LE MANS UNIVERSITÉ, LICENCE 2 - ALGÈBRE 2 - ANNÉE 2023-24

TD 7: Diagonalisation

Exercice 1. Soit $\mathcal{B}=(f_1,f_2)$ une base quelconque de \mathbb{R}^2 et $\phi\in\mathcal{L}(\mathbb{R}^2)$ une application linéaire, définie par

$$\phi(f_1) = f_1 + 2f_2, \quad \phi(f_2) = 4f_1 + 3f_2.$$

- 1. Déterminer $A = \mathcal{M}_{\mathcal{B},\mathcal{B}}(\phi)$.
- 2. Déterminer le polynôme caractéristique de ϕ et trouver les valeurs propres de ϕ .
- 3. Pour chaque valeur propre $\lambda \in \mathbb{R}$, déterminer une base de $\ker(\phi \lambda Id_{\mathbb{R}^2})$.
- 4. En déduire une matrice inversible P telle que $P^{-1}AP$ soit diagonale.

Exercice 2. Soit A une matrice carrée d'ordre n. On suppose que A est inversible et que $\lambda \in \mathbb{R}$ est une valeur propre de A.

- 1. Montrer que $\lambda \neq 0$.
- 2. Montrer que si X est un vecteur propre de A associé à la valeur propre λ , alors il est vecteur propre de A^{-1} associé à la valeur propre $\frac{1}{\lambda}$.

Exercice 3. Soit A la matrice définie par

$$A = \begin{pmatrix} \pi & 1 & 2 \\ 0 & \pi & 3 \\ 0 & 0 & \pi \end{pmatrix}.$$

- 1. Montrer que la seule valeur propre de A est π .
- 2. En déduire que A n'est pas diagonalisable.

Exercice 4 Racine cubique. Soit $f \in \mathcal{L}(\mathbb{R}^2)$ l'endomorphisme dont la matrice dans la base canonique est donnée par

$$A = \begin{pmatrix} -5 & 3\\ 6 & -2 \end{pmatrix}$$

.

- 1. Déterminer les valeurs propres de f.
- 2. Diagonaliser A.
- 3. En déduire qu'il existe une matrice B telle que $B^3=A$.

Exercice 5. Soit $f \in \mathcal{L}(\mathbb{R}^3)$ l'endomorphisme dont la matrice dans la base canonique est donnée par

$$A = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}.$$

- 1. Déterminer les valeurs propres de f.
- 2. Montrer que f est diagonalisable et déterminer une base de vecteurs propres de f.
- 3. Calculer A^n pour tout $n \in \mathbb{N}$.
- 4. Reprendre les questions précédentes avec

$$A' = \begin{pmatrix} 4 & 1 & -1 \\ 2 & 5 & -2 \\ 1 & 1 & 2 \end{pmatrix}.$$

Exercice 6. Soit $f \in \mathcal{L}(\mathbb{R}^3)$ et $\mathcal{B} = (v_1, v_2, v_3)$ une base quelconque de \mathbb{R}^3 , telle que

$$M = \mathcal{M}_{\mathcal{B}',\mathcal{B}'}(f) = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

- 1. Donner l'expression de f en fonction de v_1, v_2, v_3 .
- 2. Factoriser le polynôme caractéristique de f.
- 3. f est-il diagonalisable dans $\mathcal{L}(\mathbb{R}^3)$? Dans $\mathcal{L}(\mathbb{C}^3)$?

Exercice 7 Endomorphisme nilpotent. Soit f un endomorphisme nilpotent.

- 1. Montrer que f n'admet pour seule valeur propre que 0.
- 2. En déduire que si f est diagonalisable et nilpotent, alors f est l'application nulle.

Exercice 8. Soit E un K-espace vectoriel, $f \in \mathcal{L}(E)$ et

$$P_f(X) = (-1)^n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0.$$

Montrer que $a_0 = det(f)$ et $a_{n-1} = (-1)^{n-1}Tr(f)$. En déduire que pour tout $A \in \mathcal{M}_2(\mathbb{K})$,

$$P_A(X) = X^2 - Tr(A)X + det(A).$$

Exercice 9. Soit $f \in \mathcal{L}(\mathbb{R}^4)$ l'application linéaire dont la matrice dans la base canonique est donnée par :

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 \end{pmatrix}.$$

- 1. Donner la dimension de ker(f) et le rang de f.
- 2. Déterminer sans calculer son polynôme caractéristique, les valeurs propres de f.
- 3. De manière générale, donner une condition nécessaire et suffisante pour qu'un endomorphisme de rang 1 soit diagonalisable.

Indication: On pourra considérer la trace de A.