Question de cours. Soit E un K-espace vectoriel et u, v deux endomorphismes de E. Si u et v sont semblables alors que peut-on dire de leurs polynômes caractéristiques? Le démontrer.

Exercice. Soit $n \in \mathbb{N}^*$ et $A, B, C \in M_n(\mathbb{C}) \simeq End(\mathbb{C}^n)$ tels que

$$AB - BA = C, AC = CA, BC = CB$$

- 1. On suppose que les vecteurs propres communs à A et B sont dans ker(C).
- 2. Montrer que $ker(C) \neq \{0\}$.
- 3. Montrer que ker(C) est stable par A et B.
- 4. On note A' (respectivement B') l'endomorphisme induit par la restriction de A (respectivement B) à ker(C). Montrer que A' et B' admettent un vecteur propre commun.
- 5. Montrer que A, B, C admettent un vecteur propre commun.
- 6. Montrer que A, B, C sont cotrigonalisables.

Exercice.

- 1. Soit E un \mathbb{C} -espace vectoriel de dimension finie n, u un endomorphisme de E et $Q \in K[X]$. On note $Sp(u) = \{\lambda_1, ..., \lambda_p\}$ le spectre de u.
 - (a) Montrer que si u est diagonalisable alors Q(u) est diagonalisable.
 - (b) Montrer que $Sp(Q(u)) = \{Q(\lambda_1), ..., Q(\lambda_p)\}$
- 2. (a) Soit $A, B \in M_n(\mathbb{C})$ tels que $Sp(A) \cap Sp(B) = \emptyset$. Montrer que $\chi_B(A) \neq 0$.
 - (b) Soit $\varphi: M_n(\mathbb{C}) \longrightarrow M_n(\mathbb{C})$ défini par

$$\forall M \in M_n(\mathbb{C}), \varphi(M) = AM - MB$$

Montrer que si $M \in ker(\varphi)$ et $Q \in \mathbb{C}[X]$ alors

$$Q(A)M = MQ(B)$$

(c) En déduire que $\forall C \in M_n(\mathbb{C}), \exists ! M \in M_n(\mathbb{C}), AM - MB = C$

Correction en ligne sur http://perso.eleves.ens-rennes.fr/dcaci409/Kholles.html ou en tapant "Dorian Cacitti-Holland page personnelle" dans la barre de recherche

Question de cours. Enoncer deux caractérisations de la trigonalisabilité d'un endomorphisme.

Exercice. Soit E un K-espace vectoriel et u un endomorphisme de E. On suppose que u est nilpotent d'ordre $q \in \mathbb{N}^*$.

- 1. Soit $x \in E$ tel que $u^{q-1}(x) \neq 0$, montrer que la famille $(x, u(x), ..., u^{q-1}(x))$ est libre
- 2. Montrer que $F = Vect(x, u(x), ..., u^{q-1}(x))$ est stable par u, puis écrire la matrice de l'endomorphisme induit par la restriction dans la base $(x, u(x), ..., u^{q-1}(x))$.

Exercice. Soit E un K-espace vectoriel, f un endomorphisme de E, A et B deux polynômes à coefficients dans K, D = PGCD(A, B) et M = PPCM(A, B).

- 1. Montrer que $ker(D(f)) = ker(A(f)) \cap ker(B(f))$.
- 2. Montrer que Im(D(f)) = Im(A(f)) + Im(B(f)). Indication : On pourra utiliser une identité de Bézout D = AP + BQ.
- 3. Montrer que ker(M(f)) = ker(A(f)) + ker(B(f)). Indication: En notant $A', B' \in K[X]$ tels que A = A'D, B = B'D, on pourra utiliser une identité de Bézout entre A' et B'.
- 4. Montrer que $Im(M(f)) = Im(A(f)) \cap Im(B(f))$.

Exercice. On considère $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles définies par

$$\forall n \in \mathbb{N}, \begin{cases} u_{n+1} = u_n - v_n \\ v_{n+1} = 2u_n + 4v_n \end{cases} \text{ et } \begin{cases} u_0 = 2 \\ v_0 = 1 \end{cases}$$

Déterminer u_n et v_n en fonction de n.

 $Correction\ en\ ligne\ sur\ http://perso.eleves.ens-rennes.fr/\ dcaci409/Kholles.html\ ou\ en\ tapant\ "Dorian\ Cacitti-Holland\ page\ personnelle"\ dans\ la\ barre\ de\ recherche$

Question de cours. Soit E un K-espace vectoriel de dimension finie n, F un sous-espace vectoriel de E et u un endomorphisme de E. Que peut-on dire du polynôme caractéristique de $u_{|F}$? Le démontrer.

Exercice. Montrer que la matrice $A = \begin{pmatrix} -4 & 0 & -2 \\ 0 & 1 & 0 \\ 5 & 1 & 3 \end{pmatrix}$ est trigonalisable puis, en notant $u = u_A$ l'endomorphisme de \mathbb{R}^3 tel que dans la base canonique e de \mathbb{R}^3 , $Mat_e(u) = A$, déterminer une base (v_1, v_2, v_3) de \mathbb{R}^3 telle que $Mat_v(u)$ soit triangulaire supérieure.

Exercice. On considère E l'ensemble des $M \in M_2(K)$ tels que tr(M) = 0.

- 1. Montrer que E est un K-espace vectoriel, déterminer une K-base de E et en déduire sa dimension.
- 2. Soit $B = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix}$ et

$$f: \begin{array}{ccc} E & \longrightarrow & E \\ M & \longmapsto & MB-BM \end{array}$$

Montrer que f est bien définie, K-linéaire et déterminer sa matrice dans la base trouvée à la question précédente.

3. Soit
$$A = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \in E$$
, calculer $f \circ \dots \circ f(A) = f^n(A)$ pour tout $n \in \mathbb{N}$.

Exercice. Soit $A \in M_n(\mathbb{R})$.

blable à A, ainsi qu'une matrice de passage.

- 1. Soit $\lambda \in Sp(A)$ complexe, montrer que $\overline{\lambda} \in Sp(A)$ et que si $v \in E_{\lambda}(u)$ alors $\overline{v} \in E_{\overline{\lambda}}(u)$.
- 2. Soit $A = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$, déterminer une matrice dans $M_n(\mathbb{C})$ diagonale et sem-

Correction en ligne sur http://perso.eleves.ens-rennes.fr/dcaci409/Kholles.html ou en tapant "Dorian Cacitti-Holland page personnelle" dans la barre de recherche