T .
The generalized cut inequalities for QPn are equivalent to the cut inequalities for QPn.

Actually, generalized cut inequalities were obtained by transposing cut inequalities using (ϕV , fV) (Cf. [31]).

108

• A note on about the Padberg’s symmetry theorem in [31]
Padberg [31] introduced functions ψM , ϕM and fM (under slightly different notations) and use them
to prove the following "Symmetry theorem" (Theorem 6 in [31]).

For any R⊆V and S⊆V , and any facet a·z6α of QP n such that a·zR=α,
there exists a unique facet ã·z6 α̃ of QP n such that ã·zS = α̃.

As enunciated, this theorem is false. Indeed, since the extreme points of QP n are exactly the points
zS for S⊆V , this theorem states that for any pair of extreme points zS and zR, and for any facet of
QP n containing zR, there exists only one facet of QP n containing zS. That is not true.
Moreover, the existence or the unicity of a facet containing zS does not depend on zR or on a facet
containing zR. The point was surely to say that there exists only one facet obtained by "symmetry"
from a·z6α that contains zR. However, the unicity does not stand, as shown by the counter-example
given below. Therefore, let us provide a revised version of the symmetry theorem.
Property 3.16

Let R⊆V . Let (a, α)∈(RV×RE)×R such that a·z6α defines a facet of QP n and a·zR=α.
(i) For any M⊆V , the inequality ϕM(a)·z6α−fM(a) defines a facet of QP n.
(ii) Moreover, for any S⊆V , if M=R4S, then this facet contains zS.

Proof : Point (i) is exactly what ensures Property 3.10 (iii). Besides, zS belongs to the facet obtained using
ϕM and fM if and only if ϕM(a)·zS =α−fM (a) and ϕM(a)·zS+fM(a)=α⇔ a·ψM(zS)=α⇔ a·zS4M =a·zR.
Therefore, if M=S4R, then S4M = S4(S4R) = R, and zS belongs to the facet.
Note that conversely, a·zS4M =a·zR does not implies that S4M=R. �

Counter-example 4 : Among the facets obtained by symmetry from an inequality satisfied by zR,
there can exist more than one that contains zS.

Let (i, j, k)∈V <<. Let us set S={i}, R={j}, M0 =S4R={i, j} and M={i, j, k}.
We have S4M={j, k}=(S4M0)t{k}.

Therefore, by denoting
{

(xS4M0
, yS4M

0)=zS4M
0

(xS4M , yS4M)=zS4M
we obtain

{
xS4M = xS4M

0 + Ik∈RV

yS4M = yS4M
0 + I{i,k}∈RE

We set a=(−Ik, I{i,k}), thus yi,k6xk (3.3)i,k, which is satisfied to equality by zS, can be written a.z60.
Let us explicit below the components of b0 =ϕM

0 and b=ϕM .

b0i =−ai−ai,j =0 bi=−ai−ai,j−ai,k=−1
b0j =−aj−ai,j =0 bj =−aj−ai,j−aj,k=0
b0k=+ak+ai,k+aj,k=−1 + 1 bk=−ak−ai,k−aj,k=0
∀l∈V \{i, j, k}, b0l ==0 ∀l∈V \{i, j, k}, bl==0

∀e∈E, e 6={i, k}, ae=−ae=0 then b0e=0 similarly ∀e∈E, e 6={i, k}, be=0
b0i,k=−ai,k=−1 since i∈M0 and k 6∈M0 bi,k=ai,k=1 since i∈M and k∈M
Finally, b0 =(0,−Ii,k). Finally, b=(−Ii,−Ii,k).

Moreover, fM0(a)=a(M0) + a
(
(M0)<

)
=ai+ai,k=0. Moreover, fM (a)=a(M)+a(M<)=ai+ai,k=0.

Then the inequality b0 ·z6fM0(a) is −yi,k60, Then the inequality b·z6fM(a) is −xi + yi,k60,
i.e. yi,k>0 that is (3.4)i,k i.e. yi,k6xi that is (3.2)i,k

The point zR = z{j} = (Ij , 0) satisfies both (3.4)i,k and (3.2)i,k to equality. In other words, zR belongs
to two different facets of QPn that can be obtained by different symmetries from the same inequality
(3.3)i,k.

109

3.4.4 Application to P n
δ,X

For any M ⊆V , the symmetry operation on the ordered bi-partitions that consists in changing the
part to which each node of M belongs, corresponds also to a symmetry over P n

δ,X . Therefore, we
introduce below a function ψMδ,X for P n

δ,X which is analog to ψM for QP n.

• Identifying the affine map ψ

ψMδ,X =
(
RV×RE −→ RV×RE
(δ,X) 7−→ (δ′, X ′)

)
where


∀i∈V, δ′i=

{
1−δi if i∈M
δi otherwise

∀(i, j)∈E, X ′i,j =
{

1−Xi,j if {i, j}∈M :V \M
Xi,j otherwise

• Identifying functions ϕ and f

ϕMδ,X =
(

RV×RE −→ RV×RE
a=(aδ, aX) 7−→ (bδ, bX)

)
where


∀i∈V, bδi =

{
−ai if i∈M
ai otherwise

∀(i, j)∈E, bYi,j =
{
−ai,j if {i, j}∈M :V \M
ai otherwise

fMδ,X =
(
RV×RE −→ R

a 7−→ a(M)+a(M :V \M)

)

One can check that we have ∀a∈RV×RE,∀z∈RV×RE, a·ψMδ,X(z)=ϕMδ,X(a)·z + fMδ,X(a).

Note that, when M=V , the expressions of the previous functions can be simplified as follows.
ψVδ,X =(δ,X) 7→ (IV −δ,X), ϕVδ,X =(aδ, aX) 7→ (−aδ, aX), fVδ,X =a 7→ a(V)

• Transposing inequalities using ϕ and f
Even if ψMδ,X(P n

δ,X)=P n
δ,X , we do not explicitly transpose inequalities of P n

δ,X in this section. However,
transposition using ϕMδ,X and fMδ,X is particularly useful when M = V , since for any S ⊆ V , ψVδ,X
maps the vector encoding the ordered bi-partition (S, V \S) to the vector encoding (V \S, S), i.e.
ψVδ,X(IS, IS:V \S)=(IV \S, IS:V \S).

In particular, ψVδ,X maps the two vectors corresponding to the bi-partition {V, ∅}= {∅, V }, and
hence corresponding to the trivial cut, i.e. ψVδ,X(0, 0) = (IV , 0). Therefore, each inequality that cuts
off (0, 0) can be transposed into an inequality cutting off (IV , 0). The result is even more interesting.
For any polyhedron invariant1 under ψVδ,X , a facet defining inequality cutting off (0, 0) is transposed
into a facet defining inequality cutting off (IV , 0) using ϕVδ,X and fVδ,X .
We will use this result in the next chapter for

≈
P n
δ,X , the polytope of non-trivial cuts encoded by δ,X

variables, which is stable by ψVδ,X .

1Note that in general, a set S is said invariant by a function ψ when ψ(S)⊆S.
In the particular case where ψ is a symmetry, i.e. ψ ◦ψ= id, this implies that S=ψ ◦ψ(S)⊆ψ(S), and hence ψ(S)=S.

110

3.4.5 Application to QP n and QPN for N>n

In this section, we present the lifting theorem provided by Padberg in [31] as an application of
Property 3.10. Let us consider N ∈N such that N > n. We denote by KN = (Ṽ , Ẽ) the complete
graph on the node set [1..N], which corresponds to Ṽ =[1..N] and Ẽ= Ṽ <.

• Identifying the affine map ψ
The following mapping ψπ is the projection of the space RṼ×RẼ on the space RV×RE.

ψπ =
(
RṼ×RẼ −→ RV×RE

(x, y) 7−→ (x/V , y/E)

)

As a projection, ψπ is a linear map (not bijective).
Moreover, one can easily check that ψπ(QPN)=QP n .

• Identifying functions ϕ and f
In order to have ∀z∈RṼ×RẼ, a·ψπ(z)=ϕπ(a)·z, we define ϕπ as the extension by 0 components.

ϕπ =
(
RV×RE −→ RṼ×RẼ

a 7−→ a∗

)
where


∀i∈V, a∗i =

{
ai if i∈V
0 otherwise

∀e∈E, a∗e=
{
ae if e∈E
0 otherwise

To stick to the Property 3.10’s framework, we could set additionally fπ=0.

• Lifting, or transposing using ϕπ

The following lifting theorem is exactly the Property 3.10ii where function ψ, ϕ, and f have been
instantiated as proposed above.
Property 3.17 (Padberg [31])

If a·z6α defines a facet of QP n then ϕπ(a)·z6α defines a facet of QPN .

111

3.4.6 Application to QP n and P n
δ,X

It is important to notice that any valid (resp. facet defining) inequality for CUT n is also valid (resp.
facet defining) for P n

δ,X , but the converse is not true, since P n
δ,X is in bijection with CUT n+1, not with

CUT n.

• Identifying the affine map ψ

ψ =
(
RV×RE −→ RV×RE
(δ,X) 7−→ (δ, y)

)
where ∀(i, j)∈E, yi,j = δi+δj −Xi,j

2

ψ−1 =
(
RV×RE −→ RV×RE

(x, y) 7−→ (x,X)

)
where ∀(i, j)∈E, Xi,j =xi+xj − 2 yi,j

One can check that ψ is a bijective linear map and that ∀S⊆V, ψ((IS, IS:V \S))=zS.
We deduce that ψ(S n

δ,X)=S n
x,y and ψ(P n

δ,X)=QP n.

• Identifying functions ϕ and f
As previously, by rewriting the expression a ·ψ(δ,X) as a weighted sum of variables x and y, we
identify the coefficient of a vector b such that a·ψ(δ,X)=b·(δ,X). This way we obtain the following
definition of ϕ.

ϕ =
(
RV×RE −→ RV×RE

a 7−→ b

)
where

∀i∈V, bi=ai + 1
2 a
(
{i} : Ṽ \{i}

)
∀e∈E, be=−1

2 ae

By construction of ϕ, we have ∀a∈RV×RE,∀(δ,X)∈RV×RE, a·ψ(z)=ϕ(a)·(δ,X).
To stick to the Property 3.10’s framework, we could set additionally f=0.

• Transposing inequalities using ϕ and f

Transposition 3.18 (Trivial inequalities)
Let (i, j)∈V <.
We have (3.1)i,j

ϕ,0−→ (X.4)i,j, (3.2)i,j
ϕ,0−→ (X.2)i,j, (3.3)i,j

ϕ,0−→ (X.1)i,j, and (3.4)i,j
ϕ,0−→ (X.3)i,j.

According to this transposition, inequalities (X.1 –X.4) will be called trivial inequalities for P n
δ,X .

Transposition 3.19 (Triangle inequalities)

Let (i, j, k)∈V <<. We have (3.1)i,j,k
ϕ,0−→ (3.16)i,j and

(3.2)i,j
(3.3)i,j
(3.4)i,j


ϕ,0−→


(3.13)i,j,k
(3.14)i,j,k
(3.15)i,j,k

According to this transposition, in the sequel the triangle inequalities for P n
δ,X will refer to inequali-

ties (3.13 – 3.16), even if they are also the triangle inequalities for CUT n.

Transposition 3.20 (Clique inequalities)
Let S⊆V such that |S|>2, and θ∈ [1..|S|−2].
We have (3.9)S,α

ϕ,0−→ (3.19)S,θ where inequalities (3.19) are defined as follows.

∀S⊆V, ∀θ∈
[
1 .. |S|−2

]
, (2θ−|S|+1) δ(S) +X(S<) 6 θ (θ+1) (3.19)

112

One can note that, when |S| is odd, the inequality (3.19)S,θ for θ = |S|−1
2 is exactly (3.18)S. As

previously for QP n, the clique inequalities for P n
δ,X generalize the clique inequalities for CUT n.

Transposition 3.21 (Cut inequalities)
Let (S, T)⊆P(V)2 such that S∩T 6=∅, |S|>1, and |T |>2.

We have

(3.10)S,T
ϕ,0−→ (3.20)S,T

(3.11)S,T
ϕ,0−→ (3.21)S,T .

where inequalities (3.20) and (3.21) are defined as follows.

∀(S, T)⊆P(V)2 s.t. S∩T 6=∅, s= |S|>1, t= |T |>2,
(t−s−1) (δ(S)−δ(T)) +X(S<) +X(T<)−X(S :T) 6 0 (3.20)

∀(S, T)⊆P(V)2 s.t. S∩T 6=∅, s= |S|>1, t= |T |>2,
(t−s−1) (δ(T)−δ(S)) +X(S<) +X(T<)−X(S :T) 6 (t−s) (t−s−1) (3.21)

Transposition 3.22 (Odd sub-cycle inequalities)
Let C∈Cy(Kn). Let S=supp(C). Let F be an odd sub-cycle of C, i.e. F ⊆C s.t. |F | is odd.
We have (3.12)C,F

ϕ,0−→ (3.17)C,F .

Note that the transposition of inequality (3.12)C,F produces the following inequality, which can be
simplified into (3.17)C,F using that |F | is odd and thus

⌊
|F |
2

⌋
= |F |−1

2 .

−1
2X(C\F) + 1

2X(F) 6
⌊
|F |
2

⌋

In the next section, we present some experimental results for assessing the reinforcement of
Formulation F 2 using the triangle and clique inequalities for P n

δ,X .

113

3.5 Numerical experiments
We provide in this section numerical experiments conducted in the framework as for Section 2.3, Cf.
page 89. We only solve linear relaxations, which corresponds to the root node of a Branch-and-Bound
algorithm to exactly solve the different formulations. For Tables 3.1 and 3.2, entries are the following.

n: the number of tasks
time: the average running time over the ten n-task instances
gap: the average optimality gap2 over the ten n-task instances,

3.5.1 Reinforcing F 2 using triangle inequalities
Table 3.1 shows that the lower bound provided by the linear relaxation F 2-lp of F 2 is far from the
optimal value (see the third column). Note that other experiments show that F 3 provides the same
lower bound. We try to strengthen this lower bound by adding cplex cuts3 and/or the triangle
inequalities (3.13 – 3.16).

F 2-lp F 2-lp F 2-lp F 2-lp
+ cplex Cuts + Triangle + Triangle

+cplex Cuts
n time gap time gap time gap time gap
10 0 41% 3 0% 0 3% 2 0%
20 0 68% 3 0% 1 13% 2 10%
30 0 77% 5 4% 1 19% 12 18%
40 0 83% 10 27% 32 22% 48 21%
50 1 86% 27 42% 177 23% 145 22%
60 1 93% 375 45% 746 24% 337 24%

Table 3.1: Improvement of the lower bound by adding cplex cuts and the triangle inequalities

For n 6 30, adding the cplex cuts provides a better lower bound than adding the triangle
inequalities, and combining both of them does not provide a better lower bound. Conversely, for
n> 40, adding the triangle inequalities induces a much better lower bound than adding the cplex
cuts, and combining both of them provides almost the same bound as the one obtained by adding
only the triangle inequalities, but reduces the running time. For instance, for 60-task instances,
adding triangle inequalities reduces the gap from 92.8% to 23.5%, and combining them with the
cplex cuts reduces the running time from 746 seconds to 337 seconds.

3.5.2 Reinforcing F 2 using clique inequalities
As shown by the previous experiments, adding O(n3) triangle inequalities increases the time for
solving F 2-lp. Since the number of clique inequalities is O(n 2n), we decided to add the clique in-
equalities using a separation algorithm.

In contrast with the non-overlapping inequalities in Formulations F 3 and F 4, the clique inequalities
are not necessary in F 2. Indeed, the integrity constraints suffice, and clique inequalities are only
used within the Branch-and-Bound algorithm to improve the lower bound obtained at each node
of the branching-tree. Therefore, we can use a heuristic separation algorithm. Such an algorithm
provides, for a given point (δ∗, X∗)∈P n

F 2 , a set of clique inequalities that (δ∗, X∗) violates. Contrary
2For a given instance whose optimal value is OPT , the optimality gap of a lower bound LB is (OPT−LB)/OPT .
3cplex cuts are linear inequalities generated by cplex to cut off fractional points.

114

to an exact algorithm, the provided inequality set can be empty, even if (δ∗, X∗) violates some clique
inequalities. Let us present the heuristic separation algorithm that we use for our experiments.

• A heuristic separation algorithm for clique inequalities
Let (δ∗, X∗)∈P n

F 2 . To determinate if (δ∗, X∗) violates some clique inequalities, one can proceed by
enumeration on parameters θ and |S|, that is to compute, for each θ∈ [1..n−2] and each s∈ [θ+2..n],
a subset S ⊆ V of size s that maximizes (2θ− (s−1)) δ∗(S) + X∗(S<). If the value obtained for a
maximizer S is larger than θ (θ+1), then inequality (3.19)S,θ is violated by (δ∗, X∗), otherwise, no
inequality (3.19) associated with a set of size s and θ is violated by (δ∗, X∗).
If the latter test is done, for each pair (s, θ), with a heuristic solution S, this procedure gives a
heuristic separation algorithm. We propose below an implementation of such a heuristic separation
algorithm, based on a sorting of δ∗ values.

For a given set of parameters (s, θ), we provide a heuristic set S using the following ideas. If
s< 2θ+1, then 2 θ − (s−1)> 0. Hence, the larger δ∗(S) is, the larger (2θ− (s−1)) δ∗(S) + X∗(S<)
is. Therefore, we choose for S a subset corresponding to the s largest components of δ∗. On the
contrary, if s > 2θ+1, we choose for S a subset corresponding to the s smallest components of δ∗,
since δ∗(S) is multiplied by a negative coefficient. In these two cases, we focus on maximizing the
first term of (2θ− (s−1)) δ∗(S) + X∗(S<). When s=2θ+1, the first term is zero, then we focus on
maximizing X∗(S<). Therefore, we choose for S a subset corresponding the ds/2e largest and the
bs/2c smallest components of δ∗, in order to have in S< as many as possible edges between a node
with a small value according to δ∗ and a node with a large one. Indeed, thanks to inequalities (X.1–
X.2), X∗i,j > |δ∗i −δ∗j |. Hence, the closer to 0 is δ∗i and the closer to 1 is δ∗j (or vice versa), the larger
X∗i,j is.

A heuristic separation of clique inequalities (3.19)

input: (δ∗, X∗)∈RV×RE, n= |V |
output: I a set of pairs (S, θ) such that (δ∗, X∗) violates (3.19)S,θ, potentially empty

I ← ∅
σ ← an order on V that sorts δ∗ components such that δσ(1)>δσ(2)> . . .>δσ(n)

for θ=1 to n−2
for s=1 to min(2 θ, n)
S ← σ

(
[1..s]

)
if (2θ− (s−1)) δ∗(S) +X∗(S<) > θ (θ+1)
I ← I ∪ {(S, θ)}

if 2 θ+1 6 n
s← 2 θ+1, S ← σ

(
[1..θ]

)
∪ σ

(
[n−θ..n]

)
if (2θ− (s−1)) δ∗(S) +X∗(S<) > θ (θ+1)
I ← I∪{(S, θ)}

for s=2 θ+2 to n

S ← σ
(
[n−s+1..n]

)
if (2θ− (s−1)) δ∗(S) +X∗(S<) > θ (θ+1)
I ← I∪{(S, θ)}

return I

115

Table 3.2 shows that adding the clique inequalities4 to F 2-lp provides a better lower bound than
adding the cplex cuts. For example, it reduces the average for 60-task instances from 93% to 27%,
while adding cplex cuts only reduces it to 45%. In contrast with the triangles inequalities, no time
is saved by combining the cplex cuts to the clique inequalities, and the gap is only slightly reduced.
Moreover, one can note that the solving time with the clique inequalities is much smaller than the
solving time with the triangle inequalities. However, this time is again 15 times larger than the solv-
ing time for F 2-lp plain. That is too much for an exact solving, where such kind of linear relaxations
are solved thousands of times.

F 2-lp F 2-lp F 2-lp F 2-lp
+ cplex Cuts + Clique + Clique

+cplex Cuts
n time gap time gap time gap time gap
10 0 41% 3 0% 0 1% 0 0%
20 0 68% 3 0% 0 9% 0 8%
30 0 77% 5 4% 0 14% 1 14%
40 0 83% 10 27% 2 18% 4 17%
50 1 86% 27 42% 6 22% 8 22%
60 1 93% 375 45% 11 27% 15 28%

Table 3.2: Improvement of the lower bound by adding cplex cuts and the clique inequalities

In a nutshell, even if they lead to a better relaxation value, triangle inequalities and clique
inequalities increase the computation time needed to solve the linear relaxation of Formulation F 2.
Therefore, we investigate in the sequel another way of reinforcing Formulation F 2.

4Note that the clique inequalities are not all added since we use a heuristic separation algorithm to handle them.

116

Chapter 4

Excluding trivial cuts using facet defining
inequalities

4.1 Introduction
In the previous chapter, the polyhedron P n

δ,X was studied without preferred direction as no objective
function was given. We have presented facet defining inequalities that cut off fractional points no
matter the value of these points. Conversely, in the sequel, the idea is to reinforce formulation F 2 by
cutting off integer points of P n

δ,X corresponding to solutions which are known to be non-optimal for
the objective function. Note that the results obtained for P n

δ,X in this chapter can be transposed to
the cut polytope CUT n+1 and to the boolean quadratic polytope QP n using the methods proposed
in Section 3.4.

More precisely, in this chapter, we provide inequalities cutting the point 0 ∈ RV×RE since
it corresponds to a non-optimal solution. Indeed, this point represents a schedule without any
early task, in particular without an on-time task, and the d-schedules are strictly dominant (Cf.
Lemma 0.1).

P

A

P̂

AF

G

H

P̃

Figure 4.1: A polyhedron included in the hyper-cube,
and two different ways to cut off one of its extreme points

As you can observe in Figure 4.1, an arbitrary inequality cutting off an extreme point A of a
polyhedron P included in the hyper-cube can introduce new extreme points (Cf. vertices F,G,H of
P̂), which are necessarily fractional points. To avoid the occurrence of fractional extreme points, the
point to remove must be cut off by inequalities that define facets of the convex hull P̃ of the other
extreme points. (Cf. the front facet of P̂ shown in orange in Figure 4.1). Therefore, even if the

117

inequality δ(V)>1 suffices to cut off 0∈RV×RE, we will study the facets of the polyhedron obtained
as convex hull of the other points. We then introduce P̃ n

δ,X =conv S̃nδ,X where S̃nδ,X = S n
δ,X\{0}. Since

S̃nδ,X⊆S n
δ,X , we can describe a point of S̃nδ,X by only giving its first n components, Lemma 0.5 shows

how X can be deduced from δ.

We cannot say in general if removing a point of a set reduces the dimension of its convex hull,
even if the removed point is an extreme point of the convex hull. The following property states that
removing 0 from S n

δ,X does not reduce its dimension.
Property 4.1

The polyhedron P̃ n
δ,X is fully dimensional, i.e. dim(P̃ n

δ,X) = dim(RV×RE) = n(n+1)
2 .

Proof : Since P̃nδ,X = conv S̃nδ,X , it suffices to show that S̃nδ,X generates RV×RE , i.e. aff(S̃nδ,X)=RV×RE .
For any U ⊆ V , let us denote by χU the point (δ,X) ∈ S n

δ,X such that δu = 1 if and only if u ∈ U , i.e.
χU =

(
IU ∈RV , IU :V \U ∈RE

)
. Note that χU ∈ S̃nδ,X if U 6=∅.

Let us denote by (eu)u∈V (resp. by (eu,v)(u,v)∈V <) the canonical basis of RV (resp. of RE), and by 0V
(resp. 0E) the zero of RV (resp. RE).
The canonical basis of RV×RE can then be written as

(
(eu, 0E)u∈V , (0V , eu,v)(u,v)∈V <

)
.

For any u∈V , we have (eu, 0E) = 1
2(χ{u} − χW + χV) where W =V \{u}.

For any (u, v)∈V <, we have (0V , eu,v) = 1
2(χ{u} + χ{v} − χW) where W =V \{u}.

We deduce that the canonical basis of RV×RE can be obtained by linear combination of points of S̃nδ,X .
We then have RV×RE⊆vect(S̃nδ,X)⊆vect(P̃nδ,X)⊆RV×RE , and thus vect(P̃nδ,X)⊆RV×RE . �

• Link with the non-trivial cut polytope
A cut is said trivial if it does not contain any edge, that is if it corresponds to the bi-partition
of nodes {∅, V }. Using only edge variables X to encode cuts, there is only one point encoding a
trivial cut: 0E. Conversely, using δ,X variables, two points encode a trivial cut: 0 = (0V , 0E) and
(IV , 0E). Let us introduce

≈
P n
δ,X , the polytope of the non-trivial cuts encoded by δ,X variables, which

is formally defined as follows.
≈
P n
δ,X =conv

(
S n
δ,X\{(0V , 0E), (IV , 0E)}

)

We choose to cut off (0V , 0E) and not (IV , 0E), since (0V , 0E) is non-optimal for the objective
function coming from the UCDDP, while (IV , 0E), on the contrary, can be the unique optimal solution
for some (very particular) instances. However, from a polyhedral point of view, cutting off (0V , 0E) or
(IV , 0E) is equivalent, since these two points are symmetric for ψVδ,X . As explained in Section 3.4.4, a
facet defining inequality of

≈
P n
δ,X that cuts off (0V , 0E) can be translated into a facet defining inequality

that cuts off (IV , 0E).

• First glimpse on P̃ n
δ,X using PORTA

To study this polyhedron for an arbitrary n, we start by studying it for small values of n using a poly-
hedron representation transformation software, which is in particular able to provide the inequalities
defining the facets of conv(S) for a set of small dimensional points S. We use the software PORTA [2]
to this end. We launch PORTA on S̃nδ,X for n= 4 (resp. n= 5), that is on a set of 10-dimensional
(resp. 15-dimensional) points, we obtain 68 (resp. 693) inequalities describing P 4

F 2 (resp. P 5
F 2).

118

Roughly speaking, P̃ n
δ,X with respect to P n

δ,X is the same as P̃ with respect to P in Figure 4.1:

- The initial and the new polyhedra have the same dimension, i.e. dim(P)=dim(P̃)

- Some facets of the initial polyhedron (i.e. P), like the back facet of P , are still facet of the new
one (i.e. P̃), or at least the corresponding inequality is still facet defining, even if the facet
have smaller size, (see te bottom facet of P for example).

- Some facets of the initial polyhedron, like the two striped faced at the front of P , are no longer
facet of the new polyhedron, even if they are necessarily still valid.

- Some facets of the new polyhedron, like the orange striped front facet of P̃ , are new in the
sense that they are not facet-defining and even not valid for the initial polyhedron. These facets
are the facets that we look for, the facets eliminating the point without introducing fractional
extreme points.

However, a remarkable difference between P̃ and P̃ n
δ,X in the Figure 4.1 is the number of new facets

appearing in the new polyhedron. In the figure, P̃ has only one new facet, while P̃ n
δ,X presents 22

new facets for n=4 and at least 325 for n=5.

As for P n
δ,X , we can show that the trivial inequalities, the triangle inequalities, the clique in-

equalities and the generalized cut inequalities define facet of P̃ n
δ,X for any n∈N. Among the other

inequalities of P̃ n
δ,X (i.e. the new inequalities, not inherited from P n

δ,X) provided by PORTA for n=4
and n = 5, we identify five families of linear inequalities which can be generalized for any n > 4.
Except for the last family, these inequalities defines facets of P̃ n

δ,X for any n> 4. The sequel of this
chapter presents these inequalities, more precisely each section consists in defining a family and then
prove that any inequality of this family defines a facet of P̃ n

δ,X .

• P 4
F 2 case

PORTA provides 68 inequalities describing P 4
F 2 . They are distributed as follows1 .

+ inequalities inherited from P n
δ,X :

- 24 trivial inequalities, namely (X.1 –X.4) for each (i, j)∈V <

- 16 triangles inequalities, namely (3.13 – 3.16) for each (i, j, k)∈V <<

- 4 generalized cut inequalities, namely (3.21) associated with ({i}, V \{i}) for each i∈V
- 2 clique inequalities, namely (3.19), associated with S=V and θ∈{1, 2}

+ new inequalities:
- 12 Hamiltonian path inequalities, i.e. (HP,1,n) for C corresponding to a permutation of V
- 6 "without name" inequalities, i.e. (?u,v) for each (u, v)∈V <

- 4 star inequalities, i.e. (Staru) for each u∈V

1Since the introduced families of valid inequalities are not disjoint, this distribution could be presented differently:
for example some triangle inequalities could have been presented as cut, generalized cut, or clique inequalities.

119

4.2 How to prove that inequalities define facets

The proofs for the five inequality families follow the same scheme, which is classical in polyhedral
studies (Cf. [11], page 106). We propose here to recall the scheme of these proofs in order to give to
the reader some guidelines in these quite long proofs. However, each proof is written in extenso and
can be read independently.

Sketch of proof
For a given n∈N\[0..2], to prove that the following inequality (I) defines a facet of P̃ n

δ,X .

b·(δ,X)6β (I)

• Validity
The first step is to prove that (I) is valid for the polyhedron P̃ n

δ,X . Since this polyhedron is defined
as the convex hull of S̃nδ,X , it suffices to show that (I) is valid for the points of S̃nδ,X .
We consider different cases for (δ,X) in S̃nδ,X according to the value of the δ components appearing
in (I), i.e. having non-zero coefficients in (I).

• Integer points satisfying inequality (I) to equality
The second step is to identify the points of S̃nδ,X which satisfy (I) to equality. For this identification,
we use the δ case analysis done at the first step. Establishing that some points of S̃nδ,X satisfy (I) to
equality proves that (I) defines a non-empty face of P̃ n

δ,X , since that shows that some points of P̃ n
δ,X

are in the hyperplane defined by (I). Let us denote by F this face. In the sequel, we will only say
face for non-empty face.

• General reasoning on facets
To prove that a face F is a facet, we have to show that its dimension is equal to d−1, where d
is the dimension of the polyhedron. In case of a polyhedron P defined as the convex hull of a set
of initial points S, i.e. P = conv(S), it suffices to consider the dimension of the space generated
by the initial points included in the face, i.e. aff(F ∩S). Indeed, the affine space generated by a
convex set is also generated by its extreme points. Therefore, the dimension of a face is the di-
mension given by its extreme points, which are necessarily initial points for such a polyhedron, i.e.
dim(F)=dim(extr(F))=dim(F∩S).
When the polyhedron is fully dimensional, a way to prove that dim(F)=d is thus to provide a family
of d initial points included in the face, and to show that they are affinely independent. We follow a
different line, which is actually equivalent to provide a family of initial points included in the face
and show that the rank of this family is d−1, since its orthogonal complement is 1-dimensional. In
particular, we consider more than d points and do not show they are independent.

• Defining the including facet
Since a face of a polyhedron is always included in a facet, we consider a facet F a containing F . The
last (but not least) step, consists in showing that this facet F a is exactly the face F .
More precisely, we introduce a vector a∈RV×RE and a real number α∈R such that F a is defined by
the inequality a·(δ,X)6α. We then use initial points included in F , i.e. F ∩S to derive necessary
conditions on a. Indeed, a point (δ,X) included in F is necessary included in F a, and thus we have
a·(δ,X)=α. Progressively, we deduce from these equalities the values of a components (Cf. framed
results in the proof). The goal is to deduce that a=λ b and α=λβ for a certain λ∈R, which proves
that F =F a, and thus that F is a facet. Note that this goal is reached if and only if the rank of the
points considered to derive conditions on a is dim(RV×RE)−1 = dim(P̃ n

δ,X)−1.

120

In spite of their common structure, the following proofs do not seem to be able to be gathered into a
common meta-proof. Indeed, the integer points satisfying inequalities to equality and thus the third
step of proofs have different nature. For example, the third step of the proof for the Hamiltonian path
inequalities requires to prove one intermediate property by induction on the number of vertices on
the path between the two endpoints of an edge, while the proof for the Hamiltonian cycle inequalities
requires in addition an induction on the vertices along the cycle. Conversely, the other proofs do not
require any induction reasoning.

121

4.3 Hamiltonian path inequalities
For any Hamiltonian path P of Kn, we introduce the following inequality where u and v denote the
endpoints of P .

δu+δv +X(P) > 2 (HP)

Property 4.2

For any Hamiltonian path P the inequality (HP) defines a facet of P̃ n
δ,X .

Proof : Let P be a Hamiltonian path of Kn. Since vertices of V can be interchanged without changing Kn,
we assume without loss of generality that P goes from 1 to n, and that edges of P are the edges {i, i+1}
for i∈ [1..n[. The inequality (HP) can then be written as follows, and Figure 4.2 gives an illustration of
the variables involved in this inequality, that is having a non zero coefficient.

δ1+δn+
n−1∑
i=1

Xi,i+1 > 2 (HP,1,n)

•

•

•
• •

•

•

•
1 n

• vertex of V
• P-endpoint

P-edge
other edge of E

Figure 4.2: Illustration of the terms (δ,X) involved in (HP,1,n)

• Validity
Let (δ,X)∈ S̃nδ,X .

- If (δ1, δn)=(1, 1), then δ1+δn=2. As X has only non-negative values, (δ,X) satisfies (HP,1,n).

- If (δ1, δn)=(1, 0), then there exists (at least) one index k ∈ [1..n−1] such that δk=1 and δk+1 =0,
and hence such that Xk,k+1 =1. We deduce that (δ,X) satisfies (HP,1,n).

- If (δ1, δn)=(0, 1), the situation is symmetric to the previous one. Similarly, (δ,X) satisfies (HP,1,n).

- If (δ1, δn) = (0, 0), there exists (at least) one index j ∈ [2..n−1] such that δj = 1 since δ 6= 0.
Then, there exists one index k1 ∈ [1..j−1] such that δk1 = 0 and δk1+1 = 1, and another index
k2 ∈ [j+1..n−1] such that δk2 =1 and δk2+1 =0. We then have Xk1,k1+1 =Xk2,k2+1 =1 with k1 6=k2.

Therefore,
n−1∑
i=1

Xi,i+1 > 2 and (δ,X) satisfies (HP,1,n).

We deduce that all the points of S̃nδ,X , and hence of P̃nδ,X = conv(S̃nδ,X), satisfy inequality (HP,1,n).

• Introducing the including facet
Let us consider a ∈RV ×RE and α ∈R such that F a =

{
(δ,X) ∈ P̃nδ,X | a ·(δ,X) = α

}
is a facet of P̃nδ,X

containing the face F associated with (HP,1,n) , that is the face defined as follows.

F =
{

(δ,X)∈ P̃nδ,X

∣∣∣∣∣ δ1+δn+
n−1∑
i=1

Xi,i+1 =2
}

122

• Integer points satisfying inequality (HP,1,n) to equality
Let us denote by pK,L the point of S defined by δ = I[K..L], for (K,L) ∈ V 6. Such a point satis-
fies (HP,1,n) to equality. Actually, the set of points of S̃nδ,X satisfying (HP,1,n) to equality is exactly{
pK,L

∣∣∣ (K,L)∈V 6
}
. Note that these points can be partitioned into seven seven types regarding to 1

and n:
(a) 1<K=L<n

(b) 1=K<L<n

(c) 1<K<L=n

(d) 1=K<L<n

(e) 1<K<L=n

(f) 1<K<L<n

(g) 1=K<L=n

Figure 4.3 gives an illustration of the non-zero components of such points.

(a)

1

K=L

n
vertex where δ is 0
vertex where δ is 1
P-endpoint where δ is 1
P-edge where X is 0
non-P-edge where X is 1
P-edge where X is 1

(b)

1=K=L n

(c)

1 K=L=n

(d)

1=K

L

n

(e)

1

K

L=n

(f)

1

K

L

n

(g)

1=K L=n

Figure 4.3: Illustration of non zero components of pK,L,
for the seven different types of (K,L) regarding to 1 and n

123

For any (K,L)∈V 6, pK,L∈F a since pK,L∈F , and we have a.pK,L=α, which can be written as follows.

L∑
j=K

aj +
K−1∑
i=1

L∑
j=K

ai,j +
L∑

i=K

n∑
j=L+1

ai,j = α (1K,L)

Using colors, Figure 4.4 illustrates the non-zero coefficients appearing in this equation (1K,L) in case (f),
i.e. for (K,L) such that 1<K<L<n.

1

K

L

n

Figure 4.4: Illustration of terms of a involved in (1K,L) for (K,L) of type (f)

We now start to use equations (1K,L) for different values of K and L, which will allow to first prove that
a/V = α

2 (I1+In).
− With (K,L)=(1, n) the equation (1K,L) is simply the following equation.

n∑
j=1

aj = α (11,n)

− For any J ∈ [1..n−1], the equation (1K,L) for (K,L)=(1, J) is:

J∑
j=1

aj + 0 +
J∑
i=1

n∑
j=J+1

ai,j = α (11,J)

while the equation (1K,L) with (K,L)=(J+1, n) is

n∑
j=J+1

aj +
J∑
i=1

n∑
j=J+1

ai,j + 0 = α (1J+1,n)

Summing these both equations, we obtain:

n∑
j=1

aj + 2
J∑
i=1

n∑
j=J+1

ai,j =2α

and using (11,n) to simplify α, we finally obtain:

J∑
i=1

n∑
j=J+1

ai,j = α

2 (F)

124

− For any K∈ [2..n], the equation (1K−1,n), can be written as follows,

n∑
j=K−1

aj +
K−2∑
i=1

n∑
j=K−1

ai,j + 0 = α that is
n∑

j=K−1
aj +

K−2∑
i=1

n∑
j=K

ai,j +
K−2∑
i=1

ai,K−1

 = α (1K−1,n)

while the equation (1K,n) can be written as follows:

n∑
j=K

aj +
K−1∑
i=1

n∑
j=K

ai,j + 0 = α that is
n∑

j=K
aj +

K−2∑
i=1

n∑
j=K

ai,j +
n∑

j=K
aK−1,j

=α (1K,n)

We deduce that left members of these both inequality are equal, and simplifying their common terms
we obtain for any K∈ [2..n]:

aK−1 +
K−2∑
i=1

ai,K−1 =
n∑

j=K
aK−1,j (2K−1)

− For any L∈ [1..n−1], the equation (11,L+1) can be written as follows:

L+1∑
j=1

aj + 0 +
L+1∑
i=1

n∑
j=L+2

ai,j = α that is
L+1∑
j=K

aj +

 L∑
i=K

n∑
j=L+2

ai,j +
n∑

j=L+2
aL+1,j

 = α (11,L+1)

while the equation (11,L) can be written as follows:

L∑
j=1

aj + 0 +
L∑
i=1

n∑
j=L+1

ai,j = α that is
L∑
j=1

aj +

 L∑
i=1

n∑
j=L+2

ai,j +
L∑
i=1

ai,L+1

 = α (11,L)

We deduce that left members of these both inequality are equal, and simplifying their common terms
we obtain for any L∈ [1..n−1]:

aL+1 +
n∑

j=L+2
aL+1,j =

L∑
i=1

ai,L+1 (3L+1)

− For J ∈ [2..n−1], we then have
n∑

j=J+1
aJ,j = aJ +

J−1∑
i=1

ai,J by (2J), and aJ +
n∑

j=J+1
aJ,j =

J−1∑
i=1

ai,J by (3J),

which implies that aJ =0.

∀J ∈ [2..n−1], aJ =0

The equation (11,n) is then equivalent to a1+an =α . Moreover, using (F) the equation (11,J) can be
simplified in a1+ α

2 =α. We deduce that an= α

2 and finally we obtain:

a1 =an= α

2

We continue using equations (1K,L) for different values of K and L, which will allow to prove that
a/E = α

2 IP ∈R
E, i.e. ∀i∈ [1..n[, ai,i+1 = α

2 and ae=0 for e∈E\P.

For any k∈ [1..n], by analogy with inner and outer degrees in oriented graph, we introduce the following
notations.

a−(k) =
k−1∑
i=1

ai,k and a+(k) =
n∑

j=k+1
ak,j

125

− Using this notation, the equation (1K,L) for (K,L)=(J, J) is equivalent to aJ + a−(J) + a+(J)=α.
For J=1, aJ = α

2 and a−(J)=0, we deduce that a+(1)= α
2 . Similarly, we also have a−(n)= α

2 .
For any J ∈ [2..n−1], aJ =0, thus the equation (1K,L) for (K,L)=(J, J) can the written as follows;

a−(J) + a+(J) = α (1J,J)

− With (K,L)=(1, 2) the equation (1K,L) can be written as follows.

(a1+a2) +
(
a+(1)−a1,2

)
+ a+(2) = α that is

(
α

2 +0
)

+ +
(α

2 −a1,2
)

+ a+(2) = α

We deduce that a+(2)=a1,2. Besides, by definition, a−(2)=a1,2, then the equation (1J,J) for J=2 gives
a1,2+a1,2 =α. We finally obtain:

a1,2 = α

2
and similarly:

an−1,n= α

2

− Let J ∈ [2..n−2]. The equation (1K,L) for (K,L)=(1, J+1) gives:

(a1+0) +
J+1∑
i=1

n∑
j=J+2

ai,j = α (11,J+1)

while for (K,L)=(J, n) this equation gives:

(0+an) +
J−1∑
i=1

n∑
j=J

ai,j = α (1J,n)

Using that a1 =an, we deduce that the the two double sums are equal, and reformulate this equality as
follows.
J+1∑
i=1

n∑
j=J+2

ai,j =
J−1∑
i=1

n∑
j=J

ai,j ⇔
��

��
�
��J−1∑

i=1

n∑
j=J+2

ai,j +
n∑

j=J+2
(aJ,j+aJ+1,j) =

��
��

�
��J−1∑

i=1

n∑
j=J+2

ai,j +
J−1∑
i=1

(ai,J+ai,J+1)

⇔

 n∑
j=J+2

aJ,j+
n∑

j=J+2
aJ+1,j

 + aJ,J+1 =
(
J−1∑
i=1

ai,J+
J−1∑
i=1

ai,J+1

)
+ aJ,J+1

⇔
n∑

j=J+1
aJ,j+

n∑
j=J+2

aJ+1,j =
J−1∑
i=1

ai,J+
J∑
i=1

ai,J+1

⇔ a+(J) + a+(J+1) = a−(J) + a−(J+1)

By adding a−(J)+a+(J+1) on the both sides of the latter equality, we obtain:(
a+(J) + a−(J)

)︸ ︷︷ ︸
α

+ 2a+(J+1) = 2a−(J) +
(
a−(J+1) + a+(J+1)

)︸ ︷︷ ︸
α

and then a+(J+1) = a−(J) (4+−
J)

while by adding a+(J)+a−(J+1), we obtain:

2a+(J)+
(
a+(J+1) + a−(J+1)

)︸ ︷︷ ︸
α

=
(
a−(J) + a+(J)

)︸ ︷︷ ︸
α

+2a−(J+1)+ and then a−(J+1) = a+(J) (4−+
J)

126

Starting from a+(2) = a−(2) = a1,2 = α

2 and using alternatively equations (4+−
J) and (4−+

J) for each
J ∈ [2..n−1], we obtain:

α

2 = a+(2) = a−(3) = ... =
{
a−(n−1) if n is even
a+(n−1) otherwise

and

α

2 = a−(2) = a+(3) = ... =
{
a+(n−1) if n is even
a−(n−1) otherwise

To sum up, we have:

∀J ∈ [2..n−1], a+(J)=a−(J)= α

2 (♣)

− For any J ∈ [2..n−2], the equation (1K,L) for (K,L)=(J, J+1) is:

(aJ+aJ+1) + a−(J) +
(
a+(J)−aJ,J+1

)
+
(
a−(J+1)−aJ,J+1

)
+ a+(J+1) = α

and using (♣), this is equivalent to 0 + 2α− 2 aJ,J+1 =α. We deduce that:

∀J ∈ [2..n−2], aJ,J+1 = α

2 (♠)

Up to now, we have shown that a1 =an = α

2 , ∀J ∈ [2..n−1], aJ =0 and ∀J ∈ [1..n−1], aJ,J+1 = α
2 .

In the rest of the proof, we will show by induction that all the other components of a are zero.

For l∈ [2..n−1] let us consider the following property.

Hl : ∀J ∈ [1..n−l], aJ,J+l=0

Let us now show that Hl is true by induction on l∈ [2..n−1].

• Rewriting (1J,J+l)
For any l∈ [2..n−1] and J ∈ [1..n−l], the equation (1K,L) for (K,L)=(J, J + l) can be written as follows:

α

2 IJ=1 or J+l=n+

a−(J) +
n∑

j=J+l+1
aJ,j

+
k=J+l−1∑
k=J+1

 J−1∑
i=1

ai,k +
n∑

j=J+l+1
ak,j

+

 J−1∑
i=1

ai,J+l + a+(J+l)

 = α

(1J,J+l)

where IJ=1 or J+l=n is 1 if j=1 or J+l=n and 0 otherwise. Using (♣), we simplify the three non-boxed
terms as follows.

α

2 IJ=1 or J+l=n + a−(J) + a+(J+l)=


α
2 +0+ α

2 if J=1
α
2 + α

2 +0 if J+l=n

0+ α
2 + α

2 otherwise

 = α

We deduce that the sum of boxed terms is 0. Let us rewrite each of these boxed terms using only
coefficients ai,j with (i, j) ∈ [J..J+ l]< and making explicitly appear the coefficient aJ,J+l. Using the
notation a+, the first boxed term can be expressed as follows.

n∑
j=J+l+1

aJ,j =
n∑

j=J+1
aJ,j −

J+l∑
j=J+1

aJ,j = a+(J)− aJ,J+1︸ ︷︷ ︸
= 0 by (♣) and (♠)

−
J+l−1∑
j=J+2

aJ,j − aJ,J+l

127

Similarly, for any k∈ [J+1 .. J+l−1] the corresponding second boxed term can be expressed as follows.

n∑
j=J+l+1

ak,j =
n∑

j=k+1
ak,j −

J+l∑
j=k+1

ak,j = a+(k)− ak,k+1︸ ︷︷ ︸
= 0 by (♣) and (♠)

−
J+l∑

j=k+2
ak,j

Using the notation a−, the last boxed term can be expressed as follows.

J−1∑
i=1

ai,J+l =
J+l−1∑
i=1

ai,J+l −
J+l−1∑
i=J

ai,J+l = a−(J+l)− aJ+l−1,J+l︸ ︷︷ ︸
= 0 by (♣) and (♠)

−
J+l−2∑
i=J+1

ai,J+l − aJ,J+l

Similarly, for any k∈ [J+1 .. J+l−1] the corresponding third boxed term can be expressed as follows.

J−1∑
i=1

ai,k =
k−1∑
i=1

ai,k −
k−1∑
i=J

ai,k = a−(k)− ak−1,k︸ ︷︷ ︸
= 0 par (♣) et (♠)

−
k−2∑
i=J

ai,k

Finally, we can write that the sum of the opposite of the boxed terms is 0 as follows.

J+l−1∑
j=J+2

aJ,j + aJ,J+l +
k=J+l−1∑
k=J+1

 J+l∑
j=k+2

ak,j +
k−2∑
i=J

ai,k

+
J+l−2∑
i=J+1

ai,J+l + aJ,J+l = 0 (1′J,J+l)

◦ Initialization, for l=2.
For l = 2 and for any J ∈ [1 .. n−2], the sums in the latter equation are empty sums, we then obtain:

0 + aJ,J+2 + (0+0) + 0 + aJ,J+2 = 0 (1′J,J+2)

We deduce that ∀J ∈ [1..n−2], aJ,J+2 =0. In other words, Property H2 stands.

◦ Induction
Let l∈ [2 .. n−2]. Let us assume that Property H stands up to the rank l. We will show that Property
Hl+1 stands. Let J ∈ [1 .. n−(l+1)]. In its rewritten version, the equation (1K,L) for (K,L) = (J, J+l)
gives:

J+l∑
j=J+2

aJ,j + aJ,J+l+1 +
k=J+l∑
k=J+1

 J+l+1∑
j=k+2

ak,j +
k−2∑
i=J

ai,k

+
J+l−1∑
i=J+1

ai,J+l+1 − aJ,J+l+1 = 0 (1′J,J+l+1)

By induction hypothesis, the coefficients ai,j for j−i6 l are zero. Moreover,

- for any j∈ [J+2 .. J+l], we have j−J6 J+l−J = l, thus aJ,j =0.
- for any k∈ [J+1 .. J+l] and j∈ [k+2 .. J+l+1], we have j−k6 J+l+1− (j+1) = l, thus ak,j =0.
- for any k∈ [J+1 .. J+l] and i∈ [J .. k−2], we have k−i6 J+l−J = l, thus ai,k=0.
- for any i∈ [J+1 .. J+l−1], we have J + l + 1−i6 J+l + 1− (J+1) = l, thus ai,J+l+1 =0.

We deduce that all the sums in the latter expression are zero, and therefore, that aJ,J+l+1 = 0. This is
true for any J ∈ [1 .. n−(l+1)], Then Property Hl+1 stands.

• Conclusion
Finally, a= α

2

(
I1+In +

n−1∑
i=1
I(i,i+1)

)
. Since F a defines a facets, a 6=0, and thus α 6=0. Since dividing all

the components of a by α does not change F a, we can assume that α=2 without loss of generality. We

then obtain a=I1+In +
n−1∑
i=1
I(i,i+1), thus F a=F and F defines a facet. �

128

4.4 Hamiltonian cycle inequalities
In this section, we assume that n>4. For any Hamiltonian cycle C of Kn, we introduce the following
inequality for u and v two nodes not consecutive on C.

δu+δv −Xu,v +X(C) > 2 (H’ C,u,v)

Property 4.3

For any Hamiltonian cycle C of Kn the inequality (H’ C,u,v) defines a facet of P̃ n
δ,X .

Proof : Let C be a Hamiltonian cycle of Kn and (u, v) a pair of nodes not consecutive on C. Since nodes of
V can be interchanged without changing Kn, we assume without loss of generality that u= 1 and that
edges of C are the edge {i, i+1} for i∈ [1..n[and n, 1. We then have v∈ [3..n− 1].
Let us denote by W the set of vertices different from u and v, and split it according to their position in
C relatively to u and v:

W =V \{u, v}, W1 = [2..v−1] and W2 = [v+1..n]

Considering the orientation on C given by the natural order on [1..n], W1 (resp.W2) is the set of nodes
placed between u and v (resp. between v and u) on C.

W 1

W 2

•

•

•

•

•

•
•

•

•

•

1=u

2

v

n

• vertex of V

• C-endpoint

other edge of E

C-edge

edge {u, v}

set of vertices W1

set of vertices W2

Figure 4.5: Illustration of terms (δ,X) involved in (H’ C,u,v)

In the sequel, all indices are given modulo n. For example, δn+1 = δ1 = δu. That will also be the case
for index intervals. Thus, we denote by [L..K] the set {L+i mod n | i∈N such that L+i6K mod n}.
If (K,L)∈V 6, this is a standard notation, in particular if K=L, we have [K..L] = {K}. If conversely
K>L, we have [L..K]=[L..n] t [1..K].

Moreover, for any k ∈ [1..n], by analogy with inner and outer degrees in oriented graph, we introduce
the following notations.

a−(k) =
k−1∑
i=1

ai,k and a+(k) =
n∑

j=k+1
ak,j

129

• Validity
Let (δ,X)∈ S̃nδ,X .

- If (δu, δv)=(1, 1), then Xu,v=0 and δu+δv−Xu,v=2. Moreover, all X components are non-negative,
therefore, δu+δv−Xu,v +X(C)>2, that is (δ,X) satisfies (H’ C,u,v).

- If (δu, δv) = (0, 1), then Xu,v = 1 and δu+δv−Xu,v = 0. Moreover, there exists at least one node
k∈W1 such that δk=0 and δk+1 =1, and another node l∈W2 such that δl=1 and δl+1 =0. Since
(δ,X)∈ S̃nδ,X , we then have Xk,k+1 =1 and Xl,l+1 =1. As X components are non-negative we also
have X(C)>Xk,k+1 +Xl,l+1. We deduce that (δ,X) satisfies (H’ C,u,v).

- If (δu, δv)=(1, 0), following the same line we show that (δ,X) satisfies (H’ C,u,v).

- If (δu, δv) = (0, 0), then Xu,v = 0. Moreover, there exists (at least) one index w ∈ [2..n−1] such
that δw = 1 since δ 6= 0. Following the same reasoning for (u,w) as previously for (u, v), we have
X(C)>2. We deduce that (δ,X) satisfies (H’ C,u,v).

We deduce that all the points of S̃nδ,X satisfy inequality (H’ C,u,v). Since P̃nδ,X = conv(S̃nδ,X) , we deduce
that any point in P̃nδ,X satisfies also this inequality. In other words, (H’ C,u,v) is valid for P̃nδ,X .

• Introducing the including facet
Let us consider a ∈RV ×RE and α ∈R such that F a =

{
(δ,X) ∈ P̃nδ,X | a ·(δ,X) = α

}
is a facet of P̃nδ,X

containing the face F associated with (H’ C,u,v) , that is the face defined as follows.

F =
{

(δ,X)∈ P̃nδ,X
∣∣∣ δu+δv−Xu,v+X(C)=2

}
• Integer points satisfying inequality (H’ C,u,v) to equality
For any (K,L)∈V 2, let us denote by pK,L the point of S defined by δ=I[K..L]. Since the index interval
is given modulo n, note that the point corresponding to δ=IV can be written pK,L for (K,L)=(1, n) or
(K,L)=(2, 1), or (K,L)=(3, 2) and so on. However, in the following, we use preferentially (K,L)=(1, n)
to denotes this point.
The point pK,L satisfies (H’ C,u,v) to equality if and only if u 6∈ [K..L] or v 6∈ [K..L] or [K..L]=[1..n].
Indeed, if u∈ [K..L] and v∈ [K..L], then we have δu+δv −Xu,v = 2 − 1. If we assume in addition that
[K..L] 6=V , then K−1 6=L and we have X(C) = XK−1,K +XL,L+1 = 2, thus δu+δv−Xu,v+X(C) = 3>2.

The set of points of S̃nδ,X satisfying (HP,1,n) to equality is thus exactly the following set.{
pK,L

∣∣∣ (L,K)∈V 2 \
(
W1

<tW2
<)}

These points can be split into the five following types, depending on the value of parameters K and L
regarding to u and v.

- pK,L for (K,L)=(1, n)
- pK,L for (K,L)∈W1

6

- pK,L for (K,L)∈W2
6

- pK,L for (K,L)∈(W2∪{u})× ({u}∪W1)
- pK,L for (K,L)∈(W1∪{v})× ({v}∪W2)

Using colors, Figure 4.6 gives an illustration of these five type of points.

130

K=1=u

2

v

L=n

vertex where δ is 0
vertex where δ is 1
u or v when δ is 1
edge {u, v} when Xu,v=0
C-edge where X is 0
other edge where X is 1
C-edge where X is 1
edge {u, v} when Xu,v=1

1=u

2

K

L

v

n

1=u

2

v
K

L=n

1=u

2

K

v
L

n

1=u

2

K

L

v

n

Figure 4.6: Illustration of the non-zero components of pK,L,
for the five different types of (K,L) regarding to u and v

For any (L,K) ∈ V 2 \
(
W1

<tW2
<
)
, pK,L∈ F a since pK,L∈ F , and we have a.pK,L = α, which can be

written as follows.

a
(
[K...L]

)
+ a

(
[K..L] :

(
V \[K..L]

))
= α (1K,L)

We now start to use equations (1K,L) for different values of K and L, which will allow to first prove that
a/V = α

2 (Iu+Iv).

131

− The equation (1K,L) for (K,L)=(1, n) gives:

a(W)+au+av = α (11,n)

− The equation (1K,L) for (K,L)=(1, 1)=(u, u) gives:

au + au,v + a
(
{u} :W

)
= α (11,1)

while for (K,L)=(2, n) it gives:

a(W) + av + au,v + a
(
{u} :W

)
= α (12,n)

These both equations imply that a(W)+av=au. Following the same line with v instead of u, we obtain
a(W)+au=av. Then we have a(W)=au−av=av−au. We deduce that a(W)=0 and au=av. Using the
equation (11,n), which is equivalent to au+av=α, we finally have:

au=av= α

2

− For any J ∈W1, the equation (1K,L) for (K,L)=(1, J) gives:

a
(
[1..J]

)
+ a

(
[1..J] : [J+1..n]

)
= α (11,J)

while for (K,L)=(J+1, n) it gives:

a
(
[J+1..n]

)
+ a

(
[1..J] : [J+1..n]

)
= α (1J+1,n)

These both equations imply that a
(
[1..J]

)
= a

(
[J+1..n]

)
. Besides, we have u∈ [1..J] and v ∈ [J+1..n],

since J ∈W1. Then we can substract au = av on both sides, which is equivalent to only consider W
nodes, to obtain the following equation.

a
(
[1..J]∩W

)
=a
(
[J+1..n]∩W

)
(FJ)

Thanks to this latter equation, we will show that aJ =0 by induction on J ∈W1 = [2..v−1].

◦ Initialization
For J=2, the equation (FJ) gives a2 = a

(
[3..n]∩W

)
, that is a2 = a(W)−a2. Using that a(W)=0, we

obtain a2 =0.
◦ Induction
Let J ∈ [2..v−2]. Let us assume that ∀j∈ [2..J], aj =0.

On one hand, we then have:
a
(
[1..J+1]∩W

)
= a

(
[2..J]

)︸ ︷︷ ︸
=0

+aJ+1

and on the other hand we also have:

a
(
[J+2..n]∩W

)
= a

(
W \[2..J+1]

)
= a(W)︸ ︷︷ ︸

=0

− a
(
[2..J+1]

)︸ ︷︷ ︸
=0

−aJ+1

The equation (FJ+1) is then equivalent to aJ+1 =−aJ+1, that is aJ+1 =0.
By induction, we have aJ =0 for any J ∈W1.
For any J ∈W2, we can similarly establish that:

a
(
[v..J]∩W

)
=a
(
[J+1..v−1]∩W

)
and deduce by induction that aJ =0 for any J ∈W2. Finally, we have:

∀J ∈W, aJ =0

132

We continue using equations (1K,L) for different values of K and L, which will allow to prove that
a/E = α

2 (IC − Iu,v) i.e. ∀i∈ [1..n[, ai,i+1 = α
2 , au,v = −α

2 and other ae=0 for e∈E\C s.t. e 6={u, v}.

− For any J ∈V . the equation (1K,L) for (K,L)=(J, J+1) gives:

aJ+aJ+1 +
(
a−(J) + a+(J)−aJ,J+1

)
+
(
a−(J+1)−aJ,J+1 + a+(J+ 1)

)
= α (1J,J+1)

while for (K,L)=(J, J) it gives:

aJ +
(
a+(J) + a−(J)

)
= α (1J,J)

and for (K,L)=(J+1, J+1) it gives:

aJ+1 +
(
a+(J+1) + a−(J+1)

)
= α (1J+1,J+1)

Substracting (1J,J) and (1J+1,J+1) to (1J,J+1), we obtain −2aJ,J+1 = −α. We deduce that:

∀J ∈V, aJ,J+1 = α

2

− For any J ∈W1 = [2..v−1], the equations (1K,L) for (K,L)=(1, J) and (K,L)=(2, J) give:

au+a
(
[2..J]

)
+ a

(
[1..J] : [J+1..n]

)
= α (11,J)

a
(
[2..J]

)
+ a

(
[2..J] : [J+1..1]

)
= α (12,J)

Since ∀w∈W, aw=0, the equality of the both left members gives can be written as follows.(
au+0

)
+ a ({1} : [J+1..n]) +(((((

((((a ([2..J] : [J+1..n]) = 0 +
(((

((((
((

a ([2..J] : [J+1..n]) + a ([2..J] :{1})

By adding a ({1} : [2..J]) on the both sides, we obtain:

au + a ({1} : [J+1..n]) + a ({1} : [2..J])︸ ︷︷ ︸
= a+(1)

= 2 a ({1} : [2..J])

Since the equation (1K,L) for (K,L)=(1, 1)=(u, u) gives au + a+(1) = α, we deduce that:

∀J ∈ [2..v−1], a ({1} : [2..J])= α

2
Since a1,2 = α

2 , that allow to show by a direct induction on J that:

∀J ∈ [3..v−1], au,J = 0

Symmetrically, for any J ∈W2, using the equations (1K,L) for (K,L) = (J, n) and (K,L) = (J, 1) we
obtain:

∀J ∈ [v+1..n− 1], au,J = 0

Finally we have:
∀J ∈W \{u−1, u+1}, au,J = 0

Following the same line with v instead of u, we can show that:

∀J ∈W \{v−1, v+1}, av,J = 0

133

− The equation (1K,L) for (K,L)=(2, n), which is :

a ([1..v − 1])+av+a ([v + 1..n]) + a ({u} : [2..v − 1])+au,v+a ({u} : [v + 1..n]) = α (12,n)

can be written as follows using the previous result:

0+av+0 + a1,2+au,v+an,1 = α (12,n)

Since we already have av=an,1 =a1,2 = α

2 , we deduce:

au,v = −α2

− For any J ∈ [1..v−2], the equations (1K,L) for (K,L)=(1, J) and (K,L)=(1, J+1) give:

a
(
[1..J]

)
+ a

(
[1..J] :{J+1}

)
+ a

(
[1..J] : [J+2..n]

)
= α (11,J)

a
(
[1..J]

)
+aJ+1 + a

(
[1..J] : [J+2..n]

)
+ a

(
{J+1} : [J+2..n]

)
= α (11,J+1)

Since J+1∈W1, aJ+1 =0, we deduce from these equations that:

a
(
[1..J] :{J+1}

)
= a

(
{J+1} : [J+2..n]

)
that is a−(J+1)=a+(J+1)

Moreover, we already have aJ+1+a+(J+1)+a−(J+1) = α (1J+1,J+1) and aJ+1 =0, since J+1∈W1⊆W .
We deduce that a−(J+1) = a+(J+1) = α

2 , and that for any J+1∈ [2..v]=W1.
Following the same line for J + 1 ∈ [v+ 1..n − 1] and using the equations (1K,L) for (K,L) = (v, J)
(K,L)=(v, J+1), we can show that a−(J+1) = a+(J+1) = α

2 , and that for any J+1∈ [v + 1..n]=W2.
Thus, we finally have:

∀J ∈W, a−(J) = a+(J) = α

2 (♣)

− Thanks to this latter equation, we will show that ∀(I, J)∈W1
2, J >I+1, aI,J = 0, that is that the a

component associated with an edge between two nodes in W1 is zero, excepted if this edge belongs to C.
More precisely, assuming that v > 5 otherwise there is nothing to show, we will show by induction on
l∈ [2..v−2] the following property:

Hl : ∀I∈W1, ∀J ∈ [I+2..I+l]∩W1, aI,J =0

◦ Initialization
Let start with l=2. Let I∈W1 such that I+l∈W1, i.e. I∈ [2..v − 3]. We show that aI,I+2 =0.
The equation (1K,L) for (K,L)=(I, I+2) gives:

a
(
[I..I+2]

)
+ a

([
I..I+2

]
:
[
I+3..I−1

])
= α (1I,I+2)

Since
[
I..I+2

]
⊆W1, the first term is zero. The second one, which is then equal to α can be decomposed

as follows.

a
([
I..I+2

]
:
[
I+3..I−1

])
=
(
a−(I) + a+(I)− aI,I+1 − aI,I+2

)
+
(
a−(I+1)− aI,I+1 + a+(I+1)− aI,I+2

)
+
(
a−(I+2)− aI,I+2 − aI+1,I+2 + a+(I+2)

)
Using (♣) and that aJ,J+1 = α

2 for any J ∈ V , we obtain:
(
α
2 − aI,I+2

)
+
(
0
)

+
(
α
2 − aI,I+2

)
= α, and

deduce that aI,I+2 =0. Since this is true for any I∈ [2..v−3], the property H2 stands.

134

◦ Induction
Let l∈ [2..v−3]. Let us assume that the property H stands up to the rank l. Let I ∈ [2..v−l−2], thus
we have I+l+1∈W1. The equation (1K,L) for (K,L)=(I, I+l+1) gives:

a
(
[I..I+l+1]

)
+ a

([
I..I+l+1

]
:
[
I+l+2..I−1

])
= α (1I,I+l+1)

Since [I..I+l
]
⊆W1, the first term is zero. The second one, which is then equal to α can be written A+B

where:

A = a
([
I..I+l+1

]
:
[
I+l+2..n

])
=
I+l+1∑
k=I

a
(
{k} :

[
I+l+2..n

])

=
(
I+l−1∑
k=I

a+(k)− ak,k+1 − a
(
{k} :

[
k+2..I+l+1

]))
+
(
a+(I+l

)
− aI+l,I+l+1

)
+ a+(I+l+1

)

=


I+l−1∑
k=I

α

2 −
α

2 −a
(
{k} :

[
k+2..I+l+1

])
︸ ︷︷ ︸

= 0 except for k=I

+
(α

2 −
α

2
)

+ α

2 by H?

=− aI,I+l+1 + α

2

B = a
([
I..I+l+1

]
:
[
1..I−1

])
.

=
I+l+1∑
k=I

a
(
{k} :

[
1..I−1

])
= a−

(
I
)

+
(
a−
(
I+1

)
− aI,I+1

)
+

I+l+1∑
k=I+2

a−(k)− ak−1,k − a
(
{k} :

[
I..k−2

])
= α

2 +
(α

2 −
α

2
)

+


I+l+1∑
k=I+2

α

2 −
α

2 − a
(
{k} :

[
I..k−2

])
︸ ︷︷ ︸

= 0 except for k=I+l+1

 by H?

= α

2 − aI,I+l+1

The equation (1I,I+l+1) is then equivalent to
(
−aI,I+l+1 + α

2
)

+
(
α
2 − aI,I+l+1

)
= α and thus aI,I+l+1 =0.

Since this is true for any I∈ [2..v−l−2] the property Hl+1 stands.

Finally, we have shown by induction that:

∀(I, J)∈W1
<\ C, aI,J =0

Symmetrically, we can show that:

∀(I, J)∈W2
<\ C, aI,J =0

These two results can be summed up by aI,J = 0 if I and J are nodes of W not consecutive on C,
assuming that they are both in W1 or both in W2. The rest of the proof is dedicated to show that au,v=0
also for a pair of nodes in W1×W2.

135

− Let I∈W1 and J ∈W2. The equations (1K,L) for (K,L)=(I, J) and (K,L)=(I+1, J) can be written
as follows.

aI+a
(
[I+1..J]

)
+ a

(
{I} : [J+1..I−1]

)
+ a

(
[I + 1..J] : [J+1..I−1]

)
= α (1I,J)

a
(
[I+1..J]

)
+ a

(
[I+1..J] : [J+1..I−1]

)
+ a

(
[I+1..J] :{I}

)
= α (1I+1,J)

Since I∈W1⊆W1, we have aI =0. We then deduce from these both equation that:

a
(
{I} : [J+1..I−1]

)
= a

(
[I+1..J] :{I}

)
Moreover, splitting the index interval between J and J+1 the equation (1I,I) can be written as follows.

0 + a
(
{I} : [I+1..J]

)
+ a

(
{I} : [J+1..I−1]

)
= α (1I,I)

We deduce in particular that a
(
{I} : [I+1..J]

)
= α

2 . Since we already have:

- aI,k=0 for k∈ [I+2..v − 1]⊆W 1,
- aI,v=0 except if v=I+1,

- aI,I+1 = α

2 ,

we first deduce that a
(
{I} : [I+1..J]

)
= aI,I+1 + a

(
{I} : [v+1..J]

)
, and then that a

(
{I} : [v+1..J]

)
= 0.

Using this latter equation iteratively for J going from v + 1 to n, we deduce that ∀w∈W2, aI,w=0.
Since this is true for any I∈W1, we deduce that:

∀(I, J)∈W1×W2, aI,J =0

• Conclusion
Finally, a= α

2

(
Iu+Iv−Iu,v +

n∑
i=1
I(i,i+1)

)
. Since F a defines a facets, a 6=0, and thus α 6=0. Since dividing

all the components of a by α does not change F a, we can assume that α=2 without loss of generality.
We then obtain a=Iu+Iv−Iu,v +

n∑
i=1
I(i,i+1). thus F a=F and F defines a facet. �

136

4.5 Without name inequalities
In this section, we assume that n>4. For any node (u, v)∈V <, we introduce the following inequality.

δu+δv − (n−3)Xu,v +X
(
{u, v} :V \{u, v}

)
> 2 (?u,v)

Property 4.4

For any node (u, v)∈V <, the inequality (?u,v) defines a facet of P̃ n
δ,X

Proof : Let (u, v)∈V <. Let us denote by W the set of the other nodes, i.e. W =V \{u, v}. Inequality (?u,v)
can then be written as follows:

δu+δv − (n−3)Xu,v +X
(
{u} :W

)
+X

(
{v} :W

)
> 2 (?u,v)

• •

•

•

•

•

•

u v

• vertex of V
• vertex u and v

set of other vertices W
edge {u, v}
edge of ({u, v} :W)
other edge of E

Figure 4.7: Illustration of the terms (δ,X) involved in (?u,v)

• Validity
Let (δ,X)∈ S̃nδ,X .

- If (δu, δv)=(1, 1) then Xu,v=0 and δu+δv − (n−3)Xu,v=2. Moreover, all X components are non-
negative, therefore δu+δv− (n−3)Xu,v +X({u, v} :W) > 2, that is (δ,X) satisfies inequality (?u,v).

- If (δu, δv)=(1, 0) then Xu,v=1, and δu+δv − (n−3)Xu,v = 1−(n−3) = 4−n.
Moreover, for any i∈W we have Xi,u = 1−Xi,v, thus X

(
{v} :W

)
+X

(
{v} :W

)
= |W |=n−2. We

deduce that (δ,X) satisfies inequality (?u,v) and even that it satisfies it to equality.

- If (δu, δv)=(0, 1), we show similarly that (δ,X) satisfies inequality (?u,v) to equality.

- If (δu, δv) = (0, 0), then Xu,v = 0, and δu+δv − (n−3)Xu,v = 0. Moreover, since δ 6= 0, there exists
at least one node i∈W such that δi = 1 , and thus such that Xi,u =Xi,v = 1. Therefore, we have
X
(
{u} :W

)
+X

(
{v} :W

)
> 2. We deduce that (δ,X) satisfies inequality (?u,v).

We deduce that all the points of S̃nδ,X satisfy inequality (?u,v). Since P̃ = conv(S̃nδ,X) , we deduce that
any point in P̃nδ,X satisfies also this inequality. In other words, (?u,v) is valid for P̃nδ,X .

• Introducing the including facet
Let us consider a ∈RV ×RE and α ∈R such that F a =

{
(δ,X) ∈ P̃nδ,X | a ·(δ,X) = α

}
is a facet of P̃nδ,X

containing the face F associated with (?u,v) , that is the face defined as follows.

F =
{

(δ,X)∈ P̃nδ,X
∣∣∣ δu+δv − (n−3)Xu,v +X

(
{u} :W

)
+X

(
{v} :W

)
=2
}

137

• Integer points satisfying inequality (?u,v) to equality
For any U⊆W , let us introduce pUu (resp. pUv) the point of S defined by δ=Iu+IU (resp. by δ=Iv+IU).
As previously observed, such a point satisfies (?u,v) to equality. Therefore, pUu ∈F ⊆F a, (resp. pUv ∈F a)
then we have a.pUu =α (resp. a.pUu =α), which can be written as follows.

au + a(U) + a({u} :W \U) + a({v} :U) + a(U :W \U) + au,v = α (1uU)

av + a(U) + a({u} :U) + a({v} :W \U) + a(U :W \U) + au,v = α (1vU)

For any J ∈W , let us introduce pJ the point of S defined by δ= IJ . Such a point also satisfies (?u,v) to
equality. Therefore, we have the following equation:

0 + aJ + au,J + av,J + a({J} :W \{J}) + 0 = α (2J)

Finally, the point of S defined by δ = IV also satisfies (?u,v) to equality, and we deduce the following
equation:

au + av + a(W) + 0 + 0 + 0 + 0 = α (3)

Reasoning on the different cases for (δu, δv) as done to prove the validity of (?u,v), we can prove that
the set of points of S satisfying (Staru) to equality is exactly

{
pUu , p

U
v

∣∣∣U⊆W}
t
{
pJ
∣∣∣ J ∈W}

t{(IV , 0)}.
Figure 4.8 gives an illustration of the non-zero component of these four kinds of points.

u v u v

u v

J

u v

vertex where δ is 0
vertex where δ is 1
vertex u or v when δ is 1
set of vertices U⊆W

edge of {u, v} :W where X is 0
other edge where X is 1
edge of {u, v} :W where X is 1
edge {u, v} when Xu,v is 1

Figure 4.8: Illustration of the non-zero components of the integer points satisfying (?u,v) to equality

138

We now start to use equations (1uU), (1vU), and (2J) for different values of U and J , which will allow
to prove that a/V = α

2 (Iu+Iv)

− The equation (1uU) for U=∅ gives:

au + 0 + a({u} :W) + 0 + 0 + au,v = α (1u∅)

while the equation (1uU) for U=∅ gives:

av + 0 + 0 + a({v} :W) + 0 + au,v = α (1v∅)

We deduce that:
au+a

(
{u} :W

)
=av+ a

(
{v} :W

)
The equation (1uU) for U=W gives:

au + a(W) + 0 + a({v} :W) + 0 + au,v = α (1uW)

while the equation (1uU) for U=X gives:

av + a(W) + a({u} :W) + 0 + 0 + au,v = α (1vW)

We deduce that:
av+a

(
{u} :W

)
=au+ a

(
{v} :W

)
Thanks to these both equations, we obtain that au=av and that a

(
{u} :W

)
=a
(
{v} :W

)
. Let us denote

by S this latter quantity.
− For any J ∈W , the equation (1uU) for U={J} can be written as follows:

au + aJ + a({u} :W \{J})︸ ︷︷ ︸
=S−au,J

+ av,J + a({J} :W \{J}) + au,v = α (1u{J})

while for U=W \{J} this equality can be written as follows:

au + a(W)−aJ + au,J + a({v} :W \{J})︸ ︷︷ ︸
=S−av,J

+ a({J} :W \{J}) + au,v = α (1uW\{J})

Identifying the commmon terms in these both equations, we obtain:

aJ + �S − au,J + av,J = a(W)−aJ + au,J + �S − av,J

which is equivalent to 2
(
aJ−au,J + av,J

)
=a(W).

Following the same line with v instead of u, we obtain 2
(
aJ−av,J + au,J

)
=a(W).

Summing these both equation we deduce that aJ = a(W)
2 , and substracting one to the other, we deduce

that aJ,v = au,J . Since this is true for any J ∈W , we have a(W) =
∑
J∈W

a(W)
2 = |W | a(W)

2 . Since
|W | = n−2 6=0, that implies that a(W)=0, and then we have:

∀J ∈W, aJ =0

Moreover, the equation (3) is then equivalent to au+av = 0. Since we already proved that au = av, we
deduce that:

au=av= α

2

139

We continue using equations (1uU), (1vU), and (2J) for different values of U and J , which will allow to
prove that a/E = α

2 (−(n−3)I{u,v} + I{u}:W +I{v}:W)

− For any J ∈W , thanks to the previous results the equation (2J) can be written as follows:

��aJ
= 0

+ au,J + av,J︸ ︷︷ ︸
= 2 au,J

+ a({J} :W \{J}) = α (2J)

while the equation (1u{J}) can be written as follows:

au +��aJ
= 0

+ S− au,J + av,J︸ ︷︷ ︸
= 0

+ a({J} :W \{J}) + au,v = α (1u{J})

We deduce from these both equations that 2 au,J = au + au,v + S. Since the equation (1uW) can also be
simplified as follows,

au +
��
�a(W)

= 0
+ S + au,v = α (1uW)

we obtain 2 au,J = α, and finally we deduce that:

∀J ∈W, av,J = au,J = α

2

Remembering that S = a({u} :W), we then have S = |W | α2 = (n−2) α2 Since we already have au = α
2 ,

using once again the equation (1uW) allow to deduce that:

au,v=−(n−3)α2

− For any (J,K)∈W<, using the previous results allows to simplify the equation (1uU) for U = {J,K}
as follows:

au︸︷︷︸
= α

2

+����aJ+aK
= 0

+ a({u} :W \{J,K}︸ ︷︷ ︸
= (n−4)α2

+ av,J + av,K︸ ︷︷ ︸
=α

+ a({J,K} :W \{J,K} + au,v︸︷︷︸
=−(n−3)α2

= α (1u{J,K})

We deduce that a({J,K} :W \{J,K}=0.

Moreover, equation (1uU) for U={J} can also be simplified as follows:

au︸︷︷︸
= α

2

+��aJ
= 0

+ a({u} :W \{J})︸ ︷︷ ︸
= (n−3)α2

+ av,J︸︷︷︸
= α

2

+ a({J} :W \{J}) + au,v︸︷︷︸
=−(n−3)α2

= α (1u{J})

We deduce that a({J} :W \{J}=0, and similarly that a({K} :W \{K}=0.

Thanks to the following decomposition, that implies that aJ,K =0.

a({J,K} :W \{J,K}) = a({J} :W \{J,K}) + a({K} :W \{J,K})
=
(
a({J} :W \{J})− aJ,K

)
+
(
a({K} :W \{K})− aJ,K

)
Finally we have:

∀(J,K)∈W<, aJ,K =0

• Conclusion
Finally, a = α

2
(
Iu+Iv − (n−3) Iu,v + I{u}:W + I{v}:W

)
. Since F a defines a facets, a 6= 0, and thus α 6= 0.

Since dividing all the components of a by α does not change F a, we can assume that α=2 without loss
of generality. We then obtain a = Iu+Iv − (n−3) Iu,v + I{u}:W + I{v}:W thus F a = F and F defines a
facet. �

140

4.6 Star inequality
In this section, we assume that n>4. For any node u∈V , we introduce the following inequality.

−(n−3) δu + δ
(
V \{u}

)
+X

(
{u} :V \{u}

)
> 2 (Staru)

Property 4.5

For any node u∈V , the inequality (Staru) defines a facet of P̃ n
δ,X

Proof : Let u∈V . Let us denote by W the set of the other nodes, i.e. W =V \{u}. Inequality (Staru) can
then be written as follows:

−(n−3) δu + δ
(
W
)

+X
(
{u} :W

)
> 2 (Staru)

•

•

•

•

•
•

•

•

• vertex of V
• vertex u
• vertex of W

edge of the star {u} :W
other edge of E

Figure 4.9: Illustration of the terms (δ,X) involved in (Staru)

• Validity
Let (δ,X)∈ S̃nδ,X .

- If δu=1, then for every i∈W we have X{i,u} = 1−δi, thus δ
(
W
)

+X
(
{u} :W

)
= |W | = n−1.

We deduce that (δ,X) satisfies (Staru), and even that is satisfies it to equality.

- If δu=0, then there exists at least i∈W such that δi=1 since δ 6=0. We then have X{i,u}=1, and
since components of δ and X are non-negative, we deduce that (δ,X) satisfies (Staru).

We deduce that all the points of S̃nδ,X satisfy inequality (Staru). Since P̃nδ,X = conv(S̃nδ,X) , we deduce
that any point in P̃nδ,X satisfies also this inequality. In other words, (Staru) is valid for P̃nδ,X .

• Introducing the including facet
Let us consider a ∈RV ×RE and α ∈R such that F a =

{
(δ,X) ∈ P̃nδ,X | a ·(δ,X) = α

}
is a facet of P̃nδ,X

containing the face F associated with (Staru), that is the face defined as follows.

F =
{
(δ,X)∈ P̃nδ,X | − (n−3)δu + δ

(
W
)

+X
(
{u} :W

)
=2
}

• Integer points satisfying inequality (Staru) to equality
For any U ⊆W , let us denote by pU the point of S defined by δ = Iu+IU . As previously said, such a
point satisfies (Staru) to equality, since δu=1. Therefore, pU∈F ⊆F a, then we have a.pU =α, which can
be written as follows.

au + a(U) + a
(
{u} :W \U

)
+ a

(
U :W \U

)
= α (1U)

141

Moreover, for any J ∈W , let us denote by pJ the point of S defined by δ = IJ . Such a point satisfies
also (Staru) to equality, since x has then exactly component equal to 1: Xu,J . Therefore, pU∈F ⊆F a,
then we have a.pU =α, which can be written as follows.

aJ + au,J + a
(
{J} :W \{J}

)
= α (2J)

Note that the set of points of S satisfying (Staru) to equality is exactly
{
pU
∣∣∣U⊆W}

t
{
pJ
∣∣∣ J ∈W}

.
Figure 4.10 gives an illustration of the non-zero components of these two kinds of points.

J

vertex where δ is 0
vertex where δ is 1
vertex u when δu is 1
vertex of W where δ is 1

edge of the star {u} :W where X is 0
other edge where X is 1
edge of the star {u} :W where X is 1
set of vertices U⊆W

Figure 4.10: Illustration of the non-zero component of pU (left) and pJ (right)

We now start to use equations (1U) and (2J) for different values of U and J , which will allow to first
prove that a/V = α

2 ((n−3)Iu+IW).

− The equation (1U) for U=W gives:

au + a (W) + 0 + 0 = α (1W)

The equation (1U) for U=∅ gives:

au + 0 + a ({u} :W) + 0 = α (1∅)

We deduce from these both equations that a (W) = a ({u} :W) Let us denote by S this quantity. We
then have au+S=α.

− For any J ∈W , the equation (1U) for U=W \{J} gives:

au +
(
S−aJ

)
+ au,J + a ({J} :W \{J}) = α (1W\{J})

By substracting (2J) to this expression we obtain au +
(
S−2 aJ

)
= 0, which is equivalent to α= 2 aJ

since α=au+S. We finally deduce that:

∀J ∈W, aJ = α

2

142

− The quantity S is then equal to a (W) = α

2 |W | = (n−1)α2 . Using that au = 2 α2 − S we deduce that:

au = −(n−3)α2

We continue using equations (1U) and (2J) for different values of U and J , which will allow to prove
that a/E = α

2 I{u}:W

− For any J ∈W , the equation (1U) for U={J} can be written as follows:

au + aJ + (S−au,J) + a ({J} :W \{J}) = α (1{J})

By substracting (2J) to this expression we obtain au +
(
S−2 au,J

)
= 0, which is equivalent to α=2 au,J

since α=au+S. We finally deduce that:

∀J ∈W, au,J = α

2

− For any J ∈W , the equation (2J) can then be simplified as follows:

α

2 + α

2 + a
(
{J} :W \{J}

)
= α (2J)

We deduce that: ∀J ∈W, a
(
{J} :W \{J}

)
=0.

− For any (J,K)∈W<, the equation (1U) for U=W \{J,K} can be written as follows:

au+(S−aJ−aK)+
(
au,J+a ({J} :W \{J})− aJ,K

)
+
(
au,K+a ({K} :W \{K})− aJ,K

)
= α (1W\{J,K})

Using the previous results, this equation can be simplified as follows:

au + (S︸ ︷︷ ︸
=α

− α

2 −
α

2) +
(α

2 + 0− aJ,K
)

+
(α

2 + 0− aJ,K
)

= α (1W\{J,K})

We deduce that
∀(J,K)∈W<, aJ,K =0

• Conclusion
Finally, a = α

2

(
−(n−3)Iu + IW + I{u}:W

)
. Since F a defines a facets, a 6= 0, and thus α 6= 0. Since

dividing all the components of a by α does not change F a, we can assume that α= 2 without loss of
generality. We then obtain a = −(n−3)Iu + IW + I{u}:W . thus F a=F and F defines a facet. �

143

4.7 Full inequalities

Let us assume for this section that n>5 For any (u, v)∈V <, let us introduce the following inequality:

(n−3)
(
δ
(
V\{u,v}

)
+X

(
{u, v} :V\{u,v}

))
−
(1

2n
2− 7

2n+6
) (

δu+δv+Xu,v

)
−X

(
V <
\{u,v}

)
> 2n−6 (Fullu,v)

Property 4.6

For any (u, v)∈V <, the inequality (Fullu,v) is valid for P̃ n
δ,X .

Moreover, this inequality defines a facet of P̃ n
δ,X if and only if n=5.

Proof : Let (u, v)∈V < and W =V \{u, v}. We then have |W |=n−2 , and hence, (|W |−1) |W |=n2−5n+6.
Let Q= (|W |−3)|W |

2 + 1=0.5n2−3.5n+6. We then have (|W |−1) |W |−2Q = 2n−6 and inequality (Fullu,v)
can be written as follows.(
|W |−1

)(
δ(W)+X

(
{u} :W

)
+X

(
{v} :W

))
−Q

(
δu+δv+Xu,v

)
−X

(
W<) > (|W |−1) |W |−2Q (Fullu,v)

• •

•

•

•

•

•

u v

• vertex of V
• vertex u or v
• vertex of W

set of vertices W
edge {u, v}
edge of ({u, v} :W)
other edge of w :W

Figure 4.11: Illustration of the terms (δ,X) involved in (Fullu,v)

• Validity
Let us prove that this inequality is valid for P̃nδ,X . Let (δ,X)∈ S̃nδ,X . Note that, by definition of S̃nδ,X ,
X
(
W<

)
is the number of edges in W< which links two nodes having a different δ value. Since the

considered graph is complete, X
(
W<

)
=δ(W) (1−δ)(W).

- If (δu, δv)=(1, 1) then Xu,v=0, thus we have
(
δu+δv +Xu,v

)
= 2.

Moreover, for any w∈W , Xu,w=Xv,w=1−δw, thus we have X
(
{u} :W

)
=X

(
{v} :W

)
=(1−δ)(W).

Since δ(W) + (1−δ)(W) = |W | inequality (Fullu,v) can be simplified as follows.

(Fullu,v)⇔
(
|W |−1

)(
|W |+(1−δ)(W)

)
−��2Q−X

(
W<) > (|W |−1) |W | −��2Q

⇔
(
|W |−1

)(
�
�|W |+(1−δ)(W)

)
−X

(
W<) >((((((((|W |−1) |W |

⇔ X
(
W<) 6 (|W |−1

)
(1−δ)(W)

⇔ δ(W) (1−δ)(W) 6
(
|W |−1

)
(1−δ)(W)

This latter inequality is true no matter what is δ/W , since a(N− a) 6 (N−1)(N−a) is true for any
N ∈N∗ and a∈ [1..N], and hence in particular for N = |W | and a= δ(W). We deduce that (δ,X)
satisfies (Fullu,v).

144

- If (δu, δv)=(1, 0) then Xu,v=1, thus we have
(
δu+δv +Xu,v

)
= 2.

Moreover, for any w∈W , Xu,w1−δw=while Xv,w=δw, thus we have X
(
{u} :W

)
=(1−δ)(W) and

X
(
{v} :W

)
=δ(W). Inequality (Fullu,v) can be simplified as follows.

(Fullu,v)⇔
(
|W |−1

)(
|W |+δ(W)

)
−��2Q−X

(
W<) > (|W |−1) |W | −��2Q

⇔
(
|W |−1

)(
�
�|W |+δ(W)

)
−X

(
W<) >((((((((|W |−1) |W |

⇔ X
(
W<) 6 (|W |−1

)
δ(W)

⇔ δ(W) (1−δ)(W) 6
(
|W |−1

)
δ(W)

By the same arguments as previously, (with a=(1− δ)(W) this time), this latter inequality is true
no matter what is δ/W . We deduce that (δ,X) satisfies (Fullu,v).

- If (δu, δv)=(0, 1), proving that (δ,X) satisfies (Fullu,v) follows the same line.

- If (δu, δv)=(0, 0), then Xu,v=0, thus we have
(
δu+δv +Xu,v

)
= 0.

Moreover, for any w ∈ W , Xu,w = Xv,w = δw, thus we have X
(
{u} :W

)
= X

(
{v} :W

)
= δ(W).

Remembering that |W |=n−2 and (|W |−1) |W |−2Q = 2n−6, inequality (Fullu,v) can be transformed
as follows.

(Fullu,v)⇔
(
|W |−1

)(
3 δ(W)

)
−X

(
W<)− 0Q > 2n−6

⇔ 3 δ(W)
(
|W |−1

)
−
(
δ(W) (1−δ)(W)

)
> 2|W | − 2

This latter inequality is true no matter what is δ/W , excepted 0.
Indeed, the function f = a 7→ 3(N−1)a− a(N−a) is strictly increasing for any N ∈N∗. and hence
in particular for N = |W |>3. We then have f(a)>f(1) = 2N−2 for any a∈ [1..N], and hence in
particular for a=δ(W) which is not zero since δ 6=0 and δ/W =(δu, δv)=0.
We deduce (δ,X) satisfies (Fullu,v).

These four items show that any point in S̃nδ,X satisfies (Fullu,v). Since P̃nδ,X = conv(S̃nδ,X) , we deduce
that any point in P̃nδ,X satisfies also this inequality. In other words, (Fullu,v) is valid for P̃nδ,X .

• Integer points satisfying (Fullu,v) to equality
One can check that the points (δ,X)∈ P̃nδ,X satisfying (Fullu,v) to equality are exactly the 3 (n−1)+(n−2) =
4n−5 points given by the following δ.

- δ=Iu + Iv+IW
- δ=Iu + Iv+IW\{w} for any w∈W
- δ=Iu + Iw for any w∈W
- δ=Iu
- δ=Iv + Iw for any w∈W
- δ=Iv
- δ=Iw for any w∈W

This is true for any n>5, but as soon as n>5, 4n−5<nn+1
2 . We deduce that inequality (Fullu,v) does

not define a facet for n>5. Indeed, the dimension of a face is the dimension of the space generated by its
extreme points, which are also extreme points for the polyhedron. The extreme points of the face defined
by (Fullu,v) are then the above listed points, and they are too few to generate a nn+1

2 -dimensional space.

145

From now on, let us fix n=5.

• Introducing the including facet
Let us consider a ∈RV ×RE and α ∈R such that F a =

{
(δ,X) ∈ P̃nδ,X | a ·(δ,X) = α

}
is a facet of P̃nδ,X

containing the face F associated with (Staru), that is the face defined as follows.

F =
{

(δ,X)∈ P̃nδ,X
∣∣∣ (|W |−1

)(
δ
(
W
)
+X

(
{u, v} :W

))
−Q

(
δu+δv+Xu,v

)
−X

(
W<)=(|W |−1) |W | − 2Q

}
− Let w∈W . By considering (δ,X)∈Sn such that δ=Iu+Iv+IW\w. we obtain:

au + av + a(W)−aw + au,w + av,w + a
(
{w} :W \{w}

)
=α (4.1)

while by considering (δ,X)∈Sn such that δ=Iu+Iv+IW , we obtain:

au + av + a(W)=α (4.2)

Doing the difference, we deduce that:

a
(
{w} :W \{w}

)
= aw−au,w−av,w (4.3)

By considering (δ,X)∈Sn such that δ=Iw we obtain:

aw + au,w + av,w + a
(
{w} :W \{w}

)
=α (4.4)

Remplacing a
(
{w} :W \{w}

)
according to (4.3), we deduce that aw= α

2 .

∀w∈W, aw= α

2

By summing up on W , we then have a(W)= |W | α2 = 3α
2 and (4.2) can be written as follows.

au+av = −α2 (4.5)

− Let w∈W . By considering the point (δ,X)∈Sn such that δ=Iu+Iw, we obtain:

au + aw + au,v + av,w + a
(
{u} :W

)
− au,w + a

(
{w} :W \{w}

)
=α (4.6)

while by considering the point (δ,X)∈Sn such that δ=Iu+Iv+IW , we obtain:

au + au,v + a
(
{u} :W

)
=α (4.7)

Doing the difference, we deduce that:

a
(
{w} :W \{w}

)
= −aw−av,w+au,w (4.8)

By gathering (4.3) and (4.8), we obtain au,w=aw= α
2 .

∀w∈W, au,w= α

2

By summing up on W , we then have a
(
{u} :W

)
= 3α

2 , and (4.7) can be written as follows.

au+au,v = −α2 (4.9)

146

− Following the same line with v instead of u, we obtain:

∀w∈W, av,w= α

2 and av+au,v = −α2

That implies in particular that au=av. We deduce from (4.5) that:

au = av = −α4

and from (4.9) that:

au,v = −α4

Morever, that allows also to simplify (4.3) for any w∈W :

a
(
{w} :W \{w}

)
= −α2

This equation ensures that the weight of two arbitrary edges among the three edges in W< is always
the same. That implies that the weight of the third edge is always the same. Therefore, the weight of
each edge is the half of the weight for two edges.

∀(w,w′)∈W<, aw,w′ = −α4

• Conclusion
Finally, a = α

2

(
IW − 1

2
(
Iu+Iv

)
+ I{u,v}:W − 1

2
(
IW<+Iu,v

))
. Since F a defines a facet, a 6=0, and thus α 6=0.

Since dividing all the components of a by α does not change F a, we assume that α= 4 without loss of
generality. We then obtain a = 2 IW −

(
Iu+Iv

)
+ 2 I{u,v}:W −

(
IW<+Iu,v

))
, thus F a=F and F defines a

facet. �

The large number of facets appearing in P̃ n
δ,X and also the variety of the facet defining inequalities

of P̃ n
δ,X dissuade to use them to reinforce F 2

l in practice. Indeed, to be efficient, such inequality families
should be managed by a separation algorithm, and probably a dedicated algorithm for each inequalities
family, since they do not seems to share a common structure.
Therefore, we investigate in the following part some inequalities able to cut off integer points having
a high value according to the objective function, without necessarily being facet defining. A priori,
such inequalities would maybe have a lower impact on the linear relaxation value, since they are not
tight, but would be more efficient in practice.

147

148

PART C

Dominance inequalities

In this part, we propose linear inequalities to reinforce MIP formulations. These inequalities depend
on the feasible solution set, but also on the objective function, since they cut off integer points encod-
ing locally non-optimal solutions. Therefore, they differ from the classical strengthening inequalities,
which cut off fractional points, and from symmetry breaking inequalities, which cut off integer points
which may be optimal. In contrast with Chapter 4, we do not focus on facet-defining inequalities in
this part.

We call dominance inequalities such inequalities, since they translate the dominance of locally
optimal solutions for any given neighborhood. While local search methods eliminate locally non-
optimal solutions when exploring the solution space, the dominance inequalities operate globally and
a priori. Actually, each inequality is associated with a well chosen operation on the solutions and
cuts off, at one stroke, all the solutions that can be improved by applying this operation.

Part C is divided into three chapters. In Chapter 5, we propose two families of dominance
inequalities for Formulation F 2. They are based on the so-called insert and swap operations, which
can be viewed as operations on the partitions or as operations on the schedules. In Chapter 6,
we explain how these inequalities (resp. these operations) can be used for solving exactly (resp.
heuristically) UCDDP. Experimental results are provided. In Chapter 7, we present ongoing works
on dominance inequalities for other combinatorial optimization problems.

149

150

Chapter 5

Dominance inequalities for UCDDP

In Section 5.1, we present a generic dominance property to be instantiated by a neighborhood func-
tion. We focus a neighborhood function based on operations, and present two kinds of operations
on the ordered bi-partitions: the insert and swap operations. In Section 5.2, we explain how to
obtain a linear inequality translating the dominance property associated with the insert operations.
In Section 5.3, we attempt to generalize this approach, and apply the proposed generic framework
to swap operations in Section 5.4. Finally, in Section 5.5, we provide some results about the insert
and swap inequalities.

5.1 Neighborhood based dominance properties

• Neighborhood based dominance properties
Let us recall some definitions used in local search context [3]. A neighborhood function N is

a function which associates to any solution S a subset of solutions N (S), called the neighborhood
of S. A solution of N (S) is a neighbor of S. Moreover, a solution S is locally optimal with
respect to minimizing function f obj if f obj(S)6f obj(S ′), for any neighbor S ′∈N (S), otherwise, S is
dominated (by S ′). If needed, we will say that S is N -locally optimal or N -dominated.

Given a neighborhood function, the set of locally optimal solutions always contains all optimal
solutions, and is therefore a strictly dominant set. This statement can be seen as a generic dominance
property. This kind of dominance property is commonly used in local search. Indeed, a step of a local
search procedure consists in enumerating some of the neighbors of a given solution S, computing
their values and then, if a better solution is found, moving to the best solution found at the current
iteration, which is equivalent to discard S as it is dominated.
Definition 5.1

Let I be a family of linear inequalities of Rdim. Let S ′⊆S be a dominant set.

We say that I translates the dominance of S ′ if
{
∀S∈S \S ′, ∃I∈I, s.t. S does not satisfy I
∀S∈S ′, ∀I∈I, S satisfies I

Such kind of inequalities will be called dominance inequalities.
If S ′ is the set of the N -local optima, we say that I translates the N -dominance property.

• Operation based neighborhood functions
We call operation any (possibly partial) function, which maps a solution to another solution. In
this work, we will consider neighborhood functions based on a set of operations. The neighborhood
of a solution S is then the set of the solutions obtained by applying to S any operation defined on S.

151

This kind of neighborhood functions allows to use the generic dominance property in a different way.
Instead of considering sequentially the neighborhood of each solution, we will consider sequentially
each operation. For each one, each solution is compared to its neighbor obtained using this operation.
This differentiates what we call the solution-centered and the operation-centered point of view (see
Section 5.3.1).

• Insert and swap operations
In the case of problems where the solutions are partitions, two operations are commonly considered
to define a neighborhood: the insertion, which consists in moving an element from a subset to the
other, and the swap which consists in swapping two elements of two different subsets. Figure 5.1
illustrates these operations for an ordered bi-partition (E, T).

E T

•
u

insertion from E to T
E T

•
v

insertion from T to E
E T

•
u

•
v

swap
Figure 5.1: Illustration of swap and insert operations on the ordered bi-partitions

In the context of common due date scheduling, the insert operation consists in removing a task
j∈J from the early (resp. tardy) side and inserting j on the tardy (resp. early) side, as early (resp.
as tardy) as possible according to its β-ratio (resp. α-ratio). The tasks scheduled before (resp. after)
j are right-shifted (resp. left-shifted) by pj time units. The swap operation consists in sequentially
inserting an early task on the tardy side and inserting another tardy task on the early side, or vice-
versa, as described above. Let us denote by insertu(S) (resp. swapu,v(S)) the schedule obtained from
a schedule S by the insert (resp. swap) operation on task u (resp. on tasks u, v).

Since the insert and swap operations are fundamentally defined on partitions (i.e. over equiva-
lence classes of V-shaped d-blocks), these operations preserve the equivalence. Therefore, we have
∀u ∈ J, S ∼ S ′ ⇒ insertu(S) ∼ insertu(S ′) and ∀(u, v) ∈ J2, S ∼ S ′ ⇒ swapu,v(S) ∼ swapu,v(S ′),
assuming that u and v are not on the same side in the schedules S and S ′.

Let us define local optima for the neighborhoods related to these operations in order to enunciate
the associated dominance property. Recall that f is the objective function introduced on page 41.
Definition 5.2

Let (E, T)∈ ~P2(J).
(i) (E, T) is an insert local optimum if


∀v∈T, f(E, T) 6 f

(
E∪{v}, T \{v}

)
,

∀u∈E, f(E, T) 6 f
(
E\{u}, T∪{u}

)
.

otherwise (E, T) is insert-dominated.

(ii) (E, T) is a swap local optimum if ∀u∈E, ∀v∈T, f(E, T)6f
(
E\{u}∪{v}, T \{v}∪{u}

)
,

otherwise (E, T) is swap-dominated.

Property 5.3
The set of insert locally optimal partitions, as well as the set of swap locally optimal partitions,
are strictly dominant when minimizing f over ~P2(J).

In the next section, we provide linear inequalities translating the insert local optimum dominance
property. The inequalities related to swap operations will be provided later (Cf. Section 5.4).

152

5.2 Linear inequalities for the insert dominance property

• Some notations and definitions to describe V-shaped d-blocks
In order to provide an expression of the penalty variation induced by such an operation, it is con-
venient to choose a specific V-shaped d-block as the representative of an equivalence class. More
precisely, the chosen representative will depend on the inserted task. Let us introduce some nota-
tions, related to a given task u∈J . To describe the early side of a V-shaped d-block with regard to
u, the set of remaining tasks J\{u} can be split according to their α-ratio into two subsets A(u) and
Ā(u) defined as follows.

A(u)=
{
i∈J

∣∣∣∣∣ αipi > αu
pu

}
and Ā(u)=

{
i∈J\{u}

∣∣∣∣∣ αipi 6 αupu
}

Similarly, we introduce the two following subsets to describe the tardy side.

B(u)=
{
i∈J

∣∣∣∣∣ βipi > βu
pu

}
and B̄(u)=

{
i∈J\{u}

∣∣∣∣∣ βipi 6 βupu
}

Note that if u is early in a V-shaped d-block, early tasks belonging to A(u), i.e. tasks of A(u)∩E,
are necessarily scheduled after u, because of their α-ratio. Conversely, an early task of Ā(u) is not
necessarily scheduled before u, when its α-ratio is the same as the one of u. However, we will con-
sider a representative where u is placed after all the early tasks of Ā(u), that is as tardy as possible
according to its α-ratio. Similarly, in case where u is tardy, we will consider a representative where
u is scheduled before all the tardy tasks of B̄(u). Such a representative will be called a u-canonical
V-shaped d-block. Figure 5.2 (resp. Figure 5.3) represents the structure of a u-canonical V-shaped
d-block in which u is early (resp. tardy).

Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d
|

u

Figure 5.2: Structure of a V-shaped d-block according to a task u∈E

Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d
|

u

Figure 5.3: Structure of a V-shaped d-block according to a task u∈T

• Penalty variation induced by an insert operation
Given u∈J , let (E, T) be a partition such that u∈E. We aim to express the variation of f induced
by the insertion of u into T, i.e. between (E, T) and (E\{u}, T ∪{u}). To this end, we consider a
u-canonical representative S of (E, T), and the V-shaped d-block S ′ obtained from S by inserting u
in T , as early as possible, that is just after tardy tasks of B(u). Note that S ′ is thus a u-canonical
representative of

(
E\{u}, T∪{u}

)
. Let (e, t) (resp. (e′, t′)) denote the earliness and tardiness vector

of tasks in S (resp. S ′).

As we can observe in Figure 5.4, early tasks of A(u) and tardy tasks of B(u) are identically
scheduled in S and S ′. The penalty variation induced by the insertion of u is then only induced by
the move of u and by the right-shifting of early tasks of Ā(u) and tardy tasks of B̄(u).

153

S

Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

u

S ′

Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

u

pu pu

Figure 5.4: Illustration of the insert operation of an early task u on the tardy side

Each task j∈ Ā(u)∩E of S is shifted pu time units later in S ′, while staying early. We then have
e′j =ej−pu and t′j = tj =0. The earliness penalty of each task j in S ′ is therefore αj e′j = αj ej−αj pu,
which represents a reduction of αj pu compared to its earliness penalty in S. Summing up over
Ā(u)∩E, we obtain a reduction of the earliness penalties of pu α

(
Ā(u)∩E

)
. Similarly, the right-

shifting of tasks in B̄(u)∩T induces an increase of the tardiness penalties of pu β
(
B̄(u)∩T

)
, since

for each j∈B̄(u)∩T we have βj t′j = βj (tj+pu).

Moreover, since eu = p
(
A(u)∩E

)
, removing u from the early side induces a reduction of the

earliness penalty of αu p
(
A(u)∩E

)
. Similarly, introducing u on the tardy side induces an increase of

the tardiness penalty of βu t′u = βu
(
p
(
B(u)∩T

)
+pu

)
.

Finally, the penalty variation between S and S ′, is given by the following expression.

∆u(E, T) = −αu p
(
A(u)∩E

)
+ βu

(
p
(
B(u)∩T

)
+pu

)
+ pu

(
β
(
B̄(u)∩T

)
− α

(
Ā(u)∩E

))
Since S and S ′ are representative of (E, T) and (E\{u}, T∪{u}) respectively, ∆u(E, T) is the vari-
ation of f induced by the insertion of u in T . Property 5.4.(i) follows.

The insert operation of the tardy task u on the early side applied on schedule S ′ provides sched-
ule S. Note that this statement requires that S is u-canonical. This observation allows to establish
that the penalty variation induced by inserting u on the early side in S ′ is simply −∆u(E, T), and
results in Property 5.4.(ii).
Property 5.4

Let (E, T) be a partition.
(i) For any u∈E, f(E\{u}, T∪{u}) = f(E, T) + ∆u(E, T).
(ii) For any v∈T , f(E∪{v}, T \{v}) = f(E, T)−∆v(E, T).

Let us introduce, for a given task u∈J , the two following constraints1.

u∈E ⇒ ∆u(E, T)>0 (Îu)
u∈T ⇒ ∆u(E, T)60 (Î ′u)

Thanks to Property 5.4, (Îu) (resp. (Î ′u)) discards every partition where u is early (resp. tardy) that
would have a lower penalty if u was tardy (resp. early). Note that only considering constraints (Îu)
and (Î ′u) for a given u is not sufficient to discard all insert-dominated partitions. Indeed, these con-
straints do not take into account the whole insert-neighborhood of the solutions as each one is only

1These constraints are labeled by I as insert, not I as inequality.

154

compared to its neighbor obtained by an insert operation on task u. It is thus needed to consider
constraints (Îu) and (Î ′u) for every u∈J to translate the dominance of the insert local optima.

Moreover, the constraint ∆u(E, T)>0 (resp. ∆u(E, T)60) might not be satisfied by an optimal so-
lution where u is tardy (resp. early). Therefore, constraints (Îu) and (Î ′u) are not simply inequalities,
but conditional statements whose consequent2 is an inequality. The end of this section is dedicated
to using δ variables in order to provide linear inequalities equivalent to constraints (Îu) and (Î ′u).

• Linear inequalities translating constraints (Îu) and (Î ′u) for any u∈J
Let u∈J . If δ∈{0, 1}J encodes a partition (E, T), the penalty variation ∆u(E, T) can be expressed
linearly from δ as follows.

∆u(δ) = −αu
∑

i∈A(u)
pi δi + βu

(∑
i∈B(u)

pi(1−δi)+pu
)

+ pu

(∑
i∈B̄(u)

βi(1−δi)−
∑

i∈Ā(u)
αi δi

)

Moreover, (E, T) satisfies (Îu)⇔
(
u∈E and ∆u(E, T)>0

)
or u∈T

⇔
(
δu=1 and ∆u(E, T)>0

)
or δu=0

To unify these two cases (δu=1 and δu=0) into one inequality, we introduce the following constant
which is an upper bound of −∆u(δ) for any δ∈{0, 1}J .

Mu=αu p
(
A(u)

)
− βu pu + pu α

(
Ā(u)

)
Since we have ∆u(δ) >−Mu for any δ∈{0, 1}J , the following inequality is satisfied by every δ∈{0, 1}J
such that (1−δu)=1.

∆u(δ) > −Mu (1−δu) (Iu)

Conversely, for every δ ∈ {0, 1}J such that (1− δu) = 0, inequality (Iu) is satisfied if and only if
∆u(δ)>0. Considering these two cases, δ∈{0, 1}J satisfies (Iu) if and only if the partition encoded
by δ satisfies (Îu). Property 5.5.(i) follows.

Similarly, to translate constraint (Î ′u), we introduce the following constant which is an upper
bound of −∆u(δ) for any δ∈{0, 1}J .

M ′
u=βu p

(
B(u)

)
+ βu pu + pu β

(
B̄(u)

)
Since we have ∀δ∈{0, 1}J , −∆u(δ) >−M ′

u, the following inequality is satisfied by every δ∈{0, 1}J
such that δu=1.

−∆u(δ) > −M ′
u δu (I ′u)

Conversely, if δu=0, δ satisfies (I ′u) if and only if −∆u(δ) > 0. Considering these two cases, δ∈{0, 1}J
satisfies (I ′u) if and only if the partition encoded by δ satisfies (Îu). Property 5.5.(ii) follows.
Property 5.5

Let δ∈{0, 1}J and let (E, T) be the partition encoded by δ.
For any u∈J , (i) δ satisfies inequality (Iu) if and only if (E, T) satisfies constraint (Îu),

(ii) δ satisfies inequality (I ′u) if and only if (E, T) satisfies constraint (Î ′u).

In the sequel, insert inequalities will refer to inequalities (Iu) and (I ′u) for all the tasks u∈J .
2For a conditional statement p⇒ q, the consequent is q.

155

5.3 General framework to produce dominance inequalities
from a set of operations

The aim of this section is to generalize this approach by extracting from the previous section some
general ideas. Therefore, we first give a high-level explanation of the dominance inequalities based
on operations, and explain how it differs from the standard local search framework. Subsequently,
we give a property that enables to create dominance inequalities associated with a set of operations.
This property is then applied to the swap operations. At the end of the section, we additionally
introduce some definitions to qualify dominance inequalities in general.

5.3.1 The solution-centered and the operation-centered points of view
Property 5.3 is based on a solution-centered point of view as all the neighbors of one given solution
are taken into account. Conversely, constraints (Îu) and (Î ′u) are based on an operation-centered
point of view as only one neighbor of each solution — the one obtained by a given operation —
is taken into account. Figures 5.5 and 5.6 illustrate these two points of view on the same set of
solutions {A,B, . . . , N} represented by some blue points. We consider a given set of operations and
the associated neighborhood function. An arrow is drawn from a solution X to a solution Y if X is
compared to Y in order to determine whether X is dominated by Y .

In Figure 5.5, we focus on one solution J , which is compared to all the solutions obtained by apply-
ing to J an operation defined on J . Since J is compared to all its neighbors, i.e. {C,F,G, I,M,N},
one can determine if J is locally optimal.

In Figure 5.6, we focus on one operation. All the solutions where this operation can be applied are
compared to the obtained neighbors. Solutions A,B,C,G and N are not compared to other solutions,
since the considered operation cannot be applied on these solutions. Conversely, since solutions
D,E, F,H, I, J,K, L and M are compared to one of their neighbors, they might be discarded. For
example if E is better than H, H can be discarded, no matter whether H is better than K. However,
we cannot say that the non-discarded solutions are locally optimal, since only one neighbor is taken
into account. To this end, all the operations must be considered.

• A • B • C

• D • E • G

• H • J

•K • L •M • N

• I

• F

Figure 5.5: Illustration of the
solution-centered point of view

• A • B • C

• D • E • F • G

• H • I • J

•K • L •M • N

Figure 5.6: Illustration of the
operation-centered point of view

In the sequel, we focus on the operation-centered point of view. Indeed, we propose a way to
obtain, for a given operation and under some assumptions, a linear inequality that cut off all the
solutions that can be discarded by comparison with the neighbor obtained by this operation.

156

5.3.2 A way to obtain a dominance inequality from an operation
Let us consider the minimization problem minS∈S f obj(S), where S is a finite subset of Rn.
Property 5.6

Let θ be an operation on S , i.e. θ∈F(S ′,S), where S ′⊆S denotes its domain of definition.
Let N θ be the related neighborhood function, i.e. N θ(S)={θ(S)} if S∈S ′, N θ(S)=∅ otherwise.
If there exist:
→ Π a linear function from Rn to R such that Π(S)⊆N and ∀S∈S, Π(S)=0⇔ S∈S ′

→ ∆ a linear function from Rn to R such that ∀S∈S ′, ∆(S)=f obj
(
θ(S)

)
−f obj(S)

then for m̂∈R an upper bound of {−∆(S) |S∈S } and M=


m̂
max Π(S) if m̂<0

m̂ otherwise
the linear inequality ∆(S) > −M Π(S) translates the N θ-dominance.

Proof : Let us assume that such functions Π and ∆ exist. Since S is a finite set, the set {−∆(S) |S∈S }
is bounded. Let us consider m̂ an upper bound of this set, and then set M accordingly. Let S∈S .

If S 6∈S ′, then Π(S)> 1 by definition. If m̂> 0, then we have M Π(S) = m̂Π(S) > m̂, otherwise we
have M= m̂

max Π(S) 6 0, and then M Π(S)>M max Π(S) = m̂. In both cases, we have M Π(S)> m̂.
By definition of m̂, we deduce that M Π(S)> −∆(S), that is −M Π(S)6 ∆(S).
In other words, S satisfies the inequality.

If S∈S ′, Π(S)=0 by definition, then ∆(S)>−M Π(S)⇔ ∆(S)>0⇔ fobj
(
θ(S)

)
−fobj(S)>0.

In other words, S satisfies the inequality if and only if S is θ-dominant. �

In the case of a maximization problem, under the same assumptions, the N θ-dominance is translated
by the inequality ∆(S) 6M Π(S) where M is defined from an upper bound ∨

m of {∆(S) |S ∈S }
instead of from m̂.

Note that these properties can also be used for a set of operations Θ instead of for a single
operation. Indeed, if Iθ denotes the inequality build according to Property 5.6 for the operation
θ ∈ Θ, then the family (Iθ)θ∈Θ translates the NΘ-dominance property, where NΘ is the neighbor-
hood function associated with the operation set Θ, that isNΘ =S 7→ {θ(S) | θ∈Θ s.t. s∈domain(θ)}.

We apply Property 5.6 to the swap operation for UCDDP in the next sub-section. In Chapter 7,
the maximization version of this property will be used for other problems.

157

5.3.3 Qualifying for dominance inequalities in a general framework
In order to be able to qualify dominance inequalities, we introduce some definitions, adapted from
the classical ones. Let us consider the linear formulation of a generic minimization problem, defined
as follows. (Of course, the following definitions can be transposed to a maximization problem.)

F : min
Y ∈ P̃ ∩Zdim

f obj(Y)

where:

- S a finite set of solutions in Rdim, with dim∈N∗

- fobj a linear objective function defined on Rdim, i.e. f obj∈F(Rdim,R)

- S ∗ the set of the optimal solutions, i.e. S ∗=arg min
S∈S

f obj(S)

- P the convex hull of the solution set, i.e. P =conv(S)

- P̃ a polyhedron such that P̃∩Zdim =S

In this framework, let us introduce some definitions for an inequality I of Rdim.
-I is valid if any solution S∈S satisfies I.
-I is f obj-valid if any optimal solution S∗∈S ∗ satisfies I.
-I is a cut for F if there exists a point in P̃ that does not satisfy I.
-I is a f obj-cut for F if there exists a minimizer in arg min

S∈P̃
f obj(S) that does not satisfy I.

Note that I is valid ⇒ I is f obj-valid while conversely I is a f obj-cut ⇒ I is a cut. In general, rein-
forcement inequalities are valid cuts, or valid f obj-cuts, which is better. Dominance inequalities are
f obj-valid cuts, indeed, such inequalities cut off some elements in S , namely the dominated solutions.

To improve the linear relaxation value, i.e. min
S∈P̃ f

obj(S) all the minimizers of f obj over P̃ must be
removed. If there is only one minimizer, a single f obj-cut can improve the linear relaxation value. In
general, there can be several minimizers, which can be cut off by different f obj-cuts. Therefore, we
introduce the following definition for a family of linear inequalities of Rdim denoted by I.

-I is f obj-enhancing (for P̃) if ∀S∗∈arg min
S∈P̃

f obj(S), ∃I∈I, S∗ does not satisfy I.

It can be difficult to imagine that a dominance inequality could be a f obj-cut. How an inequality
which cuts integer points with a high value according to the objective function can also cut an optimal
fractional point, that is by definition a point with a low value according to the objective function? We
propose below an illustration of such an inequality.

158

5.3.4 An illustration of a generic f obj-cut dominance inequality
We provide an illustration of a generic situation with 2 binary variables. Let us use the notations
introduced on the previous page to describe the generic formulation F . In this case, dim = 2 and
P ⊆ [0, 1]2.

Figure 5.7 represents the polytope P̃ whose integer points are exactly points of S . The optimiza-
tion direction is represented by a red arrow, and dotted red lines represent points having the same
value according to f obj (like contour lines on a map represent points having the same altitude). The
optimal (integer) solution is represented by a blue star, while the fractional optimum is represented
by a violet star.

•

•

F

F

polytope P̃

the optimization direction, given by f obj

line where f obj is constant

F the optimal solution on P̃

F the optimal solution on S

• other solutions in S

Figure 5.7: Optimal solution in S (F) and optimal point in P̃ (F)

Figure 5.8 shows an inequality, drawn in orange, that cuts an integer point which is dominated,
and also cuts the fractional optimum. The new fractional optimum, represented by a turquoise star,
offers a better linear relaxation value.

•

•X

F

F

F

domiance inequality (I)

•X a solution of S eliminated by (I)

polytope P̂ obtained from P̃ by adding (I)

F the optimal solution on P̂

Figure 5.8: Optimal point in P̂ (F) obtained by adding a dominance inequality

.

159

5.4 Application for swap operations
Let (u, v)∈ J2 such that u 6= v. We have defined, on page 152, the swap operation as an operation
on ordered bi-partitions. However, to stick to the Property 5.6 framework, we need to consider an
operation on vectors. Therefore we introduce the following operation3.

θu,v =

 Su,v −→ S n
δ,X⊆RV×RE

(δ,X) 7−→ ψ{u,v}(δ,X)

 where Su,v=
{

(δ,X)∈S n
δ,X

∣∣∣ δu=1 and δv=0
}

Note that Su,v is exactly the set of vectors that encode a partition (E, T) such that u∈E and v∈T .
In order to apply Property 5.6, we have to identify suitable functions ∆ and Π, before defining a
constant M , and finally obtain a dominance inequality.

• Identifying function Π
To identify the domain of θu,v, i.e. Su,v, we introduce the following linear function.

Πu,v =
(
RV×RE −→ R
(δ,X) 7−→ (1−δu) + δv

)

For any (δ,X)∈S n
δ,X , we have Πu,v(δ,X)=0⇔ (1−δu)︸ ︷︷ ︸

>0

+ δv︸︷︷︸
>0

=0⇔
{

(1−δu)=0
δv=0 ⇔ (δ,X)∈Su,v.

Therefore, Πu,v is suitable with Property 5.6.
Moreover, one can already note that max Πu,v=2, which will be useful subsequently to define Mu,v.

• Identifying function ∆
To identify ∆u,v, we have to express the variation of hα,β — the objective function — between a
vector (δ,X) in Su,v and its image θu,v(δ,X). By construction, that corresponds to the variation of
f between a partition (E, T) such that u∈E and v∈T , and its image (E\{u}∪{v}, T \{v}∪{u}),
then it also corresponds to the penalty variation between a V-shaped d-block S in which u is early
and v is tardy and its image swapu,v(S). As we find it easier, we choose to express the penalty
variation between V-shaped d-blocks, and even between specific V-shaped d-blocks as done for the
insert operation.

Let (E, T) be a partition such that u∈E and v∈T , and S be a u and v-canonical representative
of (E, T). We denote by S ′ the schedule obtained from S by swapping u and v so that S ′ is also
both u and v-canonical, that is by scheduling u after all the early tasks having the same α-ratio
αu/pu and v before all the tardy tasks having the same β-ratio βv/pv. S ′ is a representative of(
E\{u}∪{v}, T\{v}∪{u}

)
. Let (e, t) (resp. (e′, t′)) denote the earliness and tardiness vector of tasks

in S (resp. S ′).

If αv
pv
< αu

pu
, all the early tasks of Ā(v) are scheduled before u in S, since the V-shaped property

holds, but the early tasks of A(v)\{u} can be scheduled before or after u. This case is illustrated in
Figure 5.9. Conversely, if αv

pv
> αu

pu
, all the early tasks of A(v) are scheduled after u in S, but those of

A(v)\{u} can be scheduled before or after u. This case is illustrated in Figure 5.10.

Similarly, we can distinguish two cases depending on the relative order of the β-ratios of u and
v, as illustrated in Figures 5.11 and 5.12.

3Function ψ{u,v} used to define θu,v is the function ψM defined on page 108 for M={u, v}.

160

A(v)∩Ā(u)∩E

S

Ā(u)∩E A(u)∩E

A(v)∩EĀ(v)∩E d
|

u

S ′

Ā(u)∩E∪{v} A(u)∩E

A(v)\{u}∩EĀ(v)∩E d
|v

Figure 5.9: Early side variation induced by
swapping u and v when αv

pv
<
αu
pu

A(u)∩Ā(v)∩E

S

Ā(u)∩E A(u)∩E

A(v)∩EĀ(v)∩E d
|

u

S ′

Ā(u)∩E A(u)∩E∪{v}

A(v)∩EĀ(v)\{u}∩E d
|v

Figure 5.10: Early side variation induced by
swapping u and v when αv

pv
>
αu
pu

B(v)∩B̄(u)∩T

S

B(v)∩T B̄(v)∩T

B(u)∩T B̄(u)∩T

B̄(v)∩T

d
|

v

S ′

B(v)∩T∪{u} B̄(v)∩T

B(u)∩T B̄(u)∩T \{v}d
| u

Figure 5.11: Tardy side variation induced by
swapping u and v when βv

pv
6
βu
pu

B(u)∩B̄(v)∩T

S

B(v)∩T B̄(v)∩T

B(u)∩T B̄(u)∩Td
|

v

S ′

B(v)∩T B̄(v)∩T∪{u}

B(u)∩T \{v} B̄(u)∩Td
| u

Figure 5.12: Tardy side variation induced by
swapping u and v when βv

pv
>
βu
pu

As shown in Figures 5.9 and 5.10, the earliness of u in S is eu=p
(
A(u)∩E

)
, while the tardiness

of u in S ′ is e′u = p
(
B(u)∩T

)
+pu (Cf. Figures 5.11 and 5.12). Note that v is removed from B(u)

since v is not tardy in S ′, and therefore cannot contribute to the tardiness of u. Similarly, we have
tv=p

(
B(u)∩T

)
+pv and e′v=p

(
A(v)\{u}∩E

)
since u is not early in S ′.

Moreover, the tasks of A(u)∩E are identically scheduled in S and S ′ only if αv
pv
< αu

pu
. In this

case, tasks of Ā(u)∩E are not consecutive in S ′ since v separates them into two blocks: tasks of
Ā(v)∩E which have been left-shifted by pv−pu time units, and tasks of A(v)∩Ā(u)∩E which have
been right-shifted by pu time units (Cf. Figure 5.9).
In the opposite case, i.e. if αv

pv
> αu

pu
, tasks of A(u)∩E are not consecutive in S ′. Indeed, v separates

them into two blocks: tasks of A(v)∩E which are identically scheduled in S and S ′; and tasks of
A(u)∩Ā(v)∩E which are left-shifted by pv time units. Moreover, in that case tasks of A(v)∩E are
left-shifted by pv−pu time units (Cf. Figure 5.10).

NB: In the two previous paragraphs, as in Figures 5.9 to 5.12, we assumed that pv−pu> 0. In
the contrary case, i.e. if pv−pu < 0, tasks are not left-shifted by pv−pu time units but rather
right-shifted by pu−pv time units.

161

From these observations, we can express the earliness penalty variation of all the tasks in E\{u}
by expressing, in each case, the penalty variation induced by a block shifting as described for the
insert operation. The same method can be applied for the tasks of T \{v}. The reader can refer to
Figures 5.11 and 5.12 for illustration. Finally, the penalty variation between S and S ′ —which is
equal to f(E\{u}∪{v}, T\{v}∪{u})−f(E, T) by construction— is given by the following expression.

∆u,v(E, T) =− αu p
(
A(u)∩E

)
+ βu

(
p
(
B(u)∩T

)
+pu

)
− βv

(
p
(
B(u)∩T

)
+pv

)
+ αv p

(
A(v)\{u}∩E

)

+


(−pu+pv)α

(
Ā(v)∩E

)
− pu α

(
A(v)∩Ā(u)∩E

)
if αv
pv
<
αu
pu

(−pu+pv)α
(
Ā(u)∩E

)
+ pv α

(
A(u)∩Ā(v)∩E

)
otherwise

+

(pu−pv) β
(
B̄(v)∩T

)
+ pu β

(
B(v)∩B̄(u)∩T

)
if βv
pv
6
βu
pu

(pu−pv) β
(
B̄(u)∩T

)
− pv β

(
B(u)∩B̄(v)∩T

)
otherwise

Using δ variables, this variation can be written as follows.

∆u,v(δ) = − αu
∑

i∈A(u)
pi δi + βu

∑
i∈B(u)\{v}

pi (1−δi) + βupu − βv
∑

i∈B(v)
pi (1−δi)− βvpv + αv

∑
i∈A(v)\{u}

pi δi

+


(−pu+pv)

∑
i∈Ā(v)

αi δi − pu
∑

i∈A(v)∩Ā(u)
αi δi if αv

pv
<
αu
pu

(−pu+pv)
∑

i∈Ā(u)
αi δi + pv

∑
i∈A(u)∩Ā(v)

αi δi otherwise

+


(pu−pv)

∑
i∈B̄(v)

βi (1−δi) + pu
∑

i∈B(v)∩B̄(u)
βi (1−δi) if βv

pv
6
βu
pu

(pu−pv)
∑

i∈B̄(u)
βi (1−δi) − pv

∑
i∈B(u)∩B̄(v)

βi (1−δi) otherwise

• Defining constant M
We introduce m̂u,v an upper bound of {−∆u,v(δ) | (δ,X)∈Su,v} to defineMu,v=

{
m̂u,v if m̂u,v>0
m̂u,v

2 otherwise

m̂u,v = αu p
(
A(u)

)
− βu pu + βv p

(
B(v)

)
+ βvpv

+


[pu−pv]+ α

(
Ā(v)

)
+ pu α

(
A(v)∩Ā(u)

)
if αv
pv
<
αu
pu

[pu−pv]+ α
(
Ā(u)

)
if αv
pv
>
αu
pu

+


[pv−pu]+ β

(
B̄(v)

)
if βv
pv
6
βu
pu

[pv−pu]+ β
(
B̄(u)

)
+ pv β

(
B(u) ∩ B̄(v)

)
if βv
pv
>
βu
pu

162

• Finally writing a dominance inequality
Finally, we obtain the following inequality, which will be called swap inequality in the sequel.

∆u,v(δ) > −Mu,v

(
δv + (1−δu)

)
(Su,v)

The following property is a direct corollary of Property 5.6.
Property 5.7

Let δ∈{0, 1}J and let (E, T) be the partition encoded by δ. For any (u, v)∈J2 such that u 6=v,
δ satisfies (Su,v) if and only if (u, v) 6∈E×T or f(E\{u}∪{v}, T \{v}∪{u}) > f(E, T).

163

5.5 Additional properties on insert and swap inequalities
This section aims to present additional results on the two families of dominance inequalities provided
in this chapter. More precisely, we try to answer the following questions.

- Why considering swap inequalities in addition to insert inequalities, knowing that a swap
operation is equivalent to two insert operations? Are swap inequalities not redundant with
insert inequalities?

- Why not considering dominance inequalities corresponding to double insert operations? A
double insert operation means an operation that consists in simultaneously inserting two early
tasks on the tardy side, or conversely two tardy tasks on the early side.

- Are insert and swap inequalities able to improve the linear relaxation value of F 2
l ?

5.5.1 Can two insert inequalities replace a swap inequality?
To answer this question on insert and swap inequalities, let us focus on their underlying operations.

Let us set (u, v)∈J2 such that u 6=v. Let (E, T)∈ ~P2(J) such that u∈E and v∈T . Figure 5.13
illustrates that applying the swap operation for tasks u and v on (E, T) results in the same partition
than applying first the insert operation for task u and then the insert operation for task v (or vice
versa).

(E, T)
(
E\{u}∪{v}, T\{v}∪{u}

)

(
E\{u}, T∪{u}

)

(
E∪{v}, T\{v}

)
swap u and v

inser
t u in T

insert v in E

insert v in E inser
t u in T

Figure 5.13: Applying insert or swap operations

In other words, a swap operation can be decomposed into two insert operations. Since each
dominance inequality cuts an integer point (δ,X)∈{0, 1}V×{0, 1}E if and only if the corresponding
operation can improve the encoded partition (Cf. Property 6.1), we wonder if the swap operation
allows an improvement while each insert operation alone does not.4

The answer is yes, as shown by the counter-example below (Cf. page 165). Note that, for the
sake of simplicity, the counter-example is given on V-shaped d-blocks and not on partitions, which
is equivalent.

To conclude, swap inequalities have their own utility: they discard non-optimal solution that
insert inequalities do not discard.

4This question is not equivalent to the question of inequality redundancy: even if the swap inequality did not cut
off more integer points than the insert inequalities, it could cut off more fractional extreme points. However, since the
answer is yes, it suffices to answer to the question of inequality redundancy.

164

Counter-example 5 : Schedules that are cut off by a swap inequality are not necessarily also cut off
by the two corresponding insert inequalities

Let us consider the 6-task instance of UCDDP defined by
the parameters on the right where α4, α6, β1, and β3 can be
chosen arbitrarily.

Let us denote by u the task 2, and by v the task 5.

In schedule SA, u is early and v is tardy. The total penalty
of SA, which is equal to 65, is reduced neither by inserting
v on the early side, resulting in SB whose total penalty is
69>65, neither by inserting u on the tardy side, resulting in
SC whose total penalty is 73>65. However, swapping tasks
u and v results in SD whose total penalty is 62665.

i pi αi αi/pi βi βi/pi

1 2 4 2 - -

2 2 3 3
2 3 3

2

3 3 3 2 - -
4 3 - - 6 2
5 3 5 5

3 3 1

6 2 - - 1 1
2

SA p
13 4 6

u=5 v=2

d → 65

SB p
13 4 6

u=5v=2

→ 69d

SC p
13 4 6

u=5v=2

→ 73d

SD p
13 4 6

u=5v=2

→ 62d

165

5.5.2 Could a double insert inequality be useful?
As shown by Counter-example 5, simultaneously swapping two tasks can reduce the penalty even if
inserting only one does not. Therefore, one can wonder if simultaneously inserting two early tasks
can reduce the penalty when inserting only one does not. If so, we would be interested in inequalities
translating the dominance associated with this double insert operation. But the answer to this
question is no, as stated in Property 5.8. Since the proof argument is enclosed in the case where
the two tasks are consecutive, we only prove Property 5.9. Figure 5.14 illustrates that applying the
double insert operation for two early tasks u and u′ results in the same partition than applying first
the insert operation for task u and then the insert operation for task u′ (or vice versa).

(E, T)
(
E\{u, u′}, T∪{u, u′}

)

(
E\{u}, T∪{u}

)

(
E\{u′}, T∪{u′}

)
insert u and u′ in T

inser
t u in T

insert u ′ in T

insert u ′ in T inser
t u in T

Figure 5.14: Applying insert or double insert operations

Property 5.8

Let (E, T)∈ ~P2(J). Let (u, u′)∈E×E such that u 6=u′. We can assume w.l.o.g, that αu′
pu′
6 αu

pu
.

We have f
(
E\{u, u′}, T∪{u, u′}

)
<f(E, T)⇒


f
(
E\{u}, T∪{u}

)
<f(E, T)

or
f
(
E\{u′}, T∪{u′}

)
<f(E, T)

Property 5.9

Let (E, T)∈ ~P2(J). Let (u, u′)∈E×E such that u 6=u′. We can assume w.l.o.g, that αu′
pu′
6 αu

pu
.

If ∀v∈J, αu′
pu′
< αv

pv
< αu

pu
⇒ v∈T (♣),

then f
(
E\{u, u′}, T∪{u, u′}

)
<f(E, T)⇒


f
(
E\{u}, T∪{u}

)
<f(E, T)

or
f
(
E\{u′}, T∪{u′}

)
<f(E, T)

Proof : Let us assume that βu′
pu′
6 βu

pu
, the opposite case is treated similarly.

Thanks to the assumption (♣), there exists S0, a u-canonical V-shaped d-block whose partition is (E, T)
and in which u and u′ are consecutive. We will use S0 to express the penalty variation induced by
different insert operations.

To this end, let us denote by S1 (resp. S2) the schedule obtained by inserting u′ (resp. u) on the tardy
side, i.e. S1 = insertu′(S) (resp. S2 = insertu(S)). Finally, let us consider S3 the schedule obtained by
inserting both u and u′ on the tardy side. The shape of these schedules is represented on the top of the
next page.

Since each of these four schedules is a V-shaped d-block, their total penalty is given by function f from
their early-tardy partition. Therefore, we have the following equalities.

(♠)


penalty(S0)=f(E, T)
penalty(S1)=f

(
E\{u′}, T∪{u′}

)
penalty(S2)=f

(
E\{u}, T∪{u}

)
penalty(S3)=f

(
E\{u, u′}, T∪{u, u′}

)
166

S0

Ā(u′)∩E A(u)∩E B(u)∩T B(u′)∩B̄(u)∩T B̄(u′)∩T

d

uu′

S1

Ā(u′)∩E A(u)∩E B(u)∩T B(u′)∩B̄(u)∩T B̄(u′)∩T

d

u u′

S2

Ā(u′)∩E A(u)∩E B(u)∩T B(u′)∩B̄(u)∩T B̄(u′)∩T

d

uu′

S3

Ā(u′)∩E A(u)∩E B(u)∩T B(u′)∩B̄(u)∩T B̄(u′)∩T

d

u u′

The penalty variation between S0 and S1, denoted by ∆1, is only due to the move of u on the tardy side
and the right-shifting of tasks in Ā(u′)∩E and B̄(u′)∩T . Therefore, this variation can be expressed as
follows.

∆1 =penalty(S1)− penalty(S0)

=− αu′
(
p
(
A(u)∩E

)
+ pu

)
+ βu′

(
p
(
B(u)∩T

)
+p
(
B(u′)∩B̄(u)∩T

)
+pu′

)
− pu′ α

(
Ā(u′)∩E

)
+ pu′ β

(
B̄(u′)∩T

)
Similarly, the penalty variation between S0 and S2 is denoted by ∆2 and expressed as follows.

∆2 =penalty(S2)− penalty(S0)

=− αu p
(
A(u)∩E

)
+ βu

(
p
(
B(u)∩T

)
+pu

)
− pu

(
α
(
Ā(u′)∩E

)
+αu′

)
+ pu

(
β
(
B(u′)∩B̄(u)∩T

)
+β

(
B̄(u′)∩T

))
Finally, the penalty variation between S0 and S3, denoted by ∆3, can be expressed as follows.

∆3 =penalty(S3)− penalty(S0)

=− αu p
(
A(u)∩E

)
+ βu

(
p
(
B(u)∩T

)
+pu

)
− αu′

(
p
(
A(u)∩E

)
+pu

)
+ βu′

(
p
(
B(u)∩T

)
+pu+p

(
B(u′)∩B̄(u)∩T

)
+pu′

)
− (pu+pu′)α

(
Ā(u′)∩E

)
+ pu β

(
B(u′)∩B̄(u)∩T

)
+ (pu+pu′)β

(
B̄(u′)∩T

)
=
(
∆2 + pu αu′

)
+ ∆1 + pu βu′

We have ∆3 = ∆1+∆2+pu(αu′+βu′). Since pu(αu′+βu′)>0, ∆3<0⇒ ∆1+∆2<0⇒ ∆1<0 or ∆2<0.
Using equalities (♠), the property follows. �

167

5.5.3 Insert inequalities are not hα,β-cuts
In the experimental results presented in Chapter 6, one can observe that neither insert inequalities
nor swap inequalities do not improve the linear relaxation value of Formulation F 2. In the following
property, we prove this results for insert inequalities. We try to adapt the proof to swap inequalities,
but do not succeed to conclude.

Property 5.10
The insert inequalities are not hα,β-cut for Formulation F 2,
i.e. ∀Y ∈arg min

x∈Pn
δ,X

hα,β(δ,X), ∀u∈J, Y satisfies both (Iu) and (I ′u).

Proof : Let us assume that there exist Y ∗∈ arg min
(δ,X)∈Pn

F2

hα,β(δ,X) and u0∈J such that Y ∗ does not satisfy (Iu).

By denoting Y ∗=(δ,X), we then have ∆u0(δ) < −Mu0 (1−δu0).
By definition of Mu, one can deduce that δu0 6=0, otherwise (Iu) would be valid.
Therefore, we can build a point Y ′ = (δ′, X ′) that is different from Y ∗ as follows.

∀i∈J, δ′j =
{
δj if j 6=u0
0 otherwise and ∀(i, j)∈J<, X ′i,j =


Xi,j if u0 6∈{i, j}
δj if u0 = i
δi if u0 =j

Note that, if Y ∗ is an integer point, Y ′ is the points obtained by applying the insertion of u on the tardy
side.
One can check that (δ′, X ′) satisfies (X.1–X.4). Hence, Y ′∈PnF 2 , then we have hα,β(δ′, X ′) > hα,β(δ,X)
by minimality of Y ∗, that is hα,β(δ′, X ′)− hα,β(δ,X)>0. This difference can be written as follows.

hα,β(δ′, X ′)− hα,β(δ,X) = αu0

∑
j∈A(u0)

pj
2
[
(δ′u0

=0
+δ′j−X ′u0,j︸ ︷︷ ︸

=0

)− (δj+δu0−Xu0,j)
]

+ βu0

∑
j∈B(u0)

pj
2
[
(@
@
@@

2− δ′j
=δj

−δ′u0
=0
−X ′u0,j

=δj

)− (HHH2−δj−δu0−Xu0,j)
]

+ βu0

[
(�1−δ′u0

=0
) pu0 − (�1−δu0) pu0

]

+
∑
u∈J

u0∈A(u)

αu
pu0

2
[
(δ′u0

=0
+δ′j−X ′u0,j︸ ︷︷ ︸

=0

)− (δu+δu0−Xu0,u)
]

+
∑
u∈J

u0∈B(u)

βu
pu0

2
[
(ZZ

ZZ

2− δ′u
=δu
−δ′u0

=0
−X ′u0,u

=δu
)− (XXX2−δu−δu0−Xu0,u)

]

= αu0

∑
j∈A(u0)

pj
−δj−δu0 +Xu0,j

2 (a)

+ βu0

∑
j∈B(u0)

pj
−δj+δu0 +Xu0,j

2 (b)

+ βu0 δu0 pu0 (c)

+ pu0

∑
u∈Ā(u0)

αu
−δu−δu0 +Xu0,u

2 (d)

+ pu0

∑
u∈B̄(u0)

βu
−δu+δu0 +Xu0,u

2 (e)

168

Using the expressions of ∆u(δ) andMu provided in pages 155 and 155 for u=u0, we obtain the following
equation.

∆u0(δ) +Mu0 (1−δu0) =− αu
∑

j∈A(u0)
pj
(
δj + (1−δu0)

)
(A)

+ βu
∑

j∈B(u)
pj (1−δj) + 0 (B)

+����βu0 pu0 − βu0 pu0 (�1−δu0) (C)

+ pu0

∑
j∈Ā(u)

αj
(
δj + (1−δu0)

)
(D)

+ pu0

∑
j∈B̄(u)

βj (1−δu0) + 0 (E)

For any j∈J \{u0}, we have Xj,u0 6 2− δj−δu0 from inequality (X.4), then we have:

→ Xj,u0 +δj+δu0−2 δj 6 2−2 δj , that is (Xj,u0−δj+δu0) 6 2 (1−δj), or again
−δj+δu0 +Xj,u0

2 6 (1−δj).
By summing up for any j∈B(u) (resp. j∈B̄(u)), we deduce that (a) 6 (A) (resp. (b) 6 (B)).

→ Xj,u0−δj−δu0 6 2−2 δj−2 δu0 , that is
−δj−δu0 +Xj,u0

2 6 1−δj−δu0 .
By summing up for any j∈A(u) (resp. j∈Ā(u)), we deduce that (d) 6 (D) (resp. (e) 6 (E)).

Since (c)=(C), we finally have hα,β(δ′, X ′)− hα,β(δ,X) 6 ∆u0(δ) +Mu0 (1−δu0) < 0. A contradiction.
Hence, a minimizer Y ∗ of hα,β on PnF 2 necessarily satisfies (Iu).
Following the same lines, one can proof that it also satisfies (I ′u). �

In the next chapter, we provide experimental results to assess the practical efficiency of swap and
insert inequalities for Formulation F 2.

169

170

Chapter 6

Practical application of dominance
inequalities for UCDDP

In this chapter, we present how insert and swap inequalities can be used in combination with formu-
lation F 2 to solve UCDDP. In this chapter, the expression "dominance inequalities" will only refer
to insert and swap inequalities.

All experiments are carried out using a single thread with Intel(R) Xeon(R) X5677, @ 3.47GHz,
and 144Gb RAM. MIP and LP are solved with cplex 12.6.3.0. The numerical experiments are
performed on Biskup and Feldmann’s benchmark [9], described on page 89. In this chapter, we use
instances with n∈{10, 20, 50, 100, 200}. Moreover, to accurately compare formulations, we construct
instances with n ∈ {60, 80} (resp. n ∈ {120, 150, 180}) by only considering the first n tasks of the
100-task (resp. 200-task) instances provided in the benchmark. Unless otherwise specified, the gap,
time and number of nodes presented in the following tables are average values over the ten instances
for a given n and the time limit is set to 3600 seconds.

• Formulations and formulation settings
To measure the improvement induced by the insert or swap inequalities, we compare the four follow-
ing formulations.

F 2: the formulation defined in Section 0.5, containing only inequalities (X.1 –X.4)
F i: the formulation obtained from F 2 by adding inequalities (Iu) and (I ′u) for all u∈J
F s: the formulation obtained from F 2 by adding inequalities (Su,v) for all (u, v)∈J2 s.t. u 6=v

F i+s: the formulation obtained from F 2 with additional inequalities of both F i and F s

For a given formulation F , we distinguish two settings: a setting with all available features, that
is using cplex default, denoted by Fd, and a setting with less cplex features, denoted by Fl. Two
types of features are disabled in this setting: the cut generation, which produces reinforcement in-
equalities and add them to the formulation; and the primal heuristic procedures. The cut generation
is disabled in order to measure the impact of the dominance inequalities on the linear relaxation
value of the formulation F 2, rather than their impact on the linear relaxation value of a strengthened
formulation. The primal heuristic procedures have been disabled to focus on the lower bound since
we have other methods to quickly obtain good feasible solutions (Cf. Section 6.3).

This results in eight formulation settings: F 2
l , F

i
l , F

s
l , F

i+s
l , F 2

d , F
i
d , F

s
d and F i+s

d . For each one, in-
equalities (X.1–X.4), along with inequalities (Iu), (I ′u), and (Su,v) when included, are added initially.

Let us recall that only the δ variables need to be integer in F 2. Indeed, from Lemma 0.5, if
δ∈{0, 1}J , then inequalities (X.1 –X.4) ensure that X ∈{0, 1}J< . It is also the case for F i, F s and

171

F i+s. Therefore, unless otherwise specified, δ variables are set as binary variables, while X variables
are set as continuous variables. Consequently, the branching decisions only involve δ.

NB: Due to their large number of columns, Tables 6.1, 6.1, 6.3 and 6.4 have been placed at the
end of the chapter, i.e. on pages 180 and 181.

6.1 Solving MIP formulations to optimality
Table 6.1 provides the results obtained when solving MIP to optimality, using the eight formulation
settings. Each line corresponds to the ten instances of a given size n. More precisely, Table 6.1
entries are the following.
#opt: the number of instances solved to optimality within the time limit
time: the average running time in seconds over the instances solved to optimality
#nd: the average number of nodes, except the root node, in the search tree, over the instances

solved to optimality
For a given formulation setting, we choose to stop the run at a line of the table if less than five over
ten instances are solved to optimality. For the subsequent lines, we report a "-" in the table.

Using formulation setting F 2
l , the ten n-task instances are solved to optimality within the time

limit for n up to 50. In contrast, using F i
l , it is the case for n up to 60, using F s

l for n up to 120 and
using F i+s

l for n up to 150. Within approximately 5 minutes, F 2
l solves 50-task instances, F i

l 60-task
instances, F s

l 100-task instances and F i+s
l 120-task instances. This computation time decrease is

due to a drastic reduction in the number of nodes. For example, for n=50 the number of nodes goes
from more than 53 000 for F 2

l to only 31 for F i+s
l . With this latter formulation setting, the number

of nodes is low, it is at most 200, even for large size instances. However, the time limit is reached
for some 180- and 200-task instances, since the size of the linear program solved at each node is large.

In the light of the first four columns of Table 6.1, we can conclude that, with less cplex fea-
tures, adding insert and swap inequalities significantly reduces the number of nodes and hence the
computation time. More precisely, adding only swap inequalities is better than adding only insert
inequalities, but adding both of them provides the best performance.

The four last columns show the same improvement in terms of computation time and number of
nodes when cplex features are used.

Let us now focus on the 4th and 5th columns to compare the impact of the dominance inequalities
and the impact of all the cplex features. For small instances, i.e. n∈{10, 20}, Cplex features allow
to solve the problem at the root node (Cf. F 2

d columns). However, from n=50, the number of nodes
grows fast, so that no 60-task instance can be solved within 3600 seconds. Conversely, we already
noticed that adding swap and insert inequalities limits the number of nodes (Cf. F i+s

l columns), so
that the ten 150-task instances are solved within 3600 seconds. Finally, adding the swap and insert
inequalities provides better results than adding cplex features.

For instances up to size 60, F i+s
d solves the problem at the root node, and is faster than F i+s

l . For
larger instances, except 200-task instances, F i+s

l and F i+s
d solve the problem in similar computation

times, even if F i+s
l has a smaller number of nodes: for example, it is two times smaller for n=150.

For n=200, F i+s
d solves 4 over 10 instances, while F i+s

l only solves 1 over 10 instances. To conclude,
F i+s
l and F i+s

d offer comparable performances. The formulation providing the best results is F i+s

for both settings.

172

6.2 Lower bound obtained at the root node

To further investigate the impact of dominance inequalities, we focus in this section on the root node
of the search tree for different formulation settings. More precisely, we compare the different lower
bounds obtained at the root node.

In the cplex framework, setting the node limit to 0 allows to only solve the root node of a
MIP: the Branch-and-Bound algorithm is stopped before the first branching. If cplex features are
activated, the preprocessing is applied and the cuts are added before the algorithm stops. For a given
formulation setting F , the corresponding run with the node limit set to 0 is denoted by F -rn. This
results in eight runs: F 2

l -rn, F i
l -rn, F s

l -rn, F i+s
l -rn, F 2

d -rn, F i
d -rn, F s

d -rn, F i+s
d -rn.

Note that, in the cplex framework, solving F -rn is different from solving the linear relaxation of
F , denoted by F -lp. Indeed, F -lp is obtained by setting δ variables as continuous variables, which
desactivates most of cplex features. In particular, the reinforcement cuts cannot be added since
they are not valid for the relaxed formulation. Similarly, the inference procedure on the binary vari-
ables cannot be applied. We run the four linear relaxations F 2-lp, F i-lp, F s-lp, and F i+s-lp. We
observed that the obtained values are the same for these four relaxations. In other words, adding
insert and swap inequalities does not improve the linear relaxation value on this benchmark, which is
consistent with Property 5.10, and which lets us think that swap inequalities are not hα,β-cut either.
Since the values are the same, we only present in Table 6.2 the results for F 2-lp.

To measure the quality of the nine obtained lower bounds, we compute, when it is possible, the
optimality gap, i.e. (OPT −LB)/OPT where OPT denotes the optimal value and LB the lower
bound. When the optimal value is not known, we compute a gap using UB the best upper bound
that we get, i.e. (UB−LB)/UB. Such gaps are indicated with a "*" in Table 6.2. For each of the
nine runs, the entries of Table 6.2 are the following.

L-gap: the average optimality gap of the lower bound obtained at the root node
time: the average running time in seconds over the ten instances
The obtained lower bound is exactly the same using either F 2-lp, F 2

l -rn, or F s
l -rn. We deduce

that with less cplex features and without insert inequalities, setting the δ variables as binary or
continuous variables, provides the same lower bound. Moreover, this lower bound is quite weak, since
the average optimality gap is larger than 40% even for the 10-task instances. The computation times
using F 2-lp and F 2

l -rn are similar: 2 seconds for the 100-task instances and about 12 minutes for
the 500-task instances. The computation time required for F s

l -rn is larger: almost 20 seconds for
the 100-task instances and 47 minutes for the 500-task instances.

The lower bound obtained when only considering the insert inequalities is slightly better when
the δ variables are set as binary variables for n∈{10, 20}. Indeed, the average optimality gap is 33%
instead of 41% when n=10, and 66% instead of 68% when n=20 (Cf. F 2-lp and F i

l -rn columns).
The computation time using F i

l -rn is comparable to the computation time using F 2-lp and F 2
l -rn.

The lower bound obtained when considering both insert and swap inequalities, is significantly
better when the δ variables are set as binary variables. Indeed, the average optimality gap is smaller
than 39% for any value of n, and it is equal to 0 for n=10 (Cf. F i+s

l -rn column). The computation
time for F i+s

l -rn is between those for F i
l -rn and F s

l -rn: 14 seconds for the 100-task instances and
about 30 minutes for the 500-task instances.

The lower bound provided using F 2
d -rn, is better than the one obtained using F 2

l -rn, that is with

173

less cplex features. Indeed, the average optimality gap is 7% instead of 41% when n=10, and 46%
instead of 94% when n= 120. However, the lower bound is weaker than the one obtained for F i+s

l ,
whose optimality gap is 0 for n= 10 and 38% for n= 120. Moreover, the computation times using
F 2
d -rn increase fast with the increase of n so that the root node cannot be solved within one hour

for sizes larger than 120.

Combining cplex features with insert inequalities gives almost the same results (Cf. F i
d -rn col-

umn). Conversely, combining cplex features with swap inequalities gives better results (Cf. F s
d -rn

column). In particular, the average computation time is reduced so that instances up to size 200
can be solved. Moreover, the optimality gap is less than 22% for all solved instances. Finally, using
F i+s
d -rn gives even better results, the average optimality gap does not exceed 15%, even for 200-task

instances, which are solved in 418 seconds, instead of 1200 using F s
d -rn.

In a nutshell, combining insert and swap inequalities is the best to obtain a good lower bound at
the root node. Not using all the cplex features allows its fast computation (Cf. F i+s

l -rn column).
Conversely, using them allows to obtain a better lower bound at the expense of the computation
time (Cf. F i+s

d -rn column).

174

6.3 Using swap and insert inequalities to obtain
an upper bound

In this section, we propose two upper bounds on the optimal value. The first one is derived from
the fractional solution obtained at the root node by a simple rounding procedure. The second one is
obtained by applying in addition a local search procedure.

• A simple rounding procedure
We derive an integer solution (δ,X) by rounding a fractional solution (δ̃, X̃), as follows.

∀j∈J, δj =
0 if δ̃j< 1

2 or
(
δ̃j = 1

2 and αj<βj
)

1 otherwise
and ∀(i, j)∈J<, Xi,j =

1 if δi 6=δj

0 otherwise

By construction, (δ,X) satisfies inequalities (X.1-X.4) (Cf. Lemma 0.5). It is thus a solution of F 2,
and hα,β(δ,X) is an upper bound of the optimal value. However, it is not necessarily a solution for F i,
F s and F i+s formulations, since (δ,X) does not necessarily satisfy the insert and swap inequalities.
In order to transform such a solution into a solution satisfying the dominance inequalities, we can
benefit from the fact that each dominance inequality is based on an operation as explained below.

• Link between dominance properties and operations
When a vector δ ∈{0, 1}J encoding a partition (E, T) does not satisfy a dominance inequality, ap-
plying the corresponding operation to (E, T) provides a partition with a strictly lower penalty. The
following property, formally states this result.

Property 6.1
Let δ∈{0, 1}J and let (E, T) be the partition encoded by δ.
For any u∈J ,
(i) δ does not satisfy (Iu) for u if and only if u∈E and f

(
E\{u}, T∪{u}

)
<f(E, T),

(ii) δ does not satisfy (I ′u) for u if and only if u∈T and f
(
E∪{u}, T \{u}

)
<f(E, T).

Moreover, for any (u, v)∈J2 such that u 6=v,
(iii) δ does not satisfy (Su,v) for (u, v) iff (u, v)∈E×T and f

(
E\{u}∪{v}, T \{v}∪{u}

)
<f(E, T).

Proof : Let us fix u∈ J . From Property 5.5, δ does not satisfy inequality (Iu) if and only if (E, T) does
not satisfy constraints (Îu), which is equivalent to u ∈E and ∆u(E, T)< 0. Using Property 5.4, it is
equivalent to u∈E and f

(
E\{u}∪{v}, T \{v}∪{u}

)
−f(E, T)< 0, which proves (i). The proofs of (ii)

and (iii) follow the same scheme. �

Corollary 6.2
Let δ∈{0, 1}J and let (E, T) be the partition encoded by δ.
(i) (E, T) is an insert local optimum if and only if δ satisfies (Iu) and (I ′u) for all u∈J .
(ii) (E, T) is a swap local optimum if and only if δ satisfies (Su,v) for all (u, v)∈J2 s.t. u 6=v.

• A local search procedure based on insert and swap operations
Let us call Insert_swap_improvement the procedure that consists, from a given initial solution, in
iteratively apply the operation associated with each violated dominance inequality, until all of them
are satisfied. Algorithm 1 presents a way to implement this procedure. From Property 6.1, if an

175

insert (resp. a swap) inequality is not satisfied, applying the appropriate insert (resp. swap) opera-
tion provides a strictly better solution. That ensures that each solution is considered at most one
time in Insert_swap_improvement and thus that this procedure finishes. From Corrolary 6.2, the
returned solution is an insert and swap local optimum, since it satisfies all the dominance inequalities.

Insert_swap_improvement

input: δ∈{0, 1}J
output: δ′ encoding an insert and swap local optimum

δ′ ← δ; is_locally_opt ← false
while (not is_locally_opt)

is_locally_opt ← true
for u in J

if δ′ does not satisfy (Iu)
δ′u ← 0; is_locally_opt ← false

if δ′ does not satisfy (I ′u)
δ′u ← 1; is_locally_opt ← false

for v in J\{u}
if δ′ does not satisfy (Su,v)
δ′u ← 0; δ′v ← 1; is_locally_opt ← false

return δ′

Algorithm 1: The improvement procedure by insert and swap operations

Note that this algorithm can be seen as a local search procedure for the neighborhood associated
to the insert and swap operations. Moreover, this procedure can be applied to any integer solution.
Particularly, for the sake of comparison we apply it to the solutions obtained by heuristic "Heur II"
proposed by Biskup and Feldmann in [9].

We finally compare the upper bounds given by the six following heuristic solutions.

BF : the solution obtained by Biskup and Feldmann’s heuristic "Heur II"
BF+ : the solution obtained by applying Insert_swap_improvement to BF
R1 : the solution obtained by rounding the fractional solution of F 2-lp
R1+ : the solution obtained by applying Insert_swap_improvement to R1
R2 : the solution obtained by rounding the fractional solution of F i+s

d -rn
R2+ : the solution obtained by applying Insert_swap_improvement to R2
In the sequel, we will use the same notation for both a heuristic solution and its value, which pro-

vides an upper bound on the optimal value. To measure the quality of these upper bounds, Table 6.3
presents their optimality gap denoted by U-gap, i.e. (UB − OPT)/OPT where OPT denotes the
optimal value and UB the upper bound. The Biskup and Feldmann’s heuristic provides a solution
in less than 1 second. Applying rounding and Insert_swap_improvement to a fractional solution
provides a solution in less than 1 second for instances up to size 200. Therefore, the time needed to
obtain R1 and R1+ (resp. R2 and R2+) is essentially the computation time required to solve F 2-lp
(resp. F i+s

d -rn) already given in Table 6.2.

As shown in Table 6.3, BF is a good upper bound. Indeed, its optimality gap is smaller than 0.35%
for instance sizes larger than 50. However, this bound is improved by Insert_swap_improvement :
the optimality gap of BF+ is smaller than 0.02% for all the instances. With an optimality gap larger
than 170%, R1 is a very weak upper bound, while R1+, with an optimality gap smaller than 0.01%,

176

is very good, and even slightly better than BF+. With an optimality gap smaller than 17%, R2 is
a better upper bound than R1, and R2+ is exactly the same as R1+.

Finally, BF+, R1+ and R2+ are very good upper bounds. However, it is worth noticing that
even if the computation time to obtain BF+ is about 1 second, the bound is obtained without any
guarantee, since no lower bound is provided. Conversely, the computation time to obtain R2+ is
larger: 25 seconds for n=100 and about 7 minutes for n=200, but a lower bound is provided. R2+
is then guaranteed to be at 14% of the optimal value for n=100, and at 15% for n=200 (Cf. L-gap
of F i+s

d -rn in Table 6.2). R1+ is a compromise between BF+ and R2+. Indeed, for instances up
to size 200, R1+ is provided in less than 20 seconds together with a lower bound, but the guarantee
obtained from this lower bound is quite weak (97% for n=200, Cf. F 2

l -rn in Table 6.2).

177

6.4 Insert and swap operations use cases
As shown in the previous sections, insert and swap operations can be used in different ways. Table 6.4
presents the best way to use them depending on the expected solution quality.

- To obtain an upper bound: apply rounding and Insert_swap_improvement to the fractional
solution given by F 2-lp. (Cf. F 2-lp→ R1+ column in Table 6.4).

- To obtain an upper bound with a better guarantee than the one obtained with F 2-lp→ R1+:
apply rounding and Insert_swap_improvement to the fractional solution given by F i+s

d -rn.
(Cf. F i+s

d -rn→ R2+ column in Table 6.4).

- To obtain a 5%-approached solution: use F i+s
d , setting the gap limit to 5%. (Cf. F i+s

d -5%
column in Table 6.4).

- To obtain an exact solution: use F i+s
d . (Cf. F i+s

d column in Table 6.4).

Table 6.4 sums up the performance of the four above mentioned use cases. To measure the perfor-
mances on the 200-task instances, no time limit is fixed. The entries of Table 6.4 are the following.
L-gap: the average optimality gap of the provided lower bound
U-gap: the average optimality gap of the provided upper bound
time: the average running time in seconds
#nd: the average number of nodes except the root node

New experiments are conducted for the results reported in F i+s
d -5% and F i+s

d columns when n=200.
These results are gathered with previously obtained results in Table 6.4 to offer a complete overview.

The limitation of the gap to 5% usually allows to save computation time by reducing the number
of explored nodes. However, Table 6.4 shows that the computation time for F i+s

d -5% is not much
better than the computation time for F i+s

d , only few seconds are saved. This is due to the small
reduction of the number of nodes: the gap limit induces only a 2% reduction for n=100, and a 4%
reduction for n=200.

The low impact of the 5% gap limit can be explained by two factors: the small number of nodes
and the large size of the LPs solved at each node. Since insert and swap inequalities already reduces
drastically the number of nodes, no space is left for further reduction. Moreover, for the six 200-task
instances where F i+s

d reaches the time limit, only less than 100 nodes are explored. The limit for
solving F i+s

l is thus the size or the difficulty of the LPs solved at each node, rather than the number
of nodes.

Trying to address this issue, we have implemented a separation algorithm for the insert and swap
inequalities using a callback function. The time needed to solve 50-task instances using this separa-
tion algorithm and cplex features was 1513 seconds with 925 nodes in average. We observed that
98% of the computation time was used by the UserCut Callback to add 71 inequalities in average.
This is not surprising since the separation algorithm consists in simply evaluating the terms of in-
equality (Iu) and (I ′u) for the n possible tasks u, and the terms of inequality (Su,v) for the n2 possible
couples (u, v), which results in an O(n3) procedure.

Providing a faster separation algorithm could reduce the computation time, but the branching
scheme, and then the number of nodes, would be the same. Since this number of nodes is quite
large compared to the performance of F i+s

d (which solves all 50-task instances at the root node), we
conclude that adding dominance inequalities through a separation procedure reduces their impact.

178

Indeed, when initially added, the dominance inequalities allow to cplex presolve phase to fix some
variables to 0 or 1. The number of LPs variables is then reduced and the value obtained at each
node is improved. When the δ variables are set as continuous variables, this presolve phase is not
executed. It is then consistent with the observation that adding dominance inequalities in this latter
case has no impact (Cf. Section 6.2).

179

F 2
l F i

l F s
l F i+s

l F 2
d F i

d F s
d F i+s

d

n #opt time #nd #opt time #nd #opt time #nd #opt time #nd #opt time #nd #opt time #nd #opt time #nd #opt time #nd

10 10 29 11 10 34 10 10 32 7 10 0 0 10 26 0 10 22 0 10 3 0 10 0 0
20 10 51 162 10 63 91 10 63 25 10 42 11 10 44 0 10 54 0 10 41 0 10 10 0
50 10 311 53596 10 76 2101 10 90 56 10 67 31 10 1310 24725 10 156 1293 10 15 0 10 13 0
60 5 2078 228193 10 186 8063 10 74 83 10 58 41 0 - - 5 439 2904 10 93 66 10 15 0
80 0 - - 9 815 17604 10 137 138 10 77 70 - - - 2 2823 1402 10 219 322 10 79 73
100 - - - 4 2800 23965 10 291 215 10 109 75 - - - - - - 10 529 542 10 165 141
120 - - - - - - 10 728 269 10 219 122 - - - - - - 10 1578 779 10 363 181
150 - - - - - - 8 2532 410 10 786 201 - - - - - - 2 3172 660 10 1011 481
180 - - - - - - 1 3514 285 6 2460 194 - - - - - - - - - 5 1537 284
200 - - - - - - - - - 1 1929 127 - - - - - - - - - 4 2524 710

Table 6.1: Effect of adding insert and swap inequalities on exact solving

F 2-lp F 2
l -rn F i

l -rn F s
l -rn F i+s

l -rn F 2
d -rn F i

d -rn F s
d -rn F i+s

d -rn

n L-gap time L-gap time L-gap time L-gap time L-gap time L-gap time L-gap time L-gap time L-gap time

10 41% 0 41% 0 33% 0 41% 0 0% 0 7% 1 5% 1 0% 1 0% 0
20 68% 0 68% 0 66% 0 68% 0 12% 1 28% 2 28% 2 6% 1 2% 0
50 86% 0 86% 1 86% 1 86% 6 28% 6 42% 27 41% 31 17% 5 11% 3
60 89% 0 89% 1 89% 1 89% 7 36% 7 41% 91 41% 95 22% 9 16% 5
80 92% 1 92% 1 92% 1 92% 11 34% 8 43% 345 43% 359 21% 28 15% 10
100 93% 2 93% 2 93% 2 93% 19 35% 14 45% 1091 44% 1152 21% 62 14% 25
120 94% 3 94% 4 94% 11 94% 31 38% 15 46% 3189 46% 3192 22% 133 16% 52
150 96% 6 96% 13 96% 15 96% 60 34% 29 - - - - 22% 352 15% 130
180 96% 12 96% 19 96% 23 96% 98 34% 49 - - - - 22% 766 15% 274
200 97% 19 97% 25 97% 31 97% 126 39% 72 - - - - 22% 1204 15% 418
500 99%* 722 99%* 698 99%* 742 99%* 2820 36%* 1870 - - - - - - - -

Table 6.2: Effect of adding insert and swap inequalities on lower bounds

180

BF BF+ R1 R1+ R2 R2+
n U-gap U-gap U-gap U-gap U-gap U-gap

10 2.04% 0.00% 170% 0.00% 0.00% 0.00%
20 0.95% 0.00% 196% 0.00% 1.33% 0.00%
50 0.35% 0.02% 203% 0.00% 13.83% 0.00%
60 0.26% 0.01% 170% 0.01% 16.80% 0.01%
80 0.22% 0.01% 172% 0.00% 16.36% 0.00%
100 0.18% 0.00% 174% 0.00% 15.72% 0.00%
120 0.10% 0.00% 170% 0.00% 15.77% 0.00%
150 0.10% 0.00% 171% 0.00% 15.27% 0.00%
180 0.10% 0.00% 171% 0.00% 16.09% 0.00%
200 0.10% 0.01% 171% 0.01% 16.28% 0.00%

Table 6.3: Comparison of different heuristics providing an upper bound

to obtain: an upper bound a lower bound a 5%-approximation an exact solution

use: F 2-lp→ R1+ F i+s
d -rn→ R2+ F i+s

d -5% F i+s
d

n L-gap U-gap time L-gap U-gap time time #nd time #nd

50 86% 0.00% <1 11% 0.00% 3 8 0 4 34
100 93% 0.00% 2 14% 0.00% 25 160 114 165 141
200 97% 0.01% 20 15% 0.01% 418 7420 928 8317 1474
500 - -(99%) 778 - - - - - - -

Table 6.4: Different ways of using insert and swap inequalities

181

182

Chapter 7

Dominance inequalities for other
combinatorial optimization problems

In this Chapter, we propose some dominance inequalities for two classical combinatorial optimiza-
tion problems: max-cut and the maximum weigthed independent set. For both problems, we
derive dominance inequalities from operations acting on solutions by using the general framework
introduced in Chapter 5, and in particular Property 5.6.

For a given undirected graph G=(V,E), let us denote by N(u) the neighborhood of a node u∈V ,
i.e. N(u)={v∈V \{u} | {u, v}∈E}.

7.1 Dominance inequalities for max-cut
Let us present the compact MIP we use in this section to formulate max-cut, which is defined in
page 202. Let us consider an instance of the problem, that is G= (V,E) an undirected graph, and
c∈RE. A cut of G corresponds to a bi-partition of V , and then to two ordered bi-partitions of V ,
which can be encoded by n binary variables δ. We also use continuous variables X to linearize the
objective function. In contrast with variables used in formulations F 2, F 3 and F 4, these variables
are indexed by the edge set E, and not by V <, which is not equivalent since G is not necessarily
complete. We obtain the following formulation.

Fmax-cut
δ,X : max

x∈ intδ(PG
F2)

(c·X) where PG
F 2 =

{
(δ,X)∈RV×RE

∣∣∣ (X.1 –X.4)}

Note that this formulation is very similar to F 2. Actually, if G is complete, the solution sets are
exactly the same. However, the objective functions have not the same structure. Therefore, even
if the operations considered in this section are similar to insert and swap operations, the resulting
dominance inequalities are different.
By analogy with the notation S n

δ,X , let us introduce the following set.

SGδ,X =
{

(δ,X)∈{0, 1}V×{0, 1}E
∣∣∣ (X.1 –X.4)}

In the following pages we present dominance inequalities which can be used to reinforce For-
mulation Fmax-cut

δ,X . At this stage, we do not have neither experimental results to assess the practical
efficiency of these inequalities, nor theoretical results stating whether these inequalities are c-cuts1 or
not. These questions are natural extensions of this work.

1For sake of brevity, we use c-cut instead of fc-cut where fc would be the objective function, i.e. fc=(δ,X) 7→ c·X
in this case.

183

7.1.1 Left-to-right insertion based dominance inequalities

• Defining an operation on the solutions
Let u∈ V . We consider an operation equivalent to the insertion of a tardy task on the early side.
Let us introduce S +

u the set of vectors that encode an ordered bi-partition (E, T) such that u 6∈E,
i.e. S +

u =
{

(δ,X)∈SGδ,X
∣∣∣ δu=0

}
. Note that, if (E, T) is a partition encoded by a vector in S +

u ,
then removing u from T and adding it to E results in another partition. Let us introduce the
corresponding operation θ+

u on the encoding vectors, using the function ψM defined in page 108 for
M={u}.

θ+
u =

(
S +
u −→ SGδ,X

(δ,X) 7−→ ψ{u}(δ,X)

)
In order to apply Property 5.6, we have to identify suitable functions ∆ and Π, before defining a
constant M , and finally obtaining a dominance inequality.

• Identifying function Π
To identify points belonging to S +

u , we introduce the following linear function.

Π+
u =

(
RV×RE −→ R
(δ,X) 7−→ δu

)

For any (δ,X)∈SGδ,X , we have Π+
u (δ,X)∈N and Π+

u (δ,X)=0⇔ δu=0⇔ (δ,X)∈S +
u .

• Identifying function ∆
The variation of the objective function between a vector (δ,X) in S +

u and its image θ+
u (δ,X) is given

by the following expression.

∆+
u (δ,X) = −

∑
v∈N(u)

c{u,v} δv +
∑

v∈N(u)
c{u,v} (1−δv) =

∑
v∈N(u)

c{u,v} (1−2 δv)

• Defining constant M
Since ∨

mu = ∑
v∈N(u) |c{u,v}| is a positive upper bound of {∆+

u (δ,X) | (δ,X) ∈ S +
u }, following the

method described in page 157 for a maximization problem, we derive the following constant.

M+
u =

∑
v∈N(u)

|c{u,v}|

• Finally writing a dominance inequality
Following Property 5.6 adapted to a maximization problem, we obtain the inequality below, which
translates the N θ+

u -dominance.∑
v∈N(u)

c{u,v} (1−2 δv)︸ ︷︷ ︸
∆+
u (δ,X)

6
(∑
v∈N(u)

|c{u,v}|
)

︸ ︷︷ ︸
M+
u

δu︸︷︷︸
Π+
u (δ,X)

184

7.1.2 Right-to-left insertion based dominance inequalities

• Defining an operation on the solutions
Let u∈ V . We consider an operation equivalent to the insertion of a early task on the tardy side.
Let us introduce S −

u the set of vectors that encode an ordered bi-partition (E, T) such that u∈E,
i.e. S −

u =
{

(δ,X)∈SGδ,X
∣∣∣ δu=1

}
. Note that, if (E, T) is a partition encoded by a vector in S −

u ,
then removing u from E and adding it to T results in another partition. Let us introduce the
corresponding operation θ−u on the encoding vectors, using the function ψM defined in page 108 for
M={u}.

θ−u =
(

S −
u −→ SGδ,X

(δ,X) 7−→ ψ{u}(δ,X)

)
In order to apply Property 5.6, we have to identify suitable functions ∆ and Π, before defining a
constant M , and finally obtaining a dominance inequality.

• Identifying function Π
To identify points belonging to S −

u , we introduce the following linear function.

Π−u =
(
RV×RE −→ R
(δ,X) 7−→ 1−δu

)

For any (δ,X)∈SGδ,X , we have Π−u (δ,X)∈N and Π−u (δ,X)=0⇔ δu=1⇔ (δ,X)∈S −
u .

• Identifying function ∆
The variation of the objective function between a vector (δ,X) in S +

u and its image θ+
u (δ,X) is given

by the following expression.

∆−u (δ,X) = +
∑

v∈N(u)
c{u,v} δv −

∑
v∈N(u)

c{u,v} (1−δv) =
∑

v∈N(u)
c{u,v} (2 δv − 1)

• Defining constant M
SinceM+

u is also a positive upper bound of {∆−u (δ,X) | (δ,X)∈S −
u }, let us setM−

u =M+
u =∑

v∈N(u)
|c{u,v}|.

• Finally writing a dominance inequality
Following Property 5.6 adapted to a maximization problem, we obtain the inequality below, which
translates the N θ−u -dominance.∑

v∈N(u)
c{u,v} (2 δv − 1)

︸ ︷︷ ︸
∆−u (δ,X)

6
(∑
v∈N(u)

|c{u,v}|
)

︸ ︷︷ ︸
M−u

(1−δu)︸ ︷︷ ︸
Π−u (δ,X)

185

7.1.3 Swapping based dominance inequalities

• Defining an operation on the solutions
Let2 (u, v)∈V 2. We consider an operation equivalent to the swap between an early and a tardy task.
The set of solutions where this operation can be applied, is the set Su,v defined in page 160, where
S n
δ,X has to be changed into SGδ,X . Moreover, the corresponding operation on the encoding vectors is

given by θu,v defined on the same page. Finally, the function Πu,v allows to identify points belonging
to Su,v.

Since the objective function of Fmax-cut
δ,X is different from the one of F 2, function ∆u,v and the

constant p(J)u,v have to be redefined as follows.

• Identifying function ∆
The variation of the objective function between a vector (δ,X) in Su,v and its image θu,v(δ,X) is
given by the following expression.

∆u,v(δ,X) =
∑

w∈N(v)
c{u,w} (1−2 δw)+

∑
w∈N(u)

c{v,w} (2 δw−1)+2 c{u,v} Iu∈N(v) where Iu∈N(v) =
{

1 if u∈N(v)
0 otherwise

• Defining constant M
Note that Iu∈N(v) is a constant given by G. Moreover, ∨mu,v= ∑

w∈N(u)
|c{u,w}|+

∑
w∈N(v)

|c{v,w}|+2 c{u,v} Iu∈N(v)

is an upper bound of {∆u,v(δ,X) | (δ,X)∈Su,v}.
Therefore, following the method proposed in page 157, we define the following constant.

Mu,v=

∨
mu,v if ∨mu,v > 0
∨
mu,v

2 otherwise

• Finally writing a dominance inequality
Following Property 5.6 adapted to a maximization problem, we obtain the inequality below, which
translates the N θu,v -dominance.∑

w∈N(v)
c{u,w} (1−2 δw) +

∑
w∈N(u)

c{v,w} (2 δw−1) + 2 c{u,v}Iu∈N(v) 6Mu,v (1−δu+δv)

We have not analyzed these inequalities in more detail, but it would be worth investigating further.
In particular, an implementation of the proposed dominance inequalities would allow to test if they
are able to reinforce Formulation Fmax-cut

δ,X .

2Note that an inequality is provided for each ordered pair of nodes, that is even for two nodes that are not adjacent
in G, i.e. {u, v} 6∈E.

186

7.2 Dominance inequalities for the maximum weighted in-
dependent set problem

Let us consider in this section an undirected graph G=(V,E). A node subset S⊆V is an indepen-
dent set, or a stable set if no edge links two nodes in S, i.e. ∀(u, v)∈S2, {u, v} 6∈E. In other words,
a node subset S is an independent set if each node in S has no neighbor in S. For a non-negative
weight on the nodes, the maximum independent set problem aims at finding an independent set
whose weight (the sum of the node weights) is maximum.

MAX. W. INDEP. SET Input: an undirected graph G=(V,E)
the node weights c∈RV+

Output: an independent set S⊆V maximizing c(S)

This problem is NP-hard since the unweighted version of the problem, i.e. when c = IV , is NP-
hard [39].
One can note that, for any instance of max. w. indep. set, the set of node subsets that do not
include 0-weighted nodes is a dominant set. Therefore, the 0-weighted nodes can be removed from
the instance. Without loss of generality, we can thus assume that the node weights are positive, i.e.
c∈(R∗+)V .

• A linear formulation for max.w. indep.set
The node subsets, and then in particular the independent sets, can be encoded by binary variables
(xv)v∈V . For x∈{0, 1}V , the encoded subset is S={v∈V |xv =1} and its weights is c·x. Moreover,
S is an independent set if and only if x satisfies the following inequality.

∀{u, v}∈E, xu+xv 6 1 (7.1)

This leads to the following classical compact IP formulation for max.w. indep.set.

F edges : max
x∈P edges∩ZV

c·x where P edges =
{
x∈RV

∣∣∣∀v∈E, xv > 0 and x satisfies (7.1)
}

We propose in this section, three dominance inequality families for this formulation.

7.2.1 Independent set adding based dominance inequalities

• Defining an operation on the solutions
Let us consider for this section W ⊆V an independent set. Let us introduce SW the set of vectors
that encodes an independent set that contains no nodes of W , i.e. SW =

{
x∈S G

x

∣∣∣∀w∈W, xw=0
}
.

Moreover, let us denote by N(W) the set of neighbors of nodes in W that are not themselves in W ,
i.e. N(W)={v∈V \W | ∃w∈W, {w, v}∈E}.
If S is an independent set encoded by a vector in SW , removing from S the neighbors of nodes of W
and puttingW in S results in another independent set. Let us introduce the corresponding operation
θW on the encoding vectors.

θW =
(

SW −→ S G
x

x 7−→ x′

)
where ∀u∈V, x′v=


1 if v∈W
0 if v∈N(W)
xv otherwise

In order to apply Property 5.6, we have to identify suitable functions ∆ and Π, before defining a
constant M , and finally obtaining a dominance inequality.

187

• Identifying function Π
To identify points belonging to SW , we introduce the following linear function.

ΠW =
 RV −→ R

x 7−→ ∑
w∈W

xw


For any x∈S G

x , we have ΠW (x)∈N and ΠW (x)=0⇔ ∀w∈W, xw=0⇔ x∈SW .

• Identifying function ∆
The variation of the objective function between a vector x in SW and its image θW (x) is given by
the following expression.

∆W (x) =
∑
w∈W

cw −
∑

u∈N(W)
cu xu

• Defining constant M
Since ∨

mW =c(W) is a positive upper bound of {∆W (x) |x∈SW}, let us set MW =c(W).

• Finally writing a dominance inequality
Following Property 5.6 adapted to a maximization problem, we obtain the inequality below, which
translates the N θW -dominance.∑

w∈W
cw −

∑
u∈N(W)

cu xu 6 c(W)
∑
w∈W

xw

This inequality, which can be reformulated as follows, is unfortunately not a c-cut (Cf. Property 7.1).

c(W)
(

1−
∑
w∈W

xw

)
−

∑
u∈N(W)

cu xu 6 0 (IW)

Property 7.1
Inequality (IW) is not a c-cut for Formulation F edges, i.e. ∀x∗∈arg min

x∈P edges
(c·x), x∗ satisfies (IW).

Proof : Let us assume that there exists x∗∈arg min
x∈P edges

(c·x) that violates (IW).

We then have c(W)
(
1−

∑
w∈W

x∗w
)
−

∑
u∈N(W)

cu x
∗
u > 0 (F).

By construction, one knows that ΠW (x∗) 6=0, otherwise (IW) would be valid.

Therefore, we can build a point x′ that is different from x∗ by setting ∀u∈V, x′v=


1 if v∈W
0 if v∈N(W)
x∗v otherwise

One can check that x′ satisfies (7.1). Indeed, for {u, v}∈E, one of the three following cases holds.

- If {u, v}∩W 6=∅, then only one node among u and v can belong to W , since W is an independent
set. Without loss of generality, we assume that u∈W and v∈V \W . By definition, we then have
v∈N(W), therefore x′u+x′v=1+0 6 1.

- If {u, v}∩N(W) 6=∅, we can then assume without loss of generality that u∈N(W). Then we have
x′u+x′v=0+x′v and by definition of x′, x′v 6 1 since x∗v 6 1.

- Otherwise, x′u+x′v = x∗u+x∗v 6 1.

188

Hence, x′∈P edges, then we have c·x′ 6 c·x∗ by maximality of x∗. However, the variation of the objective
function between x∗ and x′ can be written as follows.

c·x′ − c·x∗ = −
∑

u∈N(W)
cu x

∗
u +

∑
w∈W

cw (1−x∗w)

= −
∑

u∈N(W)
cu x

∗
u + c(W)−

∑
w∈W

cw x
∗
w

> −
∑

u∈N(W)
cu x

∗
u + c(W)(1−

∑
w∈W

x∗w) since ∀w∈W, cw6c(W)

> 0 by (F)

Therefore, c·x′ > c·x∗. A contradiction. �

7.2.2 Edge swapping based dominance inequality

• Defining an operation on the solutions
Let us consider for this section {u, v}∈E such that3 cu<cv. By definition, u∈N(v). Let us denote
by Ñ(v) the set of the neighbors of v except u, i.e. Ñ(v)=N(v)\{u}.

NB: The notations Su,v, θu,v, Πu,v and ∆u,v introduced for the swap operation in Section 5.4 no
longer apply, and these symbols will be used differently in this section.

Let us introduce Su,v the set of vectors that encode an independent set that contains node u, necessar-
ily not v, and not any other neighbor of v, i.e. Su,v=

{
x∈S G

x

∣∣∣xu=1, xv=0, and ∀w∈Ñ(v), xw=0
}
.

Note that the condition xv=0 is not useful, indeed, for x∈S G
x , xu=1⇒ xv=0 since {u, v}∈E.

If S is an independent set encoded by a vector in Su,v, removing u from S and putting v instead
results in another independent set. Let us introduce the corresponding operation θu,v on the encoding
vectors.

θu,v =
(

Su,v −→ S G
x

x 7−→ x− Iu + Iv

)

In order to apply Property 5.6, we have to identify suitable functions ∆ and Π, before defining a
constant M , and finally obtaining a dominance inequality.

• Identifying function Π
To identify points belonging to Su,v, we introduce the following linear function.

Πu,v =
 RV −→ R

x 7−→ (1−xu) + ∑
w∈Ñ(v)

xw



For any x∈S G
x , we have Πu,v(x)∈N and Πu,v(x)=0⇔

{
xu=1
∀w∈Ñ(v), xw=0 ⇔ x∈Su,v.

• Identifying function ∆
The variation of the objective function between a vector x in Su,v and its image θu,v(x), is given by
the following expression, which actually does not depend on x.

∆u,v(x) = cv−cu
3Note that for some instances such edge does not exist, and in this case this section does not hold.

189

• Defining constant M
Since ∨

mu,v=cv−cu is a positive upper bound of {∆u,v(x) |x∈Su,v}, let us set Mu,v=cv−cu.

• Finally writing a dominance inequality
Following Property 5.6 adapted to a maximization problem, we obtain the inequality below, which
translates the N θu,v -dominance.

cv−cu 6 (cv−cu)

1−xu +
∑

w∈Ñ(v)

xw


This inequality, which can be simplified as follows (since cv−cu > 0), is not a c-cut (Cf. Property 7.2).

0 6 −xu +
∑

w∈Ñ(v)

xw (Iu,v)

Property 7.2
Inequality (Iu,v) is not a c-cut for Formulation F edges, i.e. ∀x∗∈arg min

x∈P edges
(c·x), x∗ satisfies (IW).

Proof : Let us assume that there exists x∗∈arg min
x∈P edges

(c·x) that violates (Iu,v).

We then have x∗u >
∑

w∈Ñ(v)
x∗w (F).

By construction, one knows that Πu,v(x∗) 6=0, otherwise (Iu,v) would be valid.

Therefore, we can build a point x′ that is different from x∗ by setting ∀w∈V, x′w=


1−m if w=v
m if w=u
x∗w otherwise

,
where m=max

w∈Ñ(v) x
∗
w. By (F), we have m<x∗u.

One can check that x′ satisfies (7.1). Indeed, for {a, b}∈E, one of the four following cases holds.
- If {a, b}∩{u, v}={u}, for example if a=u, then x′a=x′u=m < x∗u=x∗a, and x′b=x∗b since necessarily
b∈V \{u, v}. Then x′a+x′b < x∗a+x∗b 6 1 since x∗ satisfies (7.1).

- If {a, b}∩{u, v}={v}, for example if a=v, then x′a=x′v=1−m, and x′b=x∗b 6 m since necessarily
b∈V \{u, v}. Then x′a+x′b 6 (1−m) +m 6 1.

- If {a, b}∩{u, v}={u, v}, then x′a+x′b = x′u+x′v = (1−m)+m = m.
- Otherwise, {a, b}∩{u, v}=∅, then x′a+x′b = x∗a+x∗b 6 1 since x∗ satisfies (7.1).

Hence, x′∈P edges, then we have c·x′ 6 c·x∗ by maximality of x∗. However, the variation of the objective
function between x∗ and x′ can be written as follows.

c·x′ − c·x∗ = −(cu x∗u + cv x
∗
v) + (cu x′u + cv x

′
v)

= cu (x′u − x∗u) + cv (x′v − x∗v)
= cu (m− x∗u) + cv ((1−m)− x∗v)
> cu (m− x∗u) + cv

(
(�1−m)− (�1−x∗u)

)
since x∗v61−x∗u by (7.1)

= (cu − cv)︸ ︷︷ ︸
>0

(m− x∗u)︸ ︷︷ ︸
>0

> 0

Therefore, c·x′ > c·x∗. A contradiction. �

In the sequel, we propose a stronger version of inequality (Iu,v), by using the fact that xw = 0
for any w ∈ N(u) for a point x in Su,v, since xu = 1, which allows to remove some terms of the
sum ∑

w∈Ñ(v)
xw.

190

7.2.3 Stronger edge swapping based dominance inequality
We use in this section all the notations introduced for {u, v} ∈E such that cu< cv in the previous
section. In addition, we denote by N̂(v) the set of the neighbors of v that are neither u, nor one of
its neighbors, i.e. N̂(v)=N(v)\({u}tN(u)).

One can remark that the conditions xw = 0 for w ∈N(v)∩N(u) are not useful in the definition of
Su,v since for x∈S G

x , xu = 1 ⇒ ∀w∈N(u), xw = 0. Therefore, we can use the following definition:
Su,v=

{
x∈S G

x

∣∣∣xu=1 and ∀w∈N̂(v), xw=0
}
. This definition leads to a new function Π̂u,v to identify

points belonging to Su,v.

Π̂u,v =
 RV −→ R

x 7−→ (1−xu) + ∑
w∈N̂(v)

xw


For any x ∈ S G

x , we have Π̂u,v(x) ∈ N and Π̂u,v(x) = 0 ⇔ x ∈ Su,v. Using the function ∆u,v and
the constant Mu,v defined in Section 7.2.2, we obtain the dominance inequality below according to
Property 5.6.

0 6 −xu +
∑

w∈N̂(v)

xw (Îu,v)

Note that the proof of Property 7.2 cannot be directly adapted for this new inequality. If the value
of m is set to m̂= max

w∈N̂(v) xw, inequality (7.1) for {a, b} where a= v and b∈N(v)∩N(u) is not
necessarily satisfied by x′. Indeed, we do not have x′b6m̂ since m 6∈N̂(v). If the value of m is set to
m̃=max

w∈Ñ(v) xw as previously, then we do not have m<x∗u, since (F) gives m̂<x∗u.

Therefore, the question to know if inequality (̂Iu,v) is a c-cut for F edges is open and should be
investigated. On the other hand, we know that inequality (̂Iu,v) defines a facet of the polytope of
the θu,v-dominant solutions, which is defined as follows.

PG
u,v=conv

{
x∈S G

x

∣∣∣x∈Su,v ⇒ c·x>c·θu,v(x)
}

Property 7.3

Inequality (̂Iu,v) defines a facet of PG
u,v.

Proof : Let us denote by W =V \(N̂(v) t {u, v}). Let us consider the following points of RV that belong
to S G

x since they encode independent sets.

- 0
- Iv
- Iu+Iw for any w∈N̂(v)
- Iw for any w∈W

One can check that these points satisfy to equality the inequality (̂Iu,v). In particular, this imply that
these points are θu,v-locally optimal since (̂Iu,v) translates the N θu,v dominance property.
Moreover, these |V | points form an affinely independent family.
This shows that (̂Iu,v) defines a facet of PGu,v. �

A natural extension of this section would be an experimental works to test whether the proposed
dominance inequalities are able to reinforce Formulation F edges.

191

192

Conclusion

This section summarizes the main scientific contributions of the thesis and highlights some challeng-
ing issues.

In this thesis, we address two common due date problems, UCDDP and CDDP, through a polyhe-
dral approach, with the aim to provide efficient linear formulations. As they are defined in their most
general setting, that is without particular assumption on the unit earliness and tardiness penalties,
the two considered problems are NP-hard.

• Results for common due date problems
Throughout the thesis, we extensively use the dominance properties to provide linear formulations
for UCDDP and CDDP. More precisely, these properties enable to define a light encoding for sched-
ules and to build linear inequalities: the so-called dominance inequalities. Most of the provided
formulations are related to UCDDP since more dominance properties are available for UCDDP than
for CDDP. To sum up, we provide:

- a formulation of UCDDP as a partitioning problem (Cf. F 1 in Section 0.5.1),

- a compact MIP formulation for UCDDP (Cf. F 2 in Section 0.5.2),

- a MIP formulation based on non-overlapping inequalities for UCDDP (Cf. F 3 in Section 1.3),

- a MIP formulation based on non-overlapping inequalities for CDDP (Cf. F 4 in Section 1.4),

- numerous facet defining inequalities that can be added to F 2, F 3, or F 4 (Cf. Chapter 4),

- three reinforcements of Formulation F 2 using dominance inequalities for UCDDP
(Cf. F i, F s, and F i+s defined in Chapter 6).

The proposed formulations (F 2, F 3, F 4, F i, F s, and F i+s) have been implemented and their
performances are compared to other methods on a standard benchmark. None of our formulations
outperforms the state of the art method (Sourd [41]). However, our work on dominance properties
shows that the efficiency of a formulation can be greatly improved when appropriate inequalities are
added. Indeed, under a time limit of one hour, Formulation F 2 solves instances up to size 60, while
F i+s, where dominance inequalities have been added, solves instances up to size 200, and is notably
better than the time-indexed formulation for some instances where processing times are especially
long.

Beyond their numerical results, the proposed formulations are the result of a theoretical work
that can be used in a larger context than the common due date scheduling field.

193

• Contributions beyond the common due date problem
In Part A, we provide some key lemmas about non-overlapping inequalities to use them in com-
bination with other inequalities. We propose a method to provide pseudo-MIP formulations for
scheduling problems using natural variables and non-overlapping inequalities. This method is ap-
plied on UCDDP (resp. CDDP) resulting in Formulation F 3 (resp. F 4), but could also be used for
other scheduling problems as explained in Section 1.5.

The two last parts of the thesis share a common idea: reinforcing Formulation F 2 by adding
inequalities that cut weak solutions. A first attempt is provided in Chapter 4, where the point 0 is
cut by facet defining inequalities of the convex hull of the other solutions. The provided facets, which
can be transposed as facets of the non-trivial cut polytope, are to numerous to be implemented, and
do not seem to be promising for application purposes.

Nevertheless, Part B presents material that may be used beyond the common due date problems.
Indeed, we propose in Chapter 3 a property that formally states how to transpose facet defining
inequalities in general, and which enables us in particular to bridge the cut polytope, the boolean
quadric polytope, and the polytope underlying F 2. Although widely used under different forms,
this property can be interesting from a pedagogical point of view as it encompasses a wide range of
results, like change of variables, lifting or symmetry results.

In Part C, we propose a new kind of inequality, called the dominance inequalities, to reinforce
MIP formulations. These inequalities cut non-optimal integer solutions, while classical strengthening
inequalities cut fractional points. We propose a simple method to derive a dominance inequality from
an operation on the solutions, resulting in insert and swap inequalities for F 2.

Even if the experimental results show that insert and swap inequalities reduce the computation
time, theoretical results show that they do not improve the linear relaxation value. Here, it would
be interesting to further investigate in order to understand how insert and swap inequalities help the
solver: are they able to improve the linear relaxation value in deeper nodes of the branching tree,
when enough binary variables are set to 0 or 1? Are they taken into account only in preprocessing
step that allow to fix a lot of binary variables before the Branch-and-Bound algorithm?

In Chapter 7, we attempt to define dominance inequalities for problems whose solutions have the
same structure as a partition, like max-cut and max. w. indep. set. The dominance inequalities
could be used for other combinatorial optimization problems, like the Traveling Salesperson Problem
(TSP), at the expense of finding appropriate operations on solutions.

194

Bibliography

[1] LEMON – Library for Efficient Modeling and Optimization in Networks. (Cited on pages 85
and 89.)

[2] PORTA – POlyhedron Representation Transformation Algorithm. (Cited on page 118.)

[3] Emile Aarts and Jan Karel Lenstra, editors. Local Search in Combinatorial Optimization. Prince-
ton University Press, 2003. (Cited on page 151.)

[4] Uttarayan Bagchi, Yih-Long Chang, and Robert S Sullivan. Minimizing absolute and squared
deviations of completion times with different earliness and tardiness penalties and a common
due date. Naval Research Logistics, 34(5):739–751, 1987. (Cited on pages 23 and 32.)

[5] Uttarayan Bagchi, Robert S. Sullivan, and Y. L. Chang. Minimizing mean absolute deviation of
completion times about a common due date. Naval Research Logistics Quarterly, 33(2):227–240,
1986. (Cited on page 24.)

[6] Francisco Barahona, Martin Grötschel, Michael Jünger, and Gerhard Reinelt. An application of
combinatorial optimization to statistical physics and circuit layout design. Operations Research,
36(3):493–513, 1988. (Cited on page 85.)

[7] Francisco Barahona and Ali Ridha Mahjoub. On the cut polytope. Math. Program., 36(2):157–
173, 1986. (Cited on pages 43 and 99.)

[8] Dirk Biskup and Martin Feldmann. Common due date scheduling.
http://people.brunel.ac.uk/ mastjjb/jeb/orlib/schinfo.html. (Cited on page 89.)

[9] Dirk Biskup and Martin Feldmann. Benchmarks for scheduling on a single machine against
restrictive and unrestrictive common due dates. Computers & OR, 28(8):787–801, 2001. (Cited
on pages 29, 39, 89, 93, 171, and 176.)

[10] Peter Brucker. Scheduling Algorithms. Springer, 2006. (Cited on pages 9 and 10.)

[11] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Integer Programming. Graduate
Texts in Mathematics,Springer, 2014. (Cited on page 120.)

[12] Caterina De Simone. The cut polytope and the boolean quadric polytope. Discrete Mathematics,
79(1):71 – 75, 1990. (Cited on page 106.)

[13] A-E. Falq, P. Fouilhoux, and S. Kedad-Sidhoum. Mixed integer formulations using natural
variables for single machine scheduling around a common due date. Accepted in September 2020
for publication in Discrete Applied Mathematics, abs/1901.06880, 2019. (Cited on page 20.)

[14] Lester Randolph Ford and Delbert R Fulkerson. A simple algorithm for finding maximal network
flows and an application to the hitchcock problem. Canadian journal of Mathematics, 9:210–218,
1957. (Cited on page 202.)

195

[15] R. Fortet. L’algèbre de Boole et ses applications en recherche opérationelle. Cahiers du Centre
d’Études en Recherche Opérationnelle, 4:5, 1959. (Cited on page 43.)

[16] Michael R. Garey, Robert E. Tarjan, and Gordon T. Wilfong. One-processor scheduling with
symmetric earliness and tardiness penalties. Math. Oper. Res., 13(2):330–348, 1988. (Cited on
pages 25, 31, and 32.)

[17] R. E. Gomory and T. C. Hu. Multi-terminal network flows. ournal of the Society for Industrial
and Applied Mathematics, 9(4):551–570, 1961. (Cited on page 85.)

[18] Groupe GOThA. Modèles et algorithmes en ordonnancement. Ellipses, 2004. (Cited on page 9.)

[19] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and its conse-
quences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981. (Cited on pages 37
and 87.)

[20] Nicholas G. Hall, Wieslaw Kubiak, and Suresh P. Sethi. Earliness-tardiness scheduling problems,
II: deviation of completion times about a restrictive common due date. Operations Research,
39(5):847–856, 1991. (Cited on page 20.)

[21] Nicholas G. Hall and Marc E. Posner. Earliness-tardiness scheduling problems, I: weighted
deviation of completion times about a common due date. Operations Research, 39(5):836–846,
1991. (Cited on pages 15, 25, 26, 31, and 32.)

[22] J.A. Hoogeveen and S.L. van de Velde. Scheduling around a small common due date. European
Journal of Operational Research, 55(2):237 – 242, 1991. (Cited on pages 20, 26, 31, and 32.)

[23] Antoine Jouglet and Jacques Carlier. Dominance rules in combinatorial optimization problems.
European Journal of Operational Research, 212(3):433–444, 2011. (Cited on page 14.)

[24] Joanna Józefowska. Just-In-Time Scheduling: Models and Algorithms for Computer and Manu-
facturing Systems. International Series in Operations Research &Management Science. Springer,
2007. (Cited on page 11.)

[25] Helmut G. Kahlbacher. Termin- und Ablaufplanung: ein analytischer Zugang. PhD thesis,
Kaiserslautern University of Technology, Germany, 1992. (Cited on page 32.)

[26] John J. Kanet. Minimizing the average deviation of job completion times about a common due
date. Naval research logistics quarterly, Vol 28:643–651, Dec 1981. (Cited on pages 22 and 32.)

[27] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica,
4(1):373–395, 1984. (Cited on page 33.)

[28] Richard M. Karp. Reducibility Among Combinatorial Problems. The IBM Research Symposia
Series. Plenum Press, New York, 1972. (Cited on page 202.)

[29] Franz-Josef Kramer and Chung-Yee Lee. Common due-window scheduling. Production and
Operations Management, 2(4):262–275, 1993. (Cited on page 80.)

[30] Eugene L. Lawler. A “pseudopolynomial” algorithm for sequencing jobs to minimize total tar-
diness. (Cited on page 32.)

[31] Manfred Padberg. The boolean quadric polytope: Some characteristics, facets and relatives.
Math. Program., 45(1-3):139–172, 1989. (Cited on pages 93, 97, 99, 100, 103, 107, 108, 109,
and 111.)

196

[32] Jean-Claude Picard and H. Donald Ratliff. Minimum cuts and related problems. Networks,
5(4):357–370, 1975. (Cited on pages 84 and 85.)

[33] Michael L. Pinedo. Scheduling, Theory, Algorithms, and Systems. Springer, 2016. (Cited on
pages 9 and 10.)

[34] Maurice Queyranne. Structure of a simple scheduling polyhedron. Mathematical Programming,
58:263–285, 1993. (Cited on pages 3, 38, 49, 51, 53, and 83.)

[35] Maurice Queyranne and Andreas S. Schulz. Polyhedral approaches to machine scheduling.
Technical Report 408, TU Berlin, 1994, revised 1996. (Cited on page 38.)

[36] M. Raghavachari. A v-shape property of optimal schedule of jobs about a common due date.
European Journal of Operational Research, 23(3):401–402, 1986. (Cited on page 14.)

[37] R. Tyrell Rockafellar. Convex Analysis. Princetion University Press, 1970. (Cited on page 203.)

[38] Michel Sakarovitch. Optimisation Combiantoire, tome 1: programmation dicretes. Hermann,
1984. (Cited on page 35.)

[39] Alexander Schrijver. Combinatorial optimization. Algoritms and Combinatorics. Springer, 2002.
(Cited on page 187.)

[40] Wayne E. Smith. Various optimizers for single-stage production. Naval Research Logistics
Quarterly, 3(1-2):59–66, 1956. (Cited on page 53.)

[41] Francis Sourd. New exact algorithms for one-machine earliness-tardiness scheduling. INFORMS
Journal on Computing, 21(1):167–175, 2009. (Cited on pages 4, 30, 38, 89, and 193.)

[42] Shunji Tanaka, Shuji Fujikuma, and Mituhiko Araki. An exact algorithm for single-machine
scheduling without machine idle time. J. Sched., 12(6):575–593, 2009. (Cited on page 30.)

[43] Gérard Tisseau and Jacques Duma. Tikz pour l’impatient. 2017. (Cited on page 6.)

197

198

Appendices

199

200

Graph theory definitions

Definition GT.4
An (undirected)4graph is a pair of setsG=(V,E), where V 6=∅ and E⊆{{u, v} | (u, v)∈V 2, u 6=v}.
If E={{u, v} | (u, v)∈V 2, u 6=v}, G is the complete graph on V .
The elements of V are the nodes of G, while the elements of E are the edges of G.

Definition GT.5
Let G=(V,E) be an undirected graph.
G′=(V ′, E ′) is a sub-graph of G if V ′⊆V , E ′⊆E and G′ is a graph.
The sub-graph of G induced by V ′⊆V is G′=(V ′, E ′) where E ′={{u, v}∈E |u∈V ′, v∈V ′}.

Definition GT.6
A clique of an undirected graph G is a sub-graph of G that is complete.

Definition GT.7
Let G=(V,E) an undirected graph. Let C⊆E.
C is an (elementary)5 path ofG if there exists a sequence of l+1 distinct nodes (ui)i∈[0..l]∈V l+1

such that C={{ui, ui+1} | i∈ [0..l−1]}.
In this case:

- l is called the length of C
- u0 and ul are called the endpoints of C
- the node subset {ui | i∈ [0..l]} is called the support of C, and denoted by supp(C).
- C is an Hamiltonian path if supp(C)=V .
- a node v∈V is said on C if v∈supp(C).
- two nodes v1 and v2 on C are said consecutive on C if {v1, v2}∈C.

Definition GT.8
Let G=(V,E) an undirected graph. Let C⊆E.
C is an (elementary) cycle of G if there exists a sequence of l>3 distinct nodes (ui)i∈[1..l]∈V l

such that C=
{
{ui, ui+1} | i∈ [1..l−1]

}
∪
{
{ul, u1}

}
.

In this case:
- l is called the length of C
- the node subset {ui | i∈ [0..l]} is called the support of C, and denoted by supp(C).
- C is an Hamiltonian cycle if supp(C)=V .
- a node v∈V is said on C if v∈supp(C).
- two nodes v1 and v2 on C are said consecutive on C if {v1, v2}∈C.

4Since only undirected graphs will be considered in this thesis, we will only say "graph".
5Since only elementary paths (resp. cycles) will be considered in this thesis, we will only say "path" (resp. "cycle").

201

Definition GT.9
Let G=(V,E) an undirected graph. Let C⊆E.
C is a cut if there exists W ⊆V such that C={{u, v}∈E |u∈W, v∈V \W}.
In this case, C is called the cut induced by the partition {W,V \W} .

Let us define two classical optimization problems related to the cuts in a graph: min-cut, and its
generalization max-cut.

MIN-CUT Input: an undirected graph G=(V,E)
non-negative weights on the edges c∈(R+)E

Output: a subset of nodes S⊆V minimizing c (S :V \S)

MAX-CUT Input: an undirected graph G=(V,E)
weights on the edges c∈RE

Output: a subset of nodes S⊆V maximizing c (S :V \S)

Note that in spite of their great similarity, these problems belongs to different6 complexity classes.
Indeed, min-cut∈P since it can be solved by the Ford-Fulkerson algorithm [14], while max-cut is
NP -complete, as shown by Karp in [28].

6Unless P =NP

202

Convex analysis definitions and
properties

CA.3 General properties and definitions
We recall here some well-known definitions and theorems in convex analysis. They can be found in
the reference book of Rockafellar titled "Convex Analysis" [37]. Results are given in Rd (for d∈N∗),
even if most of them are also true for an arbitrary real vector space. We denote by x·y the scalar
product between two vectors of Rd, i.e. x·y=∑d

i=1 xi yi. Note that in finite-dimensional space, and
thus in particular in Rd, compact sets are bounded closed sets.

We give the definition of the different structures we use (affine space, convex, cone, polyhedron),
some of their basis properties, along with some important theorems (Minkowski, Klee, Minkowski-
Weyl), which ensure that such structures can be generated from a subset of key elements, as a vector
space is generated by a basis.

In the sequel, Rd, which is both a vector space and an affine space on itself, has to be seen
sometimes as a vector set, sometimes as a point set. Moreover, several definitions are available for
most of the considered structure. We chose one of them as "the definition", and propose equivalent
definitions as remarks.

Let us start by defining some usual notations.

Definition CA.1
Let (x, y)∈Rd×Rd.
The line through x and y, is {x+ λ(y−x) |λ∈R} = {λy + (1−λ)x |λ∈R}.
The line segment between x and y is {x+ θ(y−x) | θ∈ [0, 1]} = {θy + (1−θ)x | θ∈ [0, 1]}.
The line segment between x and y is denoted by [x, y] or [y, x].

Definition CA.2
Let A⊆Rd and B⊆Rd. The Minkowski sum of A and B is A+B = {a+b | a∈A, b∈B}.

Remark CA.3
Note that if A=∅ or B=∅, then A+B=∅.
Moreover, if B={x}, then A+B can be denoted by A+x instead of A+{x}.

203

CA.3.1 Affine sets

Definition CA.4
Let m∈N∗. Let (xi)i∈[1..m]∈(Rd)m. Let y∈Rd.
y is an affine combination of points (xi)i∈[1..m] ⇔ ∃ (λi)i∈[1..m]∈Rm,

m∑
i=1

λi=1 and
m∑
i=1

λi xi=y

Definition CA.5
Let A⊆Rd.
A is an affine set in Rd ⇔ ∃F a vectorial subspace of Rd

∃x∈Rd
}

such that A = F+x.

In this case, F is called the direction of A, and is denoted by −→A .
The dimension of A is defined as the dimension of F , and denoted by dim(A).

Remark CA.6
An affine set can be defined as a set containing the line through each pair of points that it contains, or
as a set that is stable by affine combination, i.e. a set containing all the affine combinations of its points.

Remark CA.7

Note that −→A = A−A = {a′−a | a∈A, a′∈A}

Property CA.8
Let A1 and A2 two affine sets of Rd. A1∩A2 is either the empty set, or an affine set.
If A1∩A2 =∅, then

−→
A1⊆

−→
A2 or

−→
A2⊆

−→
A1, otherwise

−−−−→
A1∩A2 =

−→
A1∩
−→
A2.

Corollary CA.9
Let S⊆Rd.
There exists a smallest affine set containing S, called the affine set generated by S.
This set is denoted by aff(S), and is given by aff(S) = ⋂

A affine
S⊆A

A.

Definition CA.10
Let S⊆Rd.
The dimension of S is the one of the affine set that it generates, i.e. dim(S)=dim(aff(S)).

Definition CA.11

Let m∈N∗. Let (ui)i∈[1..m]∈Rd
m. Let (xi)i∈[0..m]∈Rd

m+1.
Vectors (ui)i∈[1..m] are linearly independent if ∀(λi)i∈[1..m]∈Rm,

m∑
i=1

λi ui=0⇒ λ=0.

Points (xi)i∈[0..m] are affinely independent if (xi−x0)i∈[1..m] are linearly independent.

Remark CA.12
In a linearly independent vector family, no vector can be written as a linear combination of the others.
In other words, each vector does not belong to the vector space generated by the other vectors.
In an affinely independent point family, no point can be written as an affine combination of the others.
In other words, each point does not belong to the affine set generated by the other points.

Remark CA.13
If (ui)i∈[1..m] are linearly independent, then these m vectors generate a m-dimensionnal vectorial space.
If (xi)i∈[0..m] are affinely independent, then these m+1 points generate a m-dimensionnal affine space.

204

CA.3.2 Convex sets

Definition CA.14
Let m∈N∗. Let (xi)i∈[1..m]∈(Rd)m. Let y∈Rd.
y is a convex combination of points (xi)i∈[1..m]⇔ ∃ (λi)i∈[1..m]∈ [0, 1]m,

m∑
i=1

λi=1 and
m∑
i=1

λi xi=y

Remark CA.15

y is the barycenter of weighted points (xi, λi)i∈[1..m], i.e. y is the only point satisfying
m∑
i=1

λi(y−xi)=0.

However, barycenter definition is broader : weights (λi)i∈[1..m] can be arbitrary, provided that
m∑
i=1

λi 6=0.

Definition CA.16
Let S⊆Rd. S is a convex set if and only if ∀(x, y)∈S2, ∀θ∈ [0, 1], θ x+ (1−θ) y∈S.

Remark CA.17
A convex set can be defined as a set containing the segment between each pair of points that it contains,
or as a set that is stable by convex combination.

Property CA.18
Let (Ci)i∈I be a family of convex sets of Rd, indexed by an arbitrary set I.
The intersection ⋂

i∈I
Ci is also a convex set.

If I is a finite non-empty set, then the Cartesian product ∏
i∈I

Ci is also a convex set.

If I is a finite non-empty set, then the Minkowski sum ∑
i∈I

Ci is also a convex set.

Corollary CA.19
Let S⊆Rd.
There exists a smallest convex set containing S, called the convex hull of S.
This set is denoted by conv(S), and is given by conv(S) = ⋂

Cconvex
S⊆C

C.

Remark CA.20
One can also define the convex hull of S as the set of convex combinations of points in S,

i.e. conv(S)=
{∑
i∈I

λi si

∣∣∣∣∣ I finite set, (si)i∈I ∈SI , (λi)i∈I ∈ [0, 1]I ,
∑
i∈I

λi = 1
}
.

Theorem CA.21 (Carathéodory)
It suffices to consider convex combinations of at most d+1 points to have all the convex combi-

nations, i.e. conv(S)=
{

d∑
i=0

λi si

∣∣∣∣∣ (si)i∈[0..d]∈Sd+1, (λi)i∈[0..d]∈ [0, 1]d+1,
d∑
i=0

λi = 1
}
.

205

CA.3.3 Cones

Definition CA.22
Let S⊆Rd. S is a cone if and only if ∀x∈A, ∀λ∈R∗+, λ x∈A.

Remark CA.23
Equivalently, a cone can be defined as a set that is stable by positive multiplication.
Similarly, a convex cone is as a set that is stable by positive linear combination.

Property CA.24
Let I be an arbitrary set.
If (Ki)i∈I is a family of cones of Rd, then ⋂

i∈I
Ci is also a cone.

If (Ki)i∈I is a family of convex cones of Rd, then ⋂
i∈I

Ci is also a convex cone.

Corollary CA.25
Let S⊆Rd.
There exists a smallest convex cone containing S, called the cone generated by S.
This set is denoted by cone(S), and is given by ⋂

Kcvx cone
S⊆K

K.

Let cone0(S) denote the smallest convex cone containing S∪{0}, i.e. cone0(S)=cone(S)∪{0}.

Remark CA.26
Beware, the notation does not show that cone(A) has to be a convex set.
If K is a cone, then cone (K) = conv(K).
If C is a convex set, then cone (C) = {λ c |λ∈R∗+, c∈C}
If F is a vector space, then cone (F) = F .

CA.3.4 Recession Cones

Definition CA.27
Let C be a convex set of Rd. Let u∈Rd.
C recedes in the direction u if and only if ∀c∈C, ∀λ∈R+, c+λu∈C.
One also say that u is a recession direction of C.

Remark CA.28
Let C be a convex set of Rd.
(i) 0 is a recession direction for C.
(ii) If u and v are both recession directions for C,

then ∀(λ, µ)∈R+
2, λ u+ µ v is also a recession direction for C.

Consequently, the set of recession directions for C is a convex cone containing 0.
This justifies the following definition.

Definition CA.29
Let C be a convex set of Rd.
The recession cone of C, denoted by 0+(C), is the set of recession directions for C.

206

CA.3.5 Extreme points and extreme directions

Definition CA.30
Let C be a convex set of Rd. Let x∈C.
x is an extreme point of C ⇔ ∀(y, z)∈C×C, ∀θ ∈]0, 1[, x=θ y + (1−θ) z ⇒ x=y=z

⇔ ∀(y, z)∈Rd×Rd, x= y + z

2 ⇒ x=y=z

⇔ x cannot be written as the middle of two other points in C

The set of the extreme points of C is denoted by extr(C).

Remark CA.31
Note that x∈extr(C) if and only if C\{x} is also a convex set.
Therefore, if C=conv(S) then extr(C)⊆S, but in general extr(C) 6=S.
For example if S contains three aligned points, one of them cannot be extreme in conv(S).

Lemma CA.32
Let C1 and C2 be two convex sets of Rd.
If C1⊆C2, then extr (C2) ∩ C1 ⊆ extr (C1).

Proof : If x∈C1∩extr(C2), then x is a point of C1 that cannot be written as convex combination of points
in C2. Hence, it cannot be either written as a convex combination of points in C1. Thus x∈extr (C1). �

Remark CA.33
Note that in general the converse inclusion is not true, and hence no equality stands.
For a counter-example, let us consider C2 = conv {a, b, c} where a, b, c are three points not aligned and
C1 =conv {a′, b′, c′}, where a′= a+b

2 , b
′= b+c

2 , c
′= a+c

2 . In this case, extr (C2)∩C1 ={a, b, c}∩C1 =∅, while
extr (C1)={a′, b′, c′} 6=∅.
However, in the case where C2 is convex, and C1 one of its faces, there is equality (Cf. Lemma CA.56).

Lemma CA.34
Let m∈N∗. Let (Ci)i∈[1..m] be a family of m convex sets of Rd.
If ∏ denotes the cartesian product, we have extr

(
m∏
i=1

Ci

)
=

m∏
i=1

extr(Ci).

Remark CA.35
If K is a convex cone, then extr(K)={0} or extr(K)=∅.
In other words, extreme points are not the good notion for cones, which have to be considered more as
sets of directions than as sets of points.

Definition CA.36
Let K be a convex cone of Rd. Let u∈K such that u 6=0.

u is an extreme direction of K ⇔ ∀(v, w)∈K×K
∀(λ, µ)∈R∗+×R∗+

}
, u=λ v + µw ⇒ v∈R+ u,w∈ R+u

⇔ u cannot be written as the positive combination of two
other directions in K

The set of the extreme directions of K is denoted by −→extr(K).

207

CA.3.6 Generation of a convex set by its extreme points and directions

Theorem CA.37 (Minkowski)

Let C⊆Rd such that C 6=∅. If
{
C is a convex set
C is compact then C = conv(extr(C)).

Corollary CA.38
Let C be a compact convex set of Rd.
(i) C 6=∅ ⇔ extr(C) 6=∅
(ii) dim(C)=dim(extr(C))

Proof : • Since extr(C)⊆C, C=∅ ⇒ extr(C)=∅.
Conversely, if C 6=∅, then we have C=conv(extr(C)) by Theorem CA.37.
Therefore, extr(C)=∅ would imply that C=conv(∅)=∅, which is not true. Thus extr(C) 6=∅.
• In general, for a set S⊆Rd, we have dim(conv(S)) = dim(aff(conv(S))) = dim(aff(S)) = dim(S), since
an affine combination of convex combinations of points is an affine combination of these points.
In particular, since C=conv(extr(C)) according to Theorem CA.37, we get dim(C)=dim(extr(C)). �

Property CA.39
Let S⊆Rd (a set of points). Let S⊆Rd (a set of directions).

conv(S) + cone0(S) is the smallest convex set
{
containing all the points in S
receding in all the directions in S.

Theorem CA.40 (Klee)
Let C⊆Rd.
If C is a closed convex set containing no line then C = conv(extr(C)) + cone(−−→extr(C)).

208

CA.3.7 Polyhedra

Definition CA.41

An (affine) hyperplane is a set of the form H=
{
x∈Rd

∣∣∣ a·x=α
}
for given a∈Rd and α∈R.

If α=0, H is a vectorial hyperplane.
Such an hyperplane defines two half-spaces: H>=

{
x∈Rd

∣∣∣ a·x>α} and H6=
{
x∈Rd

∣∣∣ a·x6α}.
Definition CA.42

A polyhedron is an intersection of finitely many half-spaces.
A polytope is a bounded polyhedron.

Remark CA.43
A polyhedron is a closed convex set. A polytope is a compact convex set.

Theorem CA.44 (Minkowski-Weyl)
Let P ⊆Rd such that P 6=∅.
P is a polyhedron if and only if P is convex and finitely generated
i.e. there exist two finite sets E⊆Rd and D⊆Rd such that P =conv(E)+cone0(D).

Remark CA.45
The minimal subsets E and D suitable to define polyhedron P in the previous property are known.
According to Klee’s theorem, if P is a polyhedron, we have P =conv(extr(P)) + cone0(−−→extr(P)).
In particular, if P is a polytope, we have P =conv(extr(P)).

CA.3.8 Face and facets

Definition CA.46
Let P ⊆Rd be a polyhedron. Let F ⊆Rd such that F 6=∅. Let x∈Rd

F is a face of P if and only if there exists an hyperplane H such that
{
H∩P =F
P ⊆H> or P ⊆H6

F is a facet of P if F is a face of P and dim(F)=dim(P)−1.
x is a vertex of P if {x} is a 0-dimensional face of P .

Remark CA.47
• In order to have a lattice structure on the set of the faces of a polyhedron, the empty set and the
polyhedron itself are sometimes considered as faces.
• Faces can also be defined for convex sets rather than for polyhedron. Of course the convex definition
coincides with the above definition in the particular case where the convex set is a polyhedron.
A face of a convex set C is a non-empty part of C, minimal for the inclusion, that can be removed
without impairing the convexity of C. Note that removing a face of a polyhedron turns it into a convex
set that is no more a polyhedron, since it is in particular no more a closed set.

Property CA.48
Let P ⊆Rd be a polyhedron. Let F ⊆Rd such that F 6=P .
If F is a face of P , then there exists F ′ a facet of P such that F ⊆F ′.

Property CA.49
Let P ⊆Rd be a polyhedron. Let x∈Rd. x is a vertex of P if and only if x∈extr(P).

209

CA.4 Useful properties for transposing facets
We recall here some definitions and properties that are used to prove Property 3.10.
Definition CA.50

Let A1 and A2 be two affine spaces. Let ψ∈F(A1,A2).
ψ is an affine map between A1 and A2 if it preserves the affine combinations, i.e.

∀(λi)i∈I ∈RI , ∀(ai)i∈I ∈(A1)I ,
∑
i∈I

λi=1⇒ ψ
(∑
i∈I

λi xi
)

=
∑
i∈I

λi ψ(xi)

Lemma CA.51
Let A1 and A2 be two affine spaces. Let ψ∈F(A1,A2) an affine map between these two spaces.
(i) If (si)i∈I ∈(A1)I are not affinely independent then

(
ψ(si)

)
i∈I

are also not affinely independent.
(ii) If C1 is a convex set ofA1, then C2 =ψ(C1) is also a convex set and extr(C2) ⊆ ψ

(
extr(C1)

)
.

(iii) If in addition ψ is bijective, then extr(C2)=ψ
(

extr(C1)
)
.

Proof : • Let (si)i∈I a family of points in A1. Let assume that (si)i∈I are not affinely independent.
By definition, there exists i0∈I and (λi)i∈I\{i0}∈RI\{i0} such that :∑

i∈I\{i0}
λi = 1 and

∑
i∈I\{i0}

λi xi = xi0 .

Since ψ is an affine map, we then have:

ψ(xi0)=ψ

 ∑
i∈I\{i0}

λi xi

=
∑

i∈I\{i0}
λi ψ(xi).

In other words ψ(xi0) is an affine combination of points
(
ψ(si)

)
i∈I\{i0}.

Therefore,
(
ψ(si)

)
i∈I is not affinely independent. Hence, (i) is true.

• Let (x2, y2)∈C2×C2. Since C2 =ψ(C1), there exists (x1, y1)∈C1×C1 such that
{
ψ(x1)=x2

ψ(y1)=y2 .
Then, for any θ∈ [0, 1], we have:

θ x2 + (1−θ) y2 = θ ψ(x1) + (1−θ)ψ(y1) = ψ
(
θ x1 + (1−θ) y1︸ ︷︷ ︸
∈C1 by C1 convexity

)
∈ ψ(C1) = C2.

Thus C2 is a convex set.

Let z2∈extr(C2). Since C2 =ψ(C1), there exists z1∈C1 such that ψ(z1)=z2.
By contradiction, let us assume that z1 6∈extr(C1).
Then, by definition, there exist (x1, y1)∈C1×C1 and θ∈ [0, 1] such that z1 = θ x1 + (1−θ) y1.
Then we have:

z2 = ψ(z1) = ψ
(
θ x1 + (1−θ) y1) = ψ(x1) + (1−θ)ψ(y1)

Since ψ(x1)∈C2 and ψ(y1)∈C2, we deduce that z2 is not an extreme point of C2. A contradiction.
Then z1∈extr(C1) and z2∈ψ

(
extr(C1)

)
. Therefore, we deduce that extr(C2) ⊆ ψ

(
extr(C1)

)
.

Finally, (ii) is true.

• In the case where ψ in bijective, ψ−1 is also an affine map.
Since C1 =ψ−1(C2), we deduce from (ii) that extr(C1)⊆ψ−1(extr(C2)

)
.

Then we have ψ
(

extrC1)⊆ ψ ◦ ψ−1(extr(C2)
)

= extr(C2). Hence, (iii) is true. �

210

Remark CA.52
If ψ is not bijective, we have not necessarily ψ

(
extr(C1)

)
=extr(C2).

For example, if C1 is a square ABCD and ψ the projection on (A,C), then C2 =[A,C]. Extreme points
of C2, namely A and C, are images of extreme points of C1 (A and C). Conversely, the other extreme
points of C1, namely B and D, are mapped to the middle of [A,C] which is not extreme.

Corollary CA.53
Let A1 and A2 be two affine spaces. Let ψ∈F(A1,A2).
If ψ is an affine map between A1 and A2 then for any S⊆A1, dim(ψ(S))6dim(S).
If in addition ψ is bijective, then for any S⊆A1, dim(ψ(S))=dim(S).

Definition CA.54
Let A1 be an affine space and H be an hyperplane of A1.
Let H+ and H− be the two half-spaces defined by H.
H is valid for S⊆A1 if S⊆H+ or S⊆H−.

Lemma CA.55
Let S⊆Rd, and P =conv(S). Let H⊆Rd an hyperplane. H is valid for P ⇔ H is valid for S.

Proof : By definition of an hyperplane, there exists an affine map f ∈F(A1,R) s.t. H=
{
x∈A1 | f(x)=0

}
.

Since S⊆P , H is valid for P ⇒ H is valid for S. Let us show the reverse implication.

Let assume that H is valid for S. Without loss of generality, we assume that S⊆H6=
{
x∈A1 | f(x)60

}
,

even if f must be changed into −f . Let x∈P . Since P =conv(S), there exist I a finite set, (λi)i∈I ∈ [0, 1]I ,
and (si)i∈I ∈SI such that x=

∑
i∈I λi si and

∑
i∈I λi=1. Then, since f is affine, we have:

f(x) = f
(∑
i∈I

λi si
)

=
∑
i∈I

λi︸︷︷︸
>0

f(si)︸ ︷︷ ︸
60

6 0

Therefore, x∈H6. Hence P ⊆H6, that is H is valid for P .
�

Property CA.56
Let A1 be an affine space and C be a convex set of A1. Let H be an hyperplane of A1 valid for C.
If F is the face of C defined by H, i.e. F =C∩H, then extr(F)=extr(C)∩H.

Proof : Since F is a convex set and F ⊆C, Lemma CA.32 ensures that extr(C) ∩ F ⊆ extr(F).
By definition of C, we have extr(C) ∩ F = extr(C) ∩ (C∩H) = extr(C) ∩H.
Then we have extr(C)∩H ⊆ extr(F). Let us show the reverse inclusion.

By definition of an hyperplane, there exists an affine map f ∈ F(A1,R) s.t. H =
{
x ∈ A1 | f(x) = 0

}
.

Since H is valid for C, we assume that C⊆H6=
{
x∈A1 | f(x)60

}
, even if f must be changed into −f .

Let x∈extr(F). Necessarily x∈H. By contradiction, let us assume that x 6∈extr(C).
Then there exist (u, v)∈C×C and θ∈ [0, 1] such that x=θ u+ (1−θ) v.
Since u∈C⊆H6, we have f(u)60. Similarly, f(v)60.
Since f is affine, we also have θ f(u) + (1−θ) f(v) = f

(
θ u+ (1−θ) v

)
= f(x) = 0.

We deduce that f(u)=f(v)=0 that is (u, v)∈H×H.
Then x is a convex combination of u and v, two points of C∩H=F . A contradiction.
Therefore, extr(F)⊆extr(C)∩H. �

211

Corollary CA.57
Let S⊆Rd, and P =conv(S). Let H⊆Rd a valid hyperplane for S.
(i) H∩P 6=∅ ⇔ H∩S 6=∅.
(ii) dim(H∩P) = dim(H∩S).

Proof : • Since S⊆P , we have H∩S⊆H∩P , thus H∩S 6=∅ ⇒ H∩P 6=∅.
Conversely, we have: H∩P 6=∅ ⇔ extr(H∩P) 6=∅ by Corollary CA.38(i)

⇔ H∩ extr(P) 6=∅ since extr(H∩P) = H∩ extr(P) by Property CA.56
⇒ H∩S 6=∅ since extr(P)⊆S according to Remark CA.31

• Since S⊆P , we have H∩S⊆H∩P thus dim(H∩S)6dim(H∩P).
Conversely, we have: dim(H∩P) = dim(extr(H∩P)) by Corollary CA.38(ii)

= dim(H∩ extr(P)) since extr(H∩P) = H∩ extr(P) by Property CA.56
6 dim(H∩S) since extr(P)⊆S according to Remark CA.31

�

212

Notations

General notations

• Sets of numbers

N denotes the set of non-negative integers
Z denotes the set integers
R denotes the set of real numbers
R+ denotes the set of non-negative real numbers
R∗+ denotes the set of positive real numbers
R+ denotes R+ ∪ {+∞}

[a..b] denotes the set of integers i such that a6 i6b for any (a, b)∈N2, potentially ∅

• Notations for a set X

|X| denotes the cardinality of X
X denotes the complement of the set X

X\Y denotes the relative complement of Y in X, for any set Y
X∩Y denotes the intersection of X and Y , for any set Y
X∪Y denotes the union of X and Y , for any set Y
XtY denotes the disjoint union of X and Y , for any set Y such that X∩Y 6=∅
X4Y denotes the symmetric difference X and Y , for any set Y , i.e. (X∪Y)\(X∩Y)

X/∼ denotes the quotient space of X by an equivalence relation ∼,
that is the set of the equivalence classes for ∼

X< denotes {(i, j)∈X×X | i < j} if (X,<) is an ordered set
X6 denotes {(i, j)∈X×X | i 6 j} if (X,<) is an ordered set
X<< denotes {(i, j, k)∈X×X×X | i < j< k} if (X,<) is an ordered set
X :Y denotes {{x, y} | (x, y)∈X×Y }, for any set Y such that X∩Y 6=∅
P(X) denotes the set of the X subsets
P∗(X) denotes the set of the non-empty X subsets
~P2(X) denotes the set of oriented bi-partitions of X, i.e. {(A,B) | {A,B} is a partition of X

}
F(X, Y) denotes the set of the functions from X to Y

213

• Notations for a function f ∈F(X, Y)
f/X′ denotes the restriction of f to the domain, for a subset X ′⊆X
f(A) denotes the image of a set A⊆X under f , i.e. {f(x) |x∈A}

f−1(B) denotes the preimage of a set B⊆Y under f , i.e. {x∈X | f(x)∈B}

g ◦ f denotes the composition of f and g for any g∈F(Y, Z), i.e. ∀x∈X, g ◦ f(x)=g(f(x))

• Notations for a real number t∈R
[t]+ denotes the positive part of t i.e. [t]+ = max(t, 0)

[t]− denotes the negative part of t i.e. [t]− = max(−t, 0)

btc denotes the floor of t i.e. btc = max{k∈Z | k6 t}

dte denotes the ceil of t i.e. dte = min{k∈Z | k> t}

[t] denotes the integer part of t i.e. [t] = max{k∈Z | |k|6 |t|}

• Notations for a vector x∈Rn

xi denotes the ith component of x, for any i∈ [1..n]
x(S) denotes the sum of x components having an index in S, for any S⊆ [1..n], i.e. x(S)=

∑
i∈S

xi

x·y denotes the scalar product of x and y∈Rn i.e. x·y =
n∑
i=1

xi yi

x∗y(S) denotes the sum ∑
i∈S

xi yi for any y∈Rn and S⊆ [1..n]

x/S denotes the restriction of x to S⊆ [1..n], i.e. x/S=(xj)j∈S

• Linear algebra notations
vect(S) denotes the vectorial space generated by a set of points S⊆Rn

aff(S) denotes the affine space generated by a set of points S⊆Rn

dim(S) denotes the dimension of the affine space generated by a set of points S⊆Rn,
i.e. dim(S)=dim

(
aff(S)

)
in general, and dim(S)=dim

(
vect(S)

)
if 0∈S

• Convex analysis notations, for S⊆Rn

conv(S) denotes the convex hull of S
cone(S) denotes the convex cone generated by S

cone0(S) denotes the convex cone generated by S∪{0}
extr(C) denotes the set of extreme points of a convex set C⊆Rn

0+(C) denotes the recession cone of a convex set C⊆Rn
−−→extr(C) denotes the set of extreme direction of a convex set C⊆Rn

• Other general notations
I denotes the vector (1, 1, . . . , 1)∈Rn

IS denotes the indicator vector of a set S⊆ [1..n], i.e. (IS)i=1⇔ i∈S

I{i} denotes then the ith vector of the canonical basis, for any i∈ [1..n]

214

Scheduling notations

• For a given instance
J denotes the set of tasks
n denotes le number of tasks, i.e. n= |J |
d denotes the common due date

• For a given instance, and for a given task j∈J of this instance
pj denotes the processing time of a task j∈J
αj denotes the unitary earliness penalty of a task j∈J
βj denotes the unitary tardiness penalty of a task j∈J

A(j) denotes the set of tasks having a larger α-ratio than j, i.e. A(j)=
{
i∈J

∣∣∣∣ αipi > αj
pj

}
Ā(j) denotes the set of other tasks having a smaller α-ratio than j, i.e. Ā(j)=

{
i∈J \{j}

∣∣∣∣ αipi 6 αjpj
}

B(j) denotes the set of tasks having a larger β-ratio than j, i.e. B(j)=
{
i∈J

∣∣∣∣ βipi > βj
pj

}
B̄(j) denotes the set of other tasks having a smaller β-ratio than j, i.e. B̄(j)=

{
i∈J \{j}

∣∣∣∣ βipi 6 βjpj
}

• For a given schedule S
Cj(S) 1 denotes the completion time of a task j∈J
Ej(S) 1 denotes the earliness of a task j∈J , i.e. Ej = [d− Cj]+

Tj(S) 1 denotes the tardiness of a task j∈J , i.e. Tj = [Cj − d]+

E(S) denotes the set of early tasks i.e. E(S) = { j∈ [1..n] |Cj6d } = { j∈ [1..n] |Tj=0 }

T (S) denotes the set of tardy tasks i.e. T (S) = { j∈ [1..n] |Cj>d } = { j∈ [1..n] |Tj>0 }

Graph notations

• For a given undirected graph G=(V,E)
Cy(G) denotes the set of the elementary cycles of G

supp(C) denotes the support of C for any cycle C∈Cy(G)
N(u) denotes the neigborhood of a node u∈V , i.e. N(u)={v∈V \{u} | {u, v}∈E}

1The S will often be implicit.

215

216

Inequalities for F 3 and F 4

∀(i, j)∈J<, Xi,j > δi−δj (X.1)
∀(i, j)∈J<, Xi,j > δj−δi (X.2)
∀(i, j)∈J<, Xi,j 6 δi+δj (X.3)
∀(i, j)∈J<, Xi,j 6 2−(δi+δj) (X.4)

∀j∈J, ej > 0 (1.5)
∀j∈J, ej 6 δj (p(J)−pj) (1.6)
∀j∈J, tj > 0 (1.7)
∀j∈J, tj 6 (1−δj) p(J) (1.8)

∀S⊆J,
∑
j∈S

pj ej >
∑

(i,j)∈S<
pi pj

δi+δj−Xi,j

2 (Q1)

∀S⊆J,
∑
j∈S

pj tj >
∑

(i,j)∈S<
pi pj

2−(δi+δj)−Xi,j

2 +
∑
j∈S

p2
j(1−δj) (Q2)

∀j∈J, e′j+pj δj 6 d−a (1.15)∑
j∈J

pj δj 6 d−a (1.16)

a > 0 (1.17)

∑
j∈J

γj = 1 (1.18)

∀j∈J, δj 6 1−γj (1.19)
∀j∈J, t′j 6 pj + (1−γj) (p(J)−pj) (1.20)

∀j∈J, a 6 pj+(1−γj) d (1.21)

∀j∈J, bj > 0 (1.22)
∀j∈J, bj 6 a (1.23)
∀j∈J, bj 6 δj d (1.24)
∀j∈J, bj > a− (1−δj) d (1.25)

217

218

Index of definitions

α-ratio, 14
β-ratio, 14
ρ-σ-shaped (schedule), 42

A
affine
∼ combination, 204
∼ map, 210
∼ set, 204

B
barycenter, 205
block, 14
boolean quadric polytope, 98
bounding function, 35
Branch-and-Bound, 35
Branch-and-Cut, 38
branching
∼ decision, 35
∼ rule, 35
∼ tree, 35
∼ variable, 36

C
CDDP, 12
CDWP, 80
clique, 201
clique inequalities
∼ for CUT n, 99
∼ for P n

δ,X , 112
∼ for QP n, 99

common (due date), 12
compact (formulation), 34
complete graph, 201
completion time, 10
completion time variables, 38
cone, 206
consecutive
∼ nodes on a cycle, 201
∼ nodes on a path, 201

consistent, 58

convex
∼ combination, 205
∼ hull, 205
∼ set, 205

covariance map, 106
cut, 85, 202
cut inequalities
∼ for P n

δ,X , 113
∼ for QP n, 99

cut inequality, 158
cut polytope, 98
cutting plane based algorithm, 37
cycle, 201

D
d-block, 14
d-or-left-block, 14
d-schedule, 14
dimension
∼ of an affine set, 204
∼ of an arbitrary set, 204

direction of an affine set, 204
distinct (due dates), 29
dominance inequalities, 151
dominant (set), 14
dominated, 151
due date, 11

E
earliness, 11
early (task), 14
early-tardy partition

(from δ variables), 60
(from Cj variables), 59

edge, 201
endpoint (of a path), 201
EOPP, 25
equivalent (V-shaped d-blocks), 41
extreme direction, 207
extreme point, 207

219

F
f obj-cut inequality, 158
f obj-enhancing inequality, 158
f obj-valid inequality, 158
F 2-F 4 procedure, 93
face, 209
facet, 209

G
generalized cut inequalities
∼ for P n

δ,X , 113
∼ for QP n, 99

(undirected) graph, 201

H
half-space, 209
Hamiltonian
∼ cycle, 201
∼ path, 201

hyperplane, 209

I
idle time, 14
independent set, 187
induced cut, 202
induced sub-graph, 201
inedependent

affinely ∼, 204
linearly ∼, 204

insert
∼ inequalities, 155
∼ local optimum, 152
∼ operation, 152

insert-dominated, 152
integer program (IP), 34
invariant
∼ under a function, 110

L
left-block, 14
length
∼ of a cycle , 201
∼ of a path , 201

line, 203
linear
∼ inequality, 33
∼ programm (LP), 33
∼ relaxation, 34
∼ relaxation value, 36

linear ordering variables, 39
locally optimal, 151

M
machine, 9
max-cut, 202
max.w. indep.set, 187
min-cut, 202
Minkowski sum, 203
mixed-integer program (MIP), 34

N
natural variables, 49
neighbor, 151
neighborhood, 151
neighborhood function, 151
node, 201
non-negativity constraint, 10
non-overlapping constraint, 10

O
odd sub-cycle inequalities
∼ for CUT n, 99
∼ for P n

δ,X , 113
∼ for QP n, 99

on-time (task), 14
operation, 151
optimality gap, 114
ordered bi-partition, 41

P
partition, 41
path, 201
pointed sequence, 24
polyhedron, 209
polytope, 209
processing times, 10
pruning, 35

R
recession cone, 206
regular criterion, 49
representative, 41

S
schedule, 10
(line) segment, 203
separation
∼ algorithm, 37
∼ problem, 37

220

sequence, 24
stable set, 187
starting time, 10
straddling (task), 14
sub-graph, 201
support
∼ of a cycle, 201
∼ of a path, 201

swap
∼ inequality, 163
∼ local optimum, 152
∼ operation, 152

swap-dominated, 152
symmetric (penalties), 15

T
tardiness, 11
tardy (task), 14
task, 9
time horizon, 38
time-indexed variables, 38
transposition (inequality ∼), 104
triangle inequalities
∼ for CUT n, 99
∼ for P n

δ,X , 112
∼ for QP n, 99

trivial (cut) , 118
trivial inequalities
∼ for P n

δ,X , 112
∼ for QP n, 98

U
u-canonical, 153
-shaped, 14

UCDDP, 12
undirected graph, 201
unrestrictive (due date), 12

V
V-shaped, 14
valid
∼ hyperplane, 211
∼ inequality, 33

valid inequality, 158
vertex, 209

W
WETP, 25

Index of polyhedra and formulations

CUT n, 98

F 1, 41
F 2, 43
F 3, 61
F 3-extr, 87
F 3-int, 87
F 3-lp, 87
F 4, 71
F edges, 187

FLO, 40
Fmax-cut
δ,X , 183
FTI, 39

P 3, 61
P 4, 71
P n
δ,X , 98
P̃ n
δ,X , 118
≈
P n
δ,X , 118

PG
F 2 , 183
P edges, 187
P n
F 2 , 43
PLO, 40
PQ, 52
PQM , 55
P TI , 39

QP n, 98
QP n

LP, 98

221

	Préface (in french)
	Scheduling around a common due date and related dominance properties
	Scheduling problem definition
	Dominance properties for common due date problems
	Algorithms for the common due date problems
	MIP formulations for scheduling problems
	A compact MIP formulation for the unrestrictive case
	Outline of Parts A, B, and C

	A Formulations using natural variables
	Non-overlapping inequalities
	Non-overlapping Queyranne's inequalities
	Key lemmas to use non-overlapping inequalities in a larger setting
	A formulation for UCDDP using natural variables
	A formulation for CDDP using natural variables
	Using natural variables and non-overlapping inequalities for related problems

	How to deal with non-overlapping inequalities in practice?
	Separation algorithm for non-overlapping inequalities
	Extremality and integrality constraints
	Experimental results

	B Reinforcement inequalities for ,X variables
	Bridging polytopes CUTn, QPn and P,Xn
	Polytopes CUTn, QPn and P,Xn
	Classical inequalities for QPn and CUTn
	Some results about QPnLP
	Facets transposition
	Numerical experiments

	 Excluding trivial cuts using facet defining inequalities
	Introduction
	How to prove that inequalities define facets
	Hamiltonian path inequalities
	Hamiltonian cycle inequalities
	Without name inequalities
	Star inequality
	Full inequalities

	C Dominance inequalities
	Dominance inequalities for UCDDP
	Neighborhood based dominance properties
	Linear inequalities for the insert dominance property
	General framework to produce dominance inequalities from a set of operations
	Application for swap operations
	Additional properties on insert and swap inequalities

	Practical application of dominance inequalities for UCDDP
	Solving MIP formulations to optimality
	Lower bound obtained at the root node
	Using swap and insert inequalities to obtain an upper bound
	Insert and swap operations use cases

	Dominance inequalities for other combinatorial optimization problems
	Dominance inequalities for max-cut
	Dominance inequalities for the maximum weighted independent set problem

	Conclusion
	Bibliography
	Appendices
	Graph theory definitions
	Convex analysis definitions and properties
	General properties and definitions
	Useful properties for transposing facets

	Notations
	General notations
	Scheduling notations
	Graph notations

	Inequalities for F3 and F4
	Indices
	Index of definitions
	Index of polyhedra and formulations

