LE MANS UNIVERSITÉ, LICENCE 2 - ANNÉE 2023/24

TD 1 : Applications linéaires.

Exercice 1 Révisions. Pour chacune des applications suivantes, déterminer si elle est linéaire.

$$\begin{cases}
\mathbb{R}^2 \to \mathbb{R}^2 \\
(x,y) \mapsto (xy,x+y)
\end{cases}
\begin{cases}
\mathbb{R}^3 \to \mathbb{R}^2 \\
(x,y,z) \mapsto (2x+z,5y)
\end{cases}$$

Exercice 2. Pour chacune des applications linéaires suivantes :

- 1. Déterminer le noyau de l'application linéaire. Donner une base et sa dimension.
- 2. Déterminer l'image de l'application linéaire. Donner une base et sa dimension.
- 3. L'application est-elle injective, surjective?

$$\begin{cases} \mathbb{R}^2 \to \mathbb{R}^3 \\ (x,y) \mapsto (x+y,x-y,x+y) \end{cases}$$

$$\begin{cases} \mathbb{R}^3 \to \mathbb{R}^3 \\ (x,y,z) \mapsto (z,x+y+z,-y) \end{cases}$$

$$\begin{cases} \mathbb{R}^3 \to \mathbb{R} \\ (x,y,z) \mapsto x-z \end{cases}$$

Exercice 3. Soit f l'application linéaire définie par :

- 1. Donner (sans calculs) une famille génératrice de Im(f).
- 2. En déduire la dimension de Im(f).
- 3. L'application est-elle surjective? Avait-on besoin de déterminer Im(f) pour répondre à cette question?
- 4. Donner la dimension de ker(f).

Exercice 4. L'espace vectoriel \mathbb{R}^3 est muni de la base $\mathcal{B} = \{e_1, e_2, e_3\}$, avec

$$e_1 = (1, 1, 1), \quad e_2 = (1, 1, 0), \quad e_3 = (1, 0, 0).$$

Soit f l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^3 définie par

$$f(e_1) = e_1 - e_2$$
, $f(e_2) = e_2 - e_3$, $f(e_3) = e_3$.

Soit $(x, y, z) \in \mathbb{R}^3$.

- 1. L'application f est-elle surjective?
- 2. Déterminer la décomposition du vecteur dans la base \mathcal{B} .
- 3. Déterminer f(x, y, z).

Exercice 5.

Soit $m \in \mathbb{R}$ et $u_1 = (m + 1, 2, 3)$, $u_2 = (1, 1 - m, 2)$, $u_3 = (1, -1, m)$, et soit (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 .

- 1. Donner une condition sur m pour que la famille (u_1, u_2, u_3) soit génératrice de \mathbb{R}^3 .
- 2. En déduire une condition pour que l'application linéaire φ de \mathbb{R}^3 dans \mathbb{R}^3 définie par

$$\varphi(e_1) = u_1, \quad \varphi(e_2) = u_2, \quad \varphi(e_3) = u_3.$$

soit injective.

Exercice 6 (*).

Soit E et F deux espaces vectoriels de dimension finie et ϕ une application linéaire de E dans F.

Montrer que ϕ est un isomorphisme si et seulement si l'image par ϕ de toute base de E est une base de F.