LE MANS UNIVERSITÉ, LICENCE 2 - ALGÈBRE 3 - ANNÉE 2023/24

TD 8: Diagonalisation, Trigonalisation

Exercice 1. Soit $a \in \mathbb{R}$, et la matrice

$$A = \begin{pmatrix} 0 & 1 \\ -a & 1+a \end{pmatrix}.$$

- 1. Pour quelles valeurs de a la matrice A est-elle diagonalisable?
- 2. Calculer A^n pour $n \in \mathbb{N}$ lorsque la matrice est diagonalisable.
- 3. On définit une suite $(u_n)_{n\in\mathbb{N}}$ par

$$u_{n+2} = (1+a)u_{n+1} - au_n, \quad n \ge 2,$$

avec $u_0, u_1 \in \mathbb{R}$.

- (a) Pour $n \in \mathbb{N}$, on pose $U_n = \begin{pmatrix} u_0 \\ u_1 \end{pmatrix}$. Exprimer U_{n+1} en fonction de U_n et A.
- (b) Exprime U_n en fonction de U_0 et de a lorsque A est diagonalisable.
- (c) Etudier la limite de la suite $(u_n)_{n\in\mathbb{N}}$ en fonction des valeurs de a.

Exercice 2. Soit $f \in \mathcal{L}(\mathbb{R}^4)$ dont la matrice dans la base canonique est

$$A = \begin{pmatrix} -8 & -3 & -3 & 1 \\ 6 & 3 & 2 & -1 \\ 26 & 7 & 10 & -2 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

- 1. Montrer que 1 et 2 sont valeurs propres de f.
- 2. Déterminer E_1 et E_2 .
- 3. Soit $u \in E_2$. Trouver deux vecteurs $v, w \in \mathbb{R}^4$ tels que

$$f(v) = 2v + u, \quad f(w) = 2w + v.$$

4. Soit $e \in E_1$. Montrer que (e, u, v, w) est une base de \mathbb{R}^4 . Donner la matrice de f dans cette base.

5. f est-il un endomorphisme diagonalisable?

Exercice 3. Soit

$$A_{t} = \begin{pmatrix} t & 1 & \dots & 1 \\ 1 & t & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 1 \\ 1 & \dots & \dots & 1 & t \end{pmatrix} \in \mathcal{M}_{n}(\mathbb{R}).$$

- 1. Sans calculer le polynôme caractéristique de A_t , montrer que t-1 est valeur propre de A_t .
- 2. Déterminer les valeurs propres de A_t (toujours sans calculer son polynôme caractéristique). En déduire la forme factorisée de son polynôme caractéristique.
- 3. Déterminer E_{t-1} et donner sa dimension.
- 4. La matrice est-elle diagonalisable? Inversible?

Exercice 4 Trigonalisation et polynôme minimal.

Soient

$$A_1 = \begin{pmatrix} 3 & -1 & 1 \\ 2 & 0 & 1 \\ 1 & -1 & 2 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 3 & 2 & -2 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 13 & -5 & -2 \\ -2 & 7 & -8 \\ -5 & 4 & 7 \end{pmatrix}.$$

Pour chacun des matrices,

- 1. Trigonalisez la matrice, en précisant la matrice de passage.
- 2. Calculer son polynôme minimal. La matrice est-elle diagonalisable?

Exercice 5 Polynôme minimal. Soit

$$A = \begin{pmatrix} 5 & 1 & 1 & -1 \\ 1 & 5 & 1 & -1 \\ 1 & 1 & 5 & -1 \\ -1 & -1 & -1 & 5 \end{pmatrix}.$$

- 1. Montrer que A est diagonalisable et inversible.
- 2. En déduire le polynôme minimal de A.
- 3. A partir de la question précédent, calculer A^{-1} .

Exercice 6 Polynôme minimal. Soit

$$A = \begin{pmatrix} 1 & a & 1 \\ 0 & 1 & b \\ 0 & 0 & c \end{pmatrix}, \quad a, b, c \in \mathbb{R}.$$

Pour quelles valeurs de a, b, c la matrice A est-elle diagonalisable?

Exercice 7. Soit E un \mathbb{K} -espace vectoriel de dimension $n \leq 2020$. Montrer que si $f^{2020} = 0$ et f diagonalisable, alors f = 0.