Question de cours. ** Enoncer et démontrer le théorème de continuité d'une intégrale à paramètre.

Réponse. Soit $f: I \times J \longrightarrow \mathbb{R}$ tel que :

- 1. Pour tout $x \in J$, $t \mapsto f(t,x)$ est mesurable (ou continue par morceaux) sur I.
- 2. Pour tout $t \in I$, $x \mapsto f(t, x)$ est continue sur J.
- 3. Il existe $g \in L^1(I)$ positive tel que

$$\forall t \in I, \forall x \in J, |f(t, x)| \le g(t)$$

(ou une domination sur tout compact)

Alors $F: x \longmapsto \int_I f(t,x)dt$ est continue sur J.

Démonstration. Soit $x \in J$ et $(x_n)_{n \in \mathbb{N}} \in J^{\mathbb{N}}$ tel que $x_n \xrightarrow[n \to +\infty]{} x$.

On considère alors

$$\forall n \in \mathbb{N}, \forall t \in I, f_n(t) := f(t, x_n)$$

On a alors par théorème de convergence dominée

$$F(x_n) = \int_I f(t, x_n) dt = \int_I f_n(t) dt \underset{n \to +\infty}{\longrightarrow} \int_I f(t, x) dt = F(x)$$

D'où, par caractérisation séquentielle de la continuité, F est continue en x, d'où sur J. \square

Exercice. * Soit $f:[0,1] \longrightarrow \mathbb{R}$ une fonction continue par morceaux strictement croissante telle que f(0) = 0 et f(1) = 1. Montrer que

$$\int_0^1 f(t)^n dt \xrightarrow[n \to +\infty]{} 0$$

Démonstration. On a par stricte croissance de f

$$\forall x \in [0, 1[, 0 = f(0) \le f(x) < f(1) = 1$$

Donc, pour $x \in [0,1[,(f(x)^n)_{n \in \mathbb{N}}$ est une suite géométrique de raison $f(x) \in [0,1[,d]]$

$$f(x)^n \xrightarrow[n \to +\infty]{} 0$$

De plus $f(1)^n = 1 \xrightarrow[n \to +\infty]{} 1$.

Par conséquent la suite de fonctions $(f^n)_{n\in\mathbb{N}}$ converge simplement vers $f=\delta_1$ continue par morceaux.

Puis on a la majoration

$$\forall n \in \mathbb{N}, 0 < f^n < 1$$

avec la fonction constante 1 intégrable sur [0,1].

Donc, par théorème de convergence dominée,

$$\int_0^1 f_n \underset{n \to +\infty}{\longrightarrow} \int_0^1 \delta_1 = 0$$

Exercice. ** Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ de classe C^{∞} et nulle en 0. On considère

$$g: \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ g: & & \begin{cases} \frac{f(x)}{x} & \text{si } x \neq 0 \\ f'(0) & \text{si } x = 0 \end{cases}$$

Montrer que g est de classe C^{∞} sur \mathbb{R} .

Démonstration. Soit $x \in \mathbb{R}^*$. Alors, par changement de variable linéaire ux = t (licite car $x \neq 0$)

$$f(x) = f(x) - f(0) = \int_0^x f'(t)dt = x \int_0^1 f'(ux)du$$

Ainsi

$$g(x) = \int_0^1 f'(ux)du$$

De même en x = 0, on a

$$g(0) = f'(0) = \int_0^1 f'(0)du.$$

Donc

$$g = \int_0^1 f(u \times \cdot) du$$

Par conséquent, d'après le théorème de dérivation sous le signe intégrale (dont les hypothèses sont facilement vérifiables sur le segment [0,1]), on a g de classe C^{∞} .

Exercice. *** Pour $x \in]1, +\infty[$, on considère $f(x) = \int_{1}^{+\infty} e^{it^x} dt$.

- 1. Montrer que f est bien définie.
- 2. Etudier la continuité de f.
- 3. Donner un équivalent de f en $+\infty$.

Démonstration.

1. L'intégrale ne peut pas être absolument convergence car l'intégrant est de module 1 non intégrable.

On considère, pour x > 1 et $X \ge 1$, $I_X = \int_1^X e^{it^x} dt$. On effectue le changement de variable $u = t^x$ $(du = xt^{x-1}dt = \frac{x}{t}udt = \frac{xu}{\frac{1}{t}}dt)$:

$$I_X = \int_1^{X^x} e^{iu} \frac{du}{xu^{1-\frac{1}{x}}}.$$

Notons également $J_v = \int_1^v \frac{e^{iu}}{u^{1-\frac{1}{x}}} du$. Alors, par intégration par parties,

$$J_v = \left[\frac{e^{iu}}{iu^{1-\frac{1}{x}}} \right]_1^v + \int_1^v \frac{e^{iu}}{i} \frac{1 - \frac{1}{x}}{u^{2-\frac{1}{x}}} du \xrightarrow[v \to +\infty]{} 0 - \frac{e^i}{i} + \frac{1 - \frac{1}{x}}{i} \int_1^\infty \frac{e^{iu}}{u^{2-\frac{1}{x}}} du \in \mathbb{C}.$$

Ainsi

$$f(x) = \lim_{X \to +\infty} I_X = \frac{1}{x} \int_1^{+\infty} \frac{e^{iu}}{u^{1-\frac{1}{x}}} du = \frac{1}{x} \lim_{v \to +\infty} J_v \in \mathbb{C}.$$

2. Or, d'après le calcul précédent,

$$f(x) = \frac{1}{x} \left(ie^i - i \left(1 - \frac{1}{x} \right) \int_1^{+\infty} \frac{e^{iu}}{u^{2 - \frac{1}{x}}} du \right).$$

Il reste donc à vérifier la continuité de l'intégrale à paramètre. En effet, l'application $(u,x) \in [1,+\infty[\times]1,+\infty[\longmapsto \frac{e^{iu}}{u^{2-\frac{1}{x}}}$ est continue et pour tout $[x_0,+\infty[\subset]1,+\infty[$, pour tout $x \ge x_0$,

$$\forall u \in [1, +\infty[, \left| \frac{e^{iu}}{u^{2-\frac{1}{x}}} \right| \le \frac{1}{u^{2-\frac{1}{x_0}}} \in L^1([1, +\infty[).$$

Par conséquent, d'après le théorème de continuité d'une intégrale à paramètre, f est continue sur $]1,+\infty[$.

3. On a $f(x) = \frac{1}{x} \int_{1}^{+\infty} \frac{e^{iu}}{u^{1-\frac{1}{x}}} du$. On considère donc

$$\Delta(x) = x f(x) - \int_{1}^{+\infty} \frac{e^{iu}}{u} du = \int_{1}^{+\infty} e^{iu} \left(\frac{1}{u^{1 - \frac{1}{x}}} - \frac{1}{u} \right) du.$$

Soit $X \ge 1$. Alors, par intégration par parties,

$$\Delta_X(x) := \int_1^X e^{itu} \left(\frac{1}{u^{1-\frac{1}{x}}} - \frac{1}{u} \right) du = \left[\frac{e^{iu}}{i} \left(\frac{1}{u^{1-\frac{1}{x}}} - \frac{1}{u} \right) \right]_1^X - \int_1^X \frac{e^{iu}}{i} \left(\frac{1 - \frac{1}{x}}{u^{2-\frac{1}{x}}} - \frac{1}{u^2} \right) du.$$

Ainsi

$$\Delta(x) = \lim_{X \to +\infty} \Delta_X(x) = 0 - 0 + i \int_1^{+\infty} e^{iu} \left(\frac{1 - \frac{1}{x}}{u^{2 - \frac{1}{x}}} - \frac{1}{u^2} \right) du.$$

Or

$$e^{iu}\left(\frac{1-\frac{1}{x}}{u^{2-\frac{1}{x}}}-\frac{1}{u^{2}}\right)\underset{x\to+\infty}{\longrightarrow}0,$$

et

$$\left| e^{iu} \left(\frac{1 - \frac{1}{x}}{u^{2 - \frac{1}{x}}} - \frac{1}{u^{2}} \right) \right| \le \frac{1}{u^{\frac{3}{2}}} + \frac{1}{u^{2}}.$$

Donc, d'après le théorème de convergence dominée,

$$\Delta(x) \xrightarrow[x \to +\infty]{} 0.$$

Ainsi

$$f(x) \underset{x \to +\infty}{\sim} \frac{1}{x} \int_{1}^{+\infty} \frac{e^{iu}}{u} du.$$

Question de cours. * Enoncer le théorème de dérivation d'une intégrale à paramètre.

Réponse. Soit : $I \times J \longrightarrow \mathbb{R}$ tel que :

- 1. Pour tout $x \in J$, $t \mapsto f(t,x)$ est mesurable (ou continue par morceaux) sur I.
- 2. Pour tout $t \in I$, $x \mapsto f(t,x)$ est de classe C^1 sur J.
- 3. Il existe $g \in L^1(I)$ positive tel que

$$\forall t \in I, \forall x \in J, \left| \frac{\partial f}{\partial x}(t, x) \right| \le g(t).$$

Alors $F:x\longmapsto \int_I f(t,x)dt$ est de classe C^1 sur J et

$$\forall x \in J, F'(x) = \int_{I} \frac{\partial f}{\partial x}(t, x) dt.$$

Exercice. * On considère $f(x) = \int_0^{+\infty} \frac{e^{-tx}}{\sqrt{t^2 + t}} dt$.

- 1. Etudier l'ensemble de définition.
- 2. Montrer que f est de classe C^1 sur son domaine de définition.

Démonstration.

1. On considère $g(x,t)=\frac{e^{-tx}}{\sqrt{t^2+t}}$ pour tout $x\in\mathbb{R},t\in\mathbb{R}_+^*$. Alors g est continue,

$$g(x,t) \underset{t\to 0}{\sim} \frac{1}{\sqrt{t}}.$$

Donc $q(x, \cdot)$ est intégrable sur [0, 1].

Si $x \leq 0$ alors

$$g(x,t) \ge \frac{1}{\sqrt{t^2 + t}} \underset{t \to +\infty}{\sim} \frac{1}{t}.$$

Donc $g(x,\cdot)$ n'est pas intégrable sur $[1,+\infty[$.

Si x > 0 alors

$$g(x,t) \underset{t \to +\infty}{=} o\left(\frac{1}{t^2}\right).$$

Donc $g(x,\cdot)$ est intégrbale sur $[1,+\infty[$. Par conséquent, le domaine de définition de f est \mathbb{R}_+^* .

2. La fonction g est de classe C^1 sur $\mathbb{R}_+^* \times \mathbb{R}_+^*$ et

$$\frac{\partial g}{\partial x}(x,t) = -\frac{te^{-xt}}{\sqrt{t^2 + t}} = -\frac{\sqrt{t}e^{-xt}}{\sqrt{t + 1}}.$$

Donc pour tout $[a, +\infty[\subset \mathbb{R}_+^*, \text{ pour tout } x \in [a, +\infty[,$

$$\left| \frac{\partial g}{\partial x}(x,t) \right| \le e^{-ta} \in L^1(]0,+\infty[).$$

Par conséquent, par théorème de dérivation d'une intégrale à paramètre, f est de classe C^1 sur \mathbb{R}_+^* et

$$f'(x) = -\int_0^{+\infty} \frac{\sqrt{t}e^{-xt}}{\sqrt{t+1}} dt.$$

Exercice. ** Soit $f \in L^1(\mathbb{R})$ tel qu'il existe $M \in \mathbb{R}_+^*$ tel que

$$\forall x \in \mathbb{R}_+^*, \int_{\mathbb{R}} \frac{|e^{itx} - 1|}{|x|} |f(t)| dt \le M.$$

- 1. Montrer que la fonction $t \longmapsto t f(t)$ est intégrable sur \mathbb{R} .
- 2. Calculer la limite en 0^+ de $h(x) = \int_{\mathbb{R}} \frac{e^{itx} 1}{x} f(t) dt$.

Démonstration.

1. Soit $x, t \in \mathbb{R}$. Alors

$$|e^{itx} - 1| = \left| e^{\frac{itx}{2}} - e^{-\frac{itx}{2}} \right| = 2 \left| \sin\left(\frac{tx}{2}\right) \right|.$$

Or, pour tout $y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$,

$$|\sin(y)| \ge \frac{2}{\pi}|y|.$$

Ainsi, avec $x = \frac{1}{n}$, on obtient

$$M \ge \int_{\mathbb{R}} 2n \left| \sin \left(\frac{t}{2n} \right) \right| |f(t)| dt \ge \int_{-\pi n}^{\pi n} 2n \left| \sin \left(\frac{t}{2n} \right) \right| |f(t)| dt \ge \int_{-\pi n}^{\pi n} \frac{2|t|}{\pi} |f(t)| dt.$$

D'où

$$\int_{-\pi}^{\pi n} |tf(t)| dt \le \frac{\pi M}{2}.$$

Par conséquent $t \longmapsto t f(t)$ est intégrable.

2. On considère $\varphi(x,t) = \frac{e^{itx}-1}{x}f(t)$. Alors

$$\varphi(x,t) \xrightarrow[x\to 0^+]{} it f(t),$$

et, par théorème des accroissements finis,

$$|\varphi(x,t)| \le |it||f(t)| = |tf(t)| \in L^1(\mathbb{R}).$$

Donc, par théorème de convergence dominée,

$$h(x) \underset{x \to 0^+}{\longrightarrow} i \int_{\mathbb{R}} t f(t) dt.$$

Exercice. ** Soit I intervalle réel, $f: I \times \mathbb{R} \longrightarrow \mathbb{R}$ et $u, v: I \longrightarrow \mathbb{R}$ continues. Montrer que $F: x \longmapsto \int_{u(x)}^{v(x)} f(x,t) dt$ est continue sur I.

Démonstration. Soit $x \in I$ tel que $v(x) - u(x) \neq 0$. Alors on effectue le changement de variable affine t = u(x) + s(v(x) - u(x)) (dt = (v(x) - u(x))ds) pour obtenir

$$F(x) = (v(x) - u(x)) \int_0^1 f(x, u(x) + s(v(x) - u(x))) ds.$$

De plus cette égalité est également vérifiée si v(x) - u(x) = 0.

On considère G(x,s) = f(x,u(x) + s(v(x) - u(x))). Alors G est continue sur $I \times [0,1]$ et pour tout compact $C \subset I$,

$$\forall x \in C, \forall s \in [0, 1], |G(x, s)| \le M \in L^1([0, 1]).$$

où l'existence de $M \in \mathbb{R}_+^*$ est assuré par la continuité de $(x,s) \longmapsto f(x,u(x)+s(v(x)-u(x)))$ sur le compact $C \times [0,1]$.

Par conséquent, d'après le théorème de continuité d'une intégrale à paramètre, F est continue sur I.

Question de cours. * Enoncer le théorème de convergence dominée.

Réponse. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues par morceaux sur un intervalle $I\subset\mathbb{R}$ telle que :

- 1. Pour tout $x \in I$, $f_n(x) \xrightarrow[n \to +\infty]{} f(x)$.
- 2. Il existe $g: I \longrightarrow \mathbb{R}_+$ intégrable sur \mathbb{R}_+ tel que

$$\forall n \in \mathbb{N}, \forall x \in I, |f_n(x)| \leq g(x).$$

Alors $\int_I f_n(x) dx \xrightarrow[n \to +\infty]{} \int_I f(x) dx$.

Exercice. ** On considère, pour $\alpha \in \mathbb{R}_+^*$, la fonction gaussienne $G_\alpha : x \in \mathbb{R} \longmapsto e^{-\alpha x^2}$. Calculer sa transformée de Fourier F_α définie par

$$\forall \xi \in \mathbb{R}_+^*, F(G_\alpha)(\xi) = \int_{\mathbb{R}} G_\alpha(x) e^{-ix\xi} dx$$

Réponse. On a

$$F(G_{\alpha}) = \sqrt{\frac{\pi}{\alpha}} G_{\frac{1}{4\alpha}}$$

Démonstration. Vérifions le théorème de dérivation sous le signe intégrale, on note

$$f(x,\xi) = e^{-\alpha x^2} e^{-ix\xi}.$$

Alors:

- 1. Pour tout $\xi \in \mathbb{R}$, $x \mapsto f(x,\xi)$ est mesurable et intégrable sur \mathbb{R} .
- 2. Pour tout $x \in \mathbb{R}, \, \xi \longmapsto f(x,\xi)$ est de classe C^1 et

$$\frac{\partial f}{\partial \xi}(x,\xi) = -ixe^{-\alpha x^2}e^{-ix\xi}$$

3. On a

$$\forall x, \xi \in \mathbb{R}, \left| \frac{\partial f}{\partial \xi}(x, \xi) \right| \le |x| e^{-\alpha x^2} =: \varphi(x)$$

avec φ intégrable sur \mathbb{R} .

Ainsi $F(G_{\alpha})$ est dérivable sur \mathbb{R} et

$$\forall \xi \in \mathbb{R}, F(G_{\alpha})'(\xi) = -i \int_{\mathbb{R}} x e^{-\alpha x^2} e^{-ix\xi} dx$$

Puis par intégration par parties

$$\forall \xi \in \mathbb{R}, F(G_{\alpha})'(\xi) = i \left[\frac{1}{2\alpha} e^{-\alpha x^2} e^{-ix\xi} \right]_{-\infty}^{+\infty} + \frac{i\xi}{2\alpha} \int_{\mathbb{R}} e^{-\alpha x^2} e^{-ix\xi} dx = -\frac{\xi}{2\alpha} F(G_{\alpha})(\xi)$$

D'où, par résolution de l'équation différentielle,

$$\forall \xi \in \mathbb{R}, F(G_{\alpha})(\xi) = F(G_{\alpha})(0)e^{-\frac{\xi^{2}}{4\alpha}} = \sqrt{\frac{\pi}{\alpha}}e^{-\frac{\xi^{2}}{4\alpha}} = \sqrt{\frac{\pi}{\alpha}}G_{\frac{1}{4\alpha}}$$

Exercice. ** Pour x > 0, on considère $s(x) = \int_0^{+\infty} \frac{\sin(t)}{e^{xt} - 1} dt$.

1. Montrer que s est continue sur \mathbb{R}_+^* .

2. Montrer que $s(x) = \sum_{n=1}^{+\infty} \frac{1}{1+n^2x^2}$ pour tout $x \in \mathbb{R}_+^*$.

3. Montrer que $s(x) \underset{x\to 0+}{\sim} \frac{\pi}{2x}$.

Démonstration.

1. On considère $\varphi(x,t) = \frac{\sin(t)}{e^{xt}-1}$. Alors

$$|\varphi(x,t)| \xrightarrow[t\to 0^+]{} \frac{1}{x},$$

et

$$|\varphi(x,t)| \le \frac{1}{e^{xt} - 1} \underset{t \to +\infty}{\sim} e^{-xt} = o\left(\frac{1}{t^2}\right).$$

Donc s est bien définie sur \mathbb{R}_+^* .

De plus φ est continue sur $\mathbb{R}_+^* \times \mathbb{R}_+^*$ et pour tout a > 0, pour tout $x \in [a, +\infty[$,

$$|\varphi(x,y)| \le |\varphi(a,t)| \in L^1(\mathbb{R}_+^*).$$

Donc, par théorème de continuité d'une intégrale à paramètre, s est continue sur \mathbb{R}_+^* .

2. On a

$$\varphi(x,t) = \frac{\sin(t)e^{-xt}}{1 - e^{-xt}} = \sin(t)e^{-xt} \sum_{n=0}^{+\infty} e^{-nxt} = \sum_{n=1}^{+\infty} \sin(t)e^{-nxt} =: \sum_{n=1}^{+\infty} f_n(t).$$

Avec

$$\int_0^{+\infty} f_n(t)dt = Im\left(\int_0^{+\infty} e^{(-nx+i)t}dt\right) = Im\left(\frac{-1}{-nx+i}\right) = \frac{1}{1+n^2x^2}.$$

On pose $S_n(t) = \sum_{k=1}^k f_k(t)$. Alors la suite $(S_n)_{n \in \mathbb{N}^*}$ converge simplement vers $\varphi(x,\cdot)$ et on a

$$\forall n \in \mathbb{N}^*, \forall t \in \mathbb{R}_+^*, |S_n(t)| \le \frac{|sin(t)|}{e^{xt} - 1} \in L^1(\mathbb{R}_+^*).$$

Donc, par théorème de convergence dominée,

$$s(x) = \lim_{n \to +\infty} \int_0^{+\infty} S_n(t)dt = \sum_{n=1}^{+\infty} \frac{1}{1 + n^2 x^2}.$$

3. Soit x>0 et $n\in\mathbb{N}^*.$ Alors, par comparaison série-intégrale, on a

$$\int_{r}^{n+1} \frac{1}{1+t^2x^2} dt \le \frac{1}{1+r^2x^2} \le \int_{r-1}^{n} \frac{1}{1+t^2x^2} dt.$$

Donc, par sommation et d'après ce qui précède,

$$\int_{1}^{+\infty} \frac{1}{1 + t^2 x^2} dt \le s(x) \le \int_{0}^{+\infty} \frac{1}{1 + t^2 x^2} dt,$$

i.e. après changement de variable

$$\frac{1}{x} \int_{x}^{+\infty} \frac{du}{1+u^{2}} \le s(x) \le \frac{1}{x} \int_{0}^{+\infty} \frac{du}{1+u^{2}},$$

i.e.

$$\frac{1}{x}\left(\frac{\pi}{2} - \arctan(x)\right) \le s(x) \le \frac{\pi}{2x}.$$

Par conséquent $s(x) \underset{x \to +}{\sim} \frac{\pi}{2x}$.