Exercice. On considère la fonction somme

$$\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$$

Montrer que ζ est dérivable sur $]1, +\infty[$ et calculer sa dérivée.

Démonstration. Appliquons le théorème de dérivation sous le signe somme :

- 1. Soit $n \in \mathbb{N}^*$, alors la fonction $f_n : x \longmapsto \frac{1}{n^x}$ est dérivable sur $]1, +\infty[$ de fonction dérivée $f'_n: x \longmapsto -ln(n)\frac{1}{n^x}.$
- 2. Soit $x \in]1, +\infty[$ et $n \in \mathbb{N}^*,$ alors $\sum \frac{1}{n^x}$ converge comme somme de Riemann avec
- 3. Soit $[a,b] \subset]1,+\infty[$ et $n \in \mathbb{N}^*$, alors

$$\forall x \in [a, b], |f'_n(x)| = ln(n) \frac{1}{n^x} \le ln(n) \frac{1}{n^a}$$

avec $\sum ln(n)\frac{1}{n^a}$ convergente par croissance comparée. Donc $\sum f'_n$ converge normalement sur [a,b], donc uniformément.

Par conséquent, d'après le théorème de dérivation sous le sigme somme, $\zeta = \sum f_n$ est dérivable sur]1, $+\infty$ [de fonction dérivée $\zeta': x \longmapsto -\sum_{n=1}^{+\infty} ln(n) \frac{1}{n^x}$

Exercice. Soit $[a,b] \subset \mathbb{R}$ et $f:[a,b] \longrightarrow \mathbb{R}$ continue telle que

$$\forall k \in \mathbb{N}, \int_a^b f(t)t^k dt = 0$$

Montrer que $f \equiv 0$.

Démonstration. Soit $\varepsilon \in \mathbb{R}_+^*$.

Par théorème de Weierstrass il existe une fonction polynomiale $p:[a,b]\longrightarrow \mathbb{R}$ tel que

$$||f - p||_{\infty} \le \varepsilon$$

Ainsi

$$\int_{a}^{b} f(t)^{2} dt = \int_{a}^{b} f(t)(f(t) - p(t)) dt + \int_{a}^{b} f(t)p(t) dt$$

Or en notant $p(t) = \sum_{k=0}^{n} a_k t^k$, on a, par linéarité de l'intégration et l'hypothèse,

$$\int_{a}^{b} f(t)p(t)dt = \sum_{k=0}^{n} a_{k} \int_{a}^{b} f(t)t^{k}dt = 0$$

Ainsi

$$\int_{a}^{b} f(t)^{2} dt \le \int_{a}^{b} |f(t)| |f(t) - p(t)| dt \le \varepsilon \int_{a}^{b} |f(t)| dt$$

Puis en considérant pour $n \in \mathbb{N}^*$, $\varepsilon_n = \frac{1}{n}$, on obtient $\int_a^b f(t)^2 dt = 0$, d'où, par continuité, $f \equiv 0$.

Exercice. On considère la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ définie par

$$f_n: \begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix} \longrightarrow \mathbb{R}$$

$$x \longmapsto cos(x)^n sin(x)$$

- 1. Montrer que $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers 0 sur $\left[0,\frac{\pi}{2}\right]$.
- 2. On considère $g_n = (n+1)f_n$.
 - (a) Montrer que $(g_n)_{n\in\mathbb{N}}$ converge uniformément vers 0 sur tout intervalle de la forme $\left[\delta, \frac{\pi}{2}\right]$ avec $\delta \in \left[0, \frac{\pi}{2}\right[$.
 - (b) Quelle est la limite de $\left(\int_0^{\frac{\pi}{2}} g_n(t) dt\right)_{n \in \mathbb{N}}$?

$D\'{e}monstration.$

1. Soit $\varepsilon \in \mathbb{R}_+^*$.

Par continuité de sin en 0, il existe $\delta \in \in \mathbb{R}_+^*$ tel que

$$\forall x \in [0, \delta], |sin(x)| \le \varepsilon$$

Donc

$$\forall n \in \mathbb{N}, \forall x \in [0, \delta], |f_n(x)| \le \varepsilon$$

Puis

$$\forall x \in \left[\delta, \frac{\pi}{2}\right], |f_n(x)| \le \cos(\delta)^n$$

Or $|\cos(\delta)| < 1$, donc il existe $N \in \mathbb{N}$ tel que

$$\forall n \ge N, \forall x \in \left[\delta, \frac{\pi}{2}\right], |f_n(x)| \le \varepsilon$$

Par conséquent

$$\forall n \ge N, ||f_n||_{\infty} \le \varepsilon$$

Ce qui montre que $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers 0.

2. (a) Soit $\delta \in \left]0, \frac{\pi}{2}\right[$, alors

$$\forall n \in \mathbb{N}, \forall x \in \left[\delta, \frac{\pi}{2}\right], |g_n(x)| \le (n+1)cos(x)^n \le (n+1)cos(\delta)^n$$

 $\operatorname{avec}\ (n+1)cos(\delta)^n \underset{n \to +\infty}{\longrightarrow} 0 \ \operatorname{car}\ |cos(\delta)| < 1.$

Donc $(g_n)_{n\in\mathbb{N}}$ converge uniformément vers 0 sur $\left[\delta, \frac{\pi}{2}\right]$.

(b) On a

$$\int_0^{\frac{\pi}{2}} g_n(x)dx = [-\cos(x)^{n+1}]_0^{\frac{\pi}{2}} = 1 \xrightarrow[n \to +\infty]{} 1 \neq 0$$

Par théorème de convergence dominée (la contraposée), il n'existe pas de domination.

Exercice. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions convexes sur un segment $[a,b]\subset\mathbb{R}$ qui converge simplement vers f. Montrer que la convergence est uniforme sur tout segment de [a,b].

Démonstration. Soit $[\alpha, \beta] \subset]a, b[$. Soit $n \in \mathbb{N}$ et x < y dans $[\alpha, \beta]$, alors, par inégalité des pentes

$$\frac{f_n(a) - f_n(\alpha)}{a - \alpha} \le \frac{f_n(x) - f_n(y)}{x - y} \le \frac{f_n(b) - f_n(\beta)}{b - \beta}$$

Or, par convergence simple, $\frac{f_n(a)-f_n(\alpha)}{a-\alpha} \xrightarrow[n \to +\infty]{} \frac{f(a)-f(\alpha)}{a-\alpha}$ et $\frac{f_n(b)-f_n(\beta)}{b-\beta} \xrightarrow[n \to +\infty]{} \frac{f(b)-f(\beta)}{b-\beta}$, donc il existe $M \in \mathbb{R}_+^*$ tel que

$$-M \le \frac{f_n(a) - f_n(\alpha)}{a - \alpha} \le \frac{f_n(x) - f_n(y)}{x - y} \le \frac{f_n(b) - f_n(\beta)}{b - \beta} \le M$$

Ainsi tous les f_n sont M-lipschitziennes sur $[\alpha, \beta]$.

Soit $\varepsilon \in \mathbb{R}_+^*$, on considère un recouvrement fini $(x_0, ..., x_r)$ de $[\alpha, \beta]$ avec un pas $\frac{\varepsilon}{3M}$. Puis, par convergence simple, il existe $N \in \mathbb{N}$ tel que

$$\forall n \geq N, \forall k \in [0, r], |f_n(x_k) - f(x_k)| \leq \frac{\varepsilon}{3}$$

Ainsi pour $x \in [\alpha, \beta]$, il existe $k \in [0, r-1]$ tel que $x \in [x_k, x_{k+1}]$, en particulier on a $|x - x_k| \leq \frac{\varepsilon}{3M}$, donc

$$|f_n(x) - f(x)| \le |f_n(x) - f_n(x_k)| + |f_n(x_k) - f(x_k)| + |f(x_k) - f(x)|$$

$$\le M|x - x_k| + \frac{\varepsilon}{3} + M|x_k - x| \le \varepsilon$$

car une limite simple de fonctions M-lipschitzienne est M-lipschitzienne.