

Licence 2

Examen 2 - Algèbre linéaire 3 - Première Session

- Les exercices sont indépendants.
- On prendra un soin particulier à la rédaction des réponses.
- L'usage des téléphones portables, calculatrices, montres connectées ... est strictement INTERDIT.
- Tous les documents de cours sont interdit.
- Le sujet peut paraître long, pas de panique le barème sera adapté!

Exercice 1: Questions de cours

- 1. Soit $n \ge 1$, et $A = (a_{ij})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{R})$ une matrice dont les colonnes sont notées $C_1, \ldots C_n$.
 - (a) Montrer que pour $i \neq j \in \{1, ... n\}$, le déterminant de A change de signe si on échange les colonnes C_i et C_j .
 - (b) Donner un formule explicite pour det(A).
 - (c) Montrer que si $det(A) \neq 0$, alors $(C_1, \ldots C_n)$ forme une base de $\mathcal{M}_{n1}(\mathbb{R})$. (On ne demande pas de montrer la réciproque!)
- 2. Soit E un \mathbb{K} -espace vectoriel de dimension finie, et $f \in \mathcal{L}(E)$.
 - (a) Donner la définition d'endomorphisme diagonalisable, et de valeur propre.
 - (b) Soit $\lambda \in \mathbb{K}$ une valeur propre de f d'ordre α . Montrer que

$$dim(E_{\lambda}) \leqslant \alpha$$
.

(c) Soient $\lambda_1, \ldots, \lambda_p \in \mathbb{K}$ les valeurs propres de f, et $\alpha_1, \ldots, \alpha_p$ leur ordres respectifs. Montrer que f est diagonalisable si et seulement si son polynôme caractéristique est scindé et

$$dim(E_{\lambda_i}) = \alpha_i, \quad \forall i = 1, \dots p.$$

(d) Enoncer une condition nécessaire et suffisante sur le polynôme minimal de f pour que f soit diagonalisable.

Exercice 2

Soit $m \in \mathbb{R}$. On considère $f_m \in \mathcal{L}(\mathbb{R}^3)$, l'endomorphisme dont la matrice dans la base canonique $\mathcal{B} = (e_1, e_2, e_3)$, est définie par

$$A = \mathcal{M}_{\mathcal{B},\mathcal{B}}(f_m) = \begin{pmatrix} 1+m & 1+m & 1\\ -m & -m & -1\\ m & m-1 & 0 \end{pmatrix}.$$

- 1. Déterminer le polynôme caractéristique de f_m , et montrer que ses valeurs propres sont 1 et -1.
- 2. Déterminer l'espace-propre E_1 , lorsque $m \neq 0$.
- 3. Pour quelle(s) valeur de $m \in \mathbb{R}$ l'endomorphisme est-il diagonalisable?
- 4. Déterminer suivant les valeurs de m le polynôme minimal de f_m .

- 5. On considère dans cette question que m=0. Pour $n\in\mathbb{N}^*$, calculer A^n . Que se passe-t-il si n est pair?
- 6. On considère maintenant m=-1. Trouver une base \mathcal{C} de \mathbb{R}^3 dans laquelle

$$\mathcal{M}_{\mathcal{C},\mathcal{C}}(f_m) = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix},$$

Exercice 3

Soit $n \ge 2$ et $(a, b) \in \mathbb{R}^2$. On note $B \in \mathcal{M}_n(\mathbb{R})$ la matrice définie par

$$B = \begin{pmatrix} a & b & \dots & b & \dots & b \\ b & a & b & \dots & & b \\ \vdots & b & \ddots & b & \dots & \vdots \\ \vdots & b & \ddots & b & \dots \\ \vdots & \vdots & \vdots & b & \ddots \\ b & \dots & b & \dots & b & a \end{pmatrix},$$

la matrice de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients diagonaux valent a et tous les autres coefficients valent b.

Enfin, on note ϕ_B l'endomorphisme de $\mathcal{M}_{n1}(\mathbb{R})$ définit pour tout $X \in \mathcal{M}_{n1}(\mathbb{R})$ par $\phi_B(X) = BX$.

- 1. (a) Rappeler le théorème d'Alembert.
 - (b) Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice trigonalisable. et $\lambda_1, \dots \lambda_n$ ses valeurs propres (comptées avec leur multiplicité). Montrer que

$$Tr(A) = \sum_{i=1}^{n} \lambda_i.$$

- 2. Pour cette question (seulement), on suppose que a = b = 1.
 - (a) Déterminer $\ker(\phi_B)$ et $Im(\phi_B)$.
 - (b) Montrer, sans calculer le polynôme caractéristique que n est valeur propre de ϕ_B , et que l'espace propre associé à n est :

$$E_n = Im(\phi_B)$$
.

- (c) En déduire que $\mathcal{M}_{n1}(\mathbb{R}) = \ker(\phi_B) \oplus Im(\phi_B)$.
- (d) ϕ_B est-il diagonalisable?
- 3. Pour $a, b \in \mathbb{R}$ quelconques, exprimer B en fonction de a, b, la matrice identité I_n et $J_n \in \mathcal{M}_n(\mathbb{R})$ la matrice dont tous les coefficients valent 1.
- 4. A l'aide de la question 2, en déduire que les valeurs propres de ϕ_B sont $\lambda_1 = a b$ et $\lambda_2 = a + (n-1)b$.
- 5. La matrice est-elle diagonalisable?