LE MANS UNIVERSITÉ, LICENCE 2 - ANNÉE 2023/24

TD 5 : Matrices d'applications linéaires (2) et changement de base

Exercice 1 Proposition de cours.

Soit E un \mathbb{R} -espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$. Soient \mathcal{B} et \mathcal{C} deux bases de E.

1. Montrer que

$$\mathcal{M}_{\mathcal{C},\mathcal{C}}(f) = \mathcal{M}_{\mathcal{B},\mathcal{C}}(f)P_{\mathcal{B},\mathcal{C}},$$

avec $P = P_{\mathcal{B},\mathcal{C}}$ la matrice de passage de passage \mathcal{B} à \mathcal{C} .

2. En déduire que

$$\mathcal{M}_{\mathcal{C},\mathcal{C}}(f) = P^{-1}\mathcal{M}_{\mathcal{B},\mathcal{B}}(f)P.$$

Exercice 2. Soit $\phi \in \mathcal{L}(\mathbb{R}^3)$, dont la matrice dans la base canonique $\mathcal{B} = (e_1, e_2, e_3)$ est

$$A = \frac{1}{7} \begin{pmatrix} -2 & 6 & -3 \\ 6 & 3 & 2 \\ -3 & 2 & 6 \end{pmatrix}.$$

Soit $\mathcal{B}' = (f_1, f_2, f_2)$ avec

$$f_1 = (1, 0, -3), \quad f_2 = (0, 1, 2), \quad f_3 = (-3, 2, -1).$$

On admet que \mathcal{B}' est une base de \mathbb{R}^3 .

- 1. Donner la matrice de passage de la base $\mathcal B$ à $\mathcal B'$.
- 2. En déduire la matrice de ϕ dans la base $\mathcal{B}'.$
- 3. Donner les images $\phi(f_i)$ pour i=1,2,3. Quel interprétation peut-on donner pour ϕ ?

Exercice 3. Soit $f \in \mathcal{L}(\mathbb{R}^2)$ de matrice $A = \begin{pmatrix} 2 & \frac{2}{3} \\ -\frac{5}{2} & -\frac{2}{3} \end{pmatrix}$ dans la base canonique. Soit $u_1 = (-2, 3)$ et $u_2 = (-2, 5)$.

1. Montrer que $\mathcal{B} = (u_1, u_2)$ est une base de \mathbb{R}^2 et déterminer la matrice de passage de la base canonique à \mathcal{B} .

- 2. Calculer $f(u_1)$ et $f(u_2)$.
- 3. Calculer A^n pour tout $n \in \mathbb{N}$.
- 4. En déduire l'ensemble des suites réelles vérifiant

$$\begin{cases} x_{n+1} = 2x_n + \frac{2}{3}y_n \\ y_{n+1} = -\frac{5}{2}x_n - \frac{2}{3}y_n. \end{cases}$$

Exercice 4. Soit $\phi: \mathbb{R}^3 \to \mathbb{R}^2$ l'application linéaire définie par

$$M_{\mathcal{B},\mathcal{C}}(\phi) = \begin{pmatrix} 2 & -1 & 1\\ 3 & 2 & -3 \end{pmatrix}$$

par rapport à deux bases quelconques $\mathcal{B} = (e_1, e_2, e_3)$ et $\mathcal{C} = (f_1, f_2)$.

- 1. L'application ϕ est-elle injective? Déterminer $Ker(\phi)$ en fonction de \mathcal{B} .
- 2. Soit

$$e'_1 = e_2 + e_3, \quad e'_2 = e_3 + e_1, \quad e'_3 = e_1 + e_2.$$

- (a) Montrer que $\mathcal{B}' = (e'_1, e'_2, e'_3)$ est une base de \mathbb{R}^3 .
- (b) Déterminer $A_1 = M_{\mathcal{B}',\mathcal{C}}(\phi)$.
- 3. Soit $C' = (f'_1, f'_2)$, avec

$$f_1' = \frac{1}{2}(f_1 + f_2), \quad f_2' = \frac{1}{2}(f_1 - f_2).$$

Déterminer $A_2 = M_{\mathcal{B}',\mathcal{C}'}(\phi)$.

Exercice 5. On considère l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base canonique \mathcal{B} de \mathbb{R}^3 est

$$M = \mathcal{M}_{\mathcal{B},\mathcal{B}}(f) = \begin{pmatrix} 1 & 1 & -1 \\ -3 & -3 & 3 \\ -2 & -2 & 2 \end{pmatrix}.$$

- 1. Déterminer Im(f) et sa dimension.
- 2. Déterminer une base de Ker(f).
- 3. Montrer que $Im(f) \subset Ker(f)$.
- 4. En déduire que $M^n = 0$ pour tout $n \ge 2$.

Exercice 6. Soit
$$M = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$$
 et $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -4 \end{pmatrix}$. Le but de l'exercice

est de montrer que M et D sont deux matrices semblables.

1. Soit $f \in \mathcal{L}(\mathbb{R}^3)$ tel que $M = \mathcal{M}_{\mathcal{B},\mathcal{B}}(f)$, avec \mathcal{B} la base canonique de \mathbb{R}^3 . Trouver trois vecteurs u_1 u_2 et u_3 non nuls tels que :

$$u_1 \in Ker(f - Id), \ u_2 \in Ker(f - 2Id) \text{ et } u_3 \in Ker(f + 4Id).$$

- 2. Montrer que $C = (u_1, u_2, u_3)$ est une base de \mathbb{R}^3 .
- 3. Déterminer la matrice de f dans la base C.
- 4. Conclure et en déduire une expression de M^n , pour $n \geq 2$.