#### Computing maximally-permissive strategies in acyclic timed automata

Emily Clement<sup>1,2</sup> Thierry Jéron<sup>1</sup> Nicolas Markey<sup>1</sup> David Mentré<sup>2</sup>

<sup>1</sup>IRISA, Inria & CNRS & Univ. Rennes, France <sup>2</sup>Mitsubishi Electric R&D Centre Europe – Rennes, France

1-3 September 2020

#### Context & Motivations - Verify properties despite perturbations

Mathematical model with perfect clocks



### Context & Motivations - Verify properties despite perturbations

Mathematical model with perfect clocks



- Robustness
  - Clocks are imperfects
  - ▶ Robustness:
    - (1) model these imperfections
    - (2) verify  $\mathcal{P}$  despite these imperfections.

#### Classical semantics



An example (run)



Permissiveness: min(0, 2) = 0

An example (run)



Permissiveness: min(1, 1) = 1

An example (run)



Permissiveness: min(1,1) = 1

- Our semantics:
  - ▶ Choice of intervals & action: player
  - ▷ Choice of delays: opponent
  - Permissiveness of the run: the smallest interval proposed

An example (run)



Permissiveness: min(1,1) = 1

- Our semantics:
  - Choice of intervals & action: player
  - ▷ Choice of delays: opponent
  - Permissiveness of the configuration: the smallest interval proposed during the run when the player maximizes it/opponent minimizes it

#### Introduction - State of the art of the robustness

- Topological robustness
  - ▶ Gupta, Henzinger, Jagadeesan "Robust Timed Automata", 1997
  - ▶ Tools: stability theorems.
- Guard enlargement
  - ▶ Sankur "Robustness in Timed Automata", PhD Thesis, 2013
  - ▶ Tools: game theory, parameterized DBM.
- Delay enlargement
  - Bouyer, Fang, Markey "Permissive strategies in timed automata and games", AVOCS'15
  - ▶ Tools: game theory
  - ▶ An algorithm:
  - ▶ Multiple clocks: X.

#### Introduction - Our goal

- Define our semantics of robustness:
  - ▶ We take a context of **reachability** and of **worst cases**.
  - ▶ We will call this robustness the **permissiveness function**.

#### Introduction - Our goal

- Define our semantics of robustness:
  - ▶ We take a context of reachability and of worst cases.
  - We will call this robustness the permissiveness function.
- Construct an algorithm that answers the following question:

For a timed automaton A and a location I, compute the permissiveness function.

- Our Method
  - Construct an algorithm that computes exactly the robustness of any automaton/configuration.

Permissiveness computation - A sequence to compute the permissiveness.

- The permissiveness: a way to quantify robustness
  - $\triangleright$  A sequence  $\mathcal{P}_i(I, v)$  to compute the permissiveness function (its limit)

## Permissiveness computation - A sequence to compute the permissiveness.

- The permissiveness: a way to quantify robustness
  - $\triangleright$  A sequence  $\mathcal{P}_i(I, v)$  to compute the permissiveness function (its limit)
- A recursive algorithm to compute the permissiveness



6/19

# Permissiveness computation - What is the permissiveness?

Guard  $0 \le x \le 3$ 



#### Guard $0 \le x \le 3$



Choice of interval I, permissiveness = |I|

Current action/permissiveness

#### Permissiveness computation - What is the permissiveness?



#### Permissiveness computation - What is the permissiveness?



- Formula of  $\mathcal{P}_i(I, v)$ 
  - $\triangleright$  moves(l, v): set of available (interval, action).
  - $\triangleright$  If  $I = I_f$ :

$$\mathcal{P}_{i}(I, v) = +\infty.$$

- Formula of  $\mathcal{P}_i(I, v)$ 
  - $\triangleright$  moves(I, v): set of available (interval, action).
  - $\triangleright$  If i = 0 and  $l \neq l_f$ :

$$\mathcal{P}_{i}\left(I,v\right)=0.$$

- Formula of  $\mathcal{P}_i(I, v)$ 
  - $\triangleright$  moves(I, v): set of available (interval, action).
  - ▶ If i > 0,  $l \neq l_f$  and  $moves(l, v) = \emptyset$

$$\mathcal{P}_{i}(I, v) = 0.$$

- Formula of  $\mathcal{P}_i(I, v)$ 
  - $\triangleright$  moves(1, v): set of available (interval, action).
  - ▶ If i > 0,  $l \neq l_f$  and if  $moves(l, v) \neq \emptyset$ :

$$\mathcal{P}_{i}\left(I,v\right) = \sup_{(I,a) \in moves(I,v)} \min\left(\left|I\right|, \inf_{\delta \in I} \mathcal{P}_{i-1}\left(\operatorname{succ}\left(v,I,\delta,a\right)\right)\right).$$

- Formula of  $\mathcal{P}_i(I, v)$ 
  - $\triangleright$  moves(l, v): set of available (interval, action).
  - ▶ If i > 0,  $l \neq l_f$  and if  $moves(l, v) \neq \varnothing$ :

$$\mathcal{P}_{i}\left(I,v\right) = \sup_{(I,a) \in moves(I,v)} \min\left(\left|I\right|,\inf_{\delta \in I} \mathcal{P}_{i-1}\left(\operatorname{succ}\left(v,I,\delta,a\right)\right)\right).$$

- Convergence of the sequence
  - ▶ Convergence in a **finite number of steps** for acyclic automata.
  - ightharpoonup Number of necessary steps: maximal distance  $I \longleftrightarrow I_f$

- Formula of  $\mathcal{P}_i(I, v)$ 
  - $\triangleright$  moves(I, v): set of available (interval, action).
  - ▶ If i > 0,  $l \neq l_f$  and if  $moves(l, v) \neq \emptyset$ :

$$\mathcal{P}_{i}\left(I,v\right) = \sup_{(I,a) \in moves(I,v)} \min\left(\left|I\right|, \inf_{\delta \in I} \mathcal{P}_{i-1}\left(\operatorname{succ}\left(v,I,\delta,a\right)\right)\right).$$

- Convergence of the sequence
  - ▶ Convergence in a **finite number of steps** for acyclic automata.
  - $\triangleright$  Number of necessary steps: maximal distance  $I \longleftrightarrow I_f$
  - Issues
    - ▶ inf / sup: **infinite** choices & **opposite** strategies.
    - $\triangleright \mathcal{P}_i(I, v)$  has to be computed for all v.

#### Summary



- Next step

  - ▶ That means, determine the strategy of the opponent

# Strategy of the opponent for linear automata

We consider only linear automata :no 🔾.

### Strategy of the opponent for linear automata

We consider only linear automata :no

Lemma for linear T.A

 $v \mapsto \mathcal{P}_i(I, v)$  is a **concave** function over the set of valuations.

Figure: Example of a concave function

### Strategy of the opponent for linear automata

We consider only linear automata :no

• Lemma for linear T.A

 $v \mapsto \mathcal{P}_i(I, v)$  is a **concave** function over the set of valuations.



Figure: Example of a concave function

#### Consequences

If the player proposes the interval  $[\alpha,\beta]$ , the best strategy of the opponent is to propose the delay  $\alpha$  or  $\beta$ 

#### Summary



- Next step
  - $\triangleright$  sup  $\rightarrow$  max
  - ▶ That means, determine the strategy of the player

$$\mathcal{P}_{i}\left(l,v\right) = \sup_{\left([\alpha,\beta],a\right) \in moves\left(l,v\right)} \min(|\beta - \alpha|, \min_{\delta = \alpha,\beta} \mathcal{P}_{i-1}\left(\operatorname{succ}\left(v,l,\delta,a\right)\right)\right)$$

$$\mathcal{P}_{i}\left(I,v\right) = \sup_{\left(\left[\alpha,\beta\right],a\right) \in moves\left(I,v\right)} \min(\left|\beta - \alpha\right|, \min_{\delta = \alpha,\beta} \mathcal{P}_{i-1}\left(\operatorname{succ}\left(v,I,\delta,a\right)\right)\right)$$

• Goal: Find the interval  $[\alpha, \beta]$  that maximizes:

 $\min(|\beta - \alpha|, \mathcal{P}_{i-1} (\operatorname{succ}(v, l, \alpha, a)), \mathcal{P}_{i-1} (\operatorname{succ}(v, l, \beta, a)))$ 

$$\mathcal{P}_{i}\left(l,v\right) = \sup_{\left(\left[\alpha,\beta\right],a\right) \in moves\left(l,v\right)} \min(|\beta - \alpha|, \min_{\delta = \alpha,\beta} \mathcal{P}_{i-1}\left(\operatorname{succ}\left(v,l,\delta,a\right)\right)\right)$$

• Goal: Find the interval  $[\alpha, \beta]$  that maximizes:

$$\min(|\beta - \alpha|, \mathcal{P}_{i-1}(l', v + \alpha[r]), \mathcal{P}_{i-1}(l', v + \beta[r]))$$

$$\mathcal{P}_{i}\left(I,v\right) = \sup_{\left(\left[\alpha,\beta\right],a\right) \in moves\left(I,v\right)} \min(\left|\beta - \alpha\right|, \min_{\delta = \alpha,\beta} \mathcal{P}_{i-1}\left(\operatorname{succ}\left(v,I,\delta,a\right)\right)\right)$$

• Goal: Find the interval  $[\alpha, \beta]$  that maximizes:

$$\min(|\beta - \alpha|, \mathcal{P}_{i-1}(l', v + \alpha[r]), \mathcal{P}_{i-1}(l', v + \beta[r]))$$

• Tool-Lemma: Proprerty of the permissiveness function For any i and any location I,  $v \mapsto \mathcal{P}_i(I, v)$  is a continuous n-dim piecewise-affine function, with bounded number of pieces.



$$\mathcal{P}_{i}\left(\mathit{I},\mathit{v}\right) = \sup_{\left(\left[\alpha,\beta\right],a\right) \in \mathit{moves}\left(\mathit{I},\mathit{v}\right)} \min(\left|\beta - \alpha\right|, \min_{\delta = \alpha,\beta} \mathcal{P}_{i-1}\left(\mathsf{succ}\left(\mathit{v},\mathit{I},\delta,a\right)\right)\right)$$

• Goal: Find the interval  $[\alpha, \beta]$  that maximizes:

$$\min(|\beta - \alpha|, \mathcal{P}_{i-1}(l', v + \alpha[r]), \mathcal{P}_{i-1}(l', v + \beta[r]))$$

• Tool-Lemma: Proprerty of the permissiveness function For any i and any location I,  $v \mapsto \mathcal{P}_i(I, v)$  is a continuous n-dim piecewise-affine function, with bounded number of pieces.



- Issue: How to optimize the minimum of three **piece-wise** affine functions?
  - $\triangleright$  (1) "Fix" the pieces where  $v + \alpha[r]$  and  $v + \beta[r]$  end up: an algorithm

$$\mathcal{P}_{i}\left(I,v\right) = \sup_{\left(\left[\alpha,\beta\right],a\right) \in moves\left(I,v\right)} \min(\left|\beta - \alpha\right|, \min_{\delta = \alpha,\beta} \mathcal{P}_{i-1}\left(\operatorname{succ}\left(v,I,\delta,a\right)\right)\right)$$

• Goal: Find the interval  $[\alpha, \beta]$  that maximizes:  $\min(|\beta - \alpha|, \mathcal{P}_{i-1}(l', v + \alpha[r]), \mathcal{P}_{i-1}(l', v + \beta[r]))$ 

• Tool-Lemma: Proprerty of the permissiveness function

For any i and any location I,  $v \mapsto \mathcal{P}_i(I, v)$  is a continuous n-dim piecewise-affine function, with bounded number of pieces.



- Issue: How to optimize the minimum of three **piece-wise** affine functions?
  - $\triangleright$  (1) "Fix" the pieces where  $v + \alpha[r]$  and  $v + \beta[r]$  end up: an algorithm
  - ▶ (2) **Optimize** the minimum of three **affine** functions: a technical lemma

## Strategy of the player for linear automata - The algorithm.

• Goal: which interval  $[\alpha, \beta]$  maximizes

$$\min(|\beta - \alpha|, \mathcal{P}_{i-1}(l', v + \alpha[r]), \mathcal{P}_{i-1}(l', v + \beta[r]))?$$

• Steps of the algorithm:

## Strategy of the player for linear automata - The algorithm.

• Goal: which interval  $[\alpha, \beta]$  maximizes

$$\min(|\beta - \alpha|, \mathcal{P}_{i-1}(l', v + \alpha[r]), \mathcal{P}_{i-1}(l', v + \beta[r]))?$$



- Steps of the algorithm:
  - $\triangleright$  (1) Fix two cells  $h_{\alpha}$ ,  $h_{\beta}$  s.t.  $v + \alpha[r] \in h_{\alpha}$  and  $v + \beta[r] \in h_{\beta}$

• Goal: which interval  $[\alpha, \beta]$  maximizes

$$\min(|\beta - \alpha|, \mathcal{P}_{i-1}(l', v + \alpha[r]), \mathcal{P}_{i-1}(l', v + \beta[r]))?$$



- Steps of the algorithm:
  - $\triangleright$  (1) Fix two cells  $h_{\alpha}$ ,  $h_{\beta}$  s.t.  $v + \alpha[r] \in h_{\alpha}$  and  $v + \beta[r] \in h_{\beta}$
  - $\triangleright (2) \text{ Compute } S_{h_{\alpha},h_{\beta}} = \{ v \in \mathbb{R}^n | \exists \alpha,\beta,v+\alpha[r] \in h_{\alpha},v+\beta[r] \in h_{\beta} \}$

• Goal: which interval  $[\alpha, \beta]$  maximizes

$$\min(|\beta - \alpha|, \mathcal{P}_{i-1}(l', v + \alpha[r]), \mathcal{P}_{i-1}(l', v + \beta[r]))?$$



- Steps of the algorithm:
  - $\triangleright$  (1) Fix two cells  $h_{\alpha}$ ,  $h_{\beta}$  s.t.  $v + \alpha[r] \in h_{\alpha}$  and  $v + \beta[r] \in h_{\beta}$
  - $\triangleright \ \ (2) \ \ \text{Compute} \ \ {\color{red} S_{h_{\alpha},h_{\beta}}} = \{ v \in \mathbb{R}^n | \exists \alpha,\beta,v+\alpha[r] \in h_{\alpha},v+\beta[r] \in h_{\beta} \}$
  - $\triangleright$  (3) Fix  $v \in S_{h_{\alpha},h_{\beta}}$  and compute the intervals of enabled  $\alpha$ ,  $\beta$ :  $I_{\alpha}^{v},I_{\beta}^{v}$

• Goal: which interval  $[\alpha, \beta]$  maximizes

$$\min(|\beta - \alpha|, \mathcal{P}_{i-1}(l', v + \alpha[r]), \mathcal{P}_{i-1}(l', v + \beta[r]))?$$

- Steps of the algorithm:
  - $\triangleright$  (1) Fix two cells  $h_{\alpha}$ ,  $h_{\beta}$  s.t.  $v + \alpha[r] \in h_{\alpha}$  and  $v + \beta[r] \in h_{\beta}$
  - $\triangleright (2) \text{ Compute } S_{h_{\alpha},h_{\beta}} = \{ v \in \mathbb{R}^{n} | \exists \alpha,\beta,v + \alpha[r] \in h_{\alpha},v + \beta[r] \in h_{\beta} \}$
  - ▷ (3) Fix  $v \in S_{h_{\alpha},h_{\beta}}$  and compute the intervals of enabled  $\alpha$ ,  $\beta$ :  $I_{\alpha}^{v},I_{\beta}^{v}$
  - ightharpoonup (4) The technical lemma: find such  $\alpha$  and  $\beta$  in  $I_{\alpha}^{\vee} \times I_{\beta}^{\vee}$  s.t  $\alpha \leq \beta$  that maximizes

$$\min(\beta - \alpha, \mathcal{P}_i(I, v + \alpha[r]), \mathcal{P}_i(I, v + \beta[r])).$$

• Goal: which interval  $[\alpha, \beta]$  maximizes

$$\min(|\beta - \alpha|, \mathcal{P}_{i-1}(l', v + \alpha[r]), \mathcal{P}_{i-1}(l', v + \beta[r]))?$$



- Steps of the algorithm:
  - $\triangleright$  (1) Fix two cells  $h_{\alpha}$ ,  $h_{\beta}$  s.t.  $v + \alpha[r] \in h_{\alpha}$  and  $v + \beta[r] \in h_{\beta}$
  - $\triangleright (2) \text{ Compute } S_{h_{\alpha},h_{\beta}} = \{ v \in \mathbb{R}^{n} | \exists \alpha,\beta,v + \alpha[r] \in h_{\alpha},v + \beta[r] \in h_{\beta} \}$
  - $\triangleright$  (3) Fix  $v \in S_{h_{\alpha},h_{\beta}}$  and compute the intervals of enabled  $\alpha$ ,  $\beta$ :  $I_{\alpha}^{v},I_{\beta}^{v}$

$$\min(\beta - \alpha, \mathcal{P}_i(l, v + \alpha[r]), \mathcal{P}_i(l, v + \beta[r])).$$

▷ (5) Iterate for all pieces and compare

### Strategy of the player for linear automata - The technical lemma

To maximize the quantity  $\min(\beta - \alpha, a\alpha + b, c\beta + d)$  over  $\alpha$  and  $\beta$  in  $[m_{\alpha}, M_{\alpha}] \times [m_{\beta}, M_{\beta}]$  s.t  $\alpha \leq \beta$ :

### Strategy of the player for linear automata - The technical lemma

To maximize the quantity  $\min(\beta - \alpha, a\alpha + b, c\beta + d)$  over  $\alpha$  and  $\beta$  in  $[m_{\alpha}, M_{\alpha}] \times [m_{\beta}, M_{\beta}]$  s.t  $\alpha \leq \beta$ :

• Detail of the case:  $a \ge 0$  and  $c \ge 0$ 

| Condition                                                                      | coordinates of maximal point               | value of maximal point                            |  |
|--------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------|--|
| $\frac{M_{\beta}-b}{a+1} \leq m_{\alpha}$                                      | $(m_{\alpha}, M_{\beta})$                  | $min\{M_{\beta}-m_{\alpha},cM_{\beta}+d\}$        |  |
| $m_{\alpha} \leq \frac{M_{\beta} - b}{a+1} \leq \min\{M_{\alpha}, M_{\beta}\}$ | $(\frac{M_{\beta}-b}{a+1}, M_{\beta})$     | $\min\{\frac{aM_{\beta}+b}{a+1}, cM_{\beta}+d\}$  |  |
| $min\{M_{\alpha}, M_{\beta}\} \le \frac{M_{\beta}-b}{a+1}$                     | $(\min\{M_{\alpha},M_{\beta}\},M_{\beta})$ | $\min\{aM_{\alpha}+b,aM_{\beta}+b,cM_{\beta}+d\}$ |  |

### Strategy of the player for linear automata - The technical lemma

To maximize the quantity  $\min(\beta - \alpha, a\alpha + b, c\beta + d)$  over  $\alpha$  and  $\beta$  in  $[m_{\alpha}, M_{\alpha}] \times [m_{\beta}, M_{\beta}]$  s.t  $\alpha \leq \beta$ :

• Detail of the case:  $a \ge 0$  and  $c \ge 0$ 

| Condition                                                                    | coordinates of maximal point               | value of maximal point                            |  |
|------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------|--|
| $\frac{M_{\beta}-b}{a+1} \leq m_{\alpha}$                                    | $(m_{\alpha}, M_{\beta})$                  | $\min\{M_{\beta}-m_{\alpha},cM_{\beta}+d\}$       |  |
| $m_{\alpha} \leq \frac{M_{\beta}-b}{a+1} \leq \min\{M_{\alpha}, M_{\beta}\}$ | $(\frac{M_{\beta}-b}{s+1}, M_{\beta})$     | $\min\{\frac{aM_{\beta}+b}{a+1}, cM_{\beta}+d\}$  |  |
| $\min\{M_{\alpha}, M_{\beta}\} \leq \frac{M_{\beta}-b}{a+1}$                 | $(\min\{M_{\alpha},M_{\beta}\},M_{\beta})$ | $\min\{aM_{\alpha}+b,aM_{\beta}+b,cM_{\beta}+d\}$ |  |



Figure: Value of  $\min(\beta - \alpha, a\alpha + b, c\beta + d)$  over  $\mathbb{R}^2$ , where  $D = \{\alpha \in [m_{\alpha}, M_{\alpha}], \beta \in [m_{\beta}, M_{\beta}] | \alpha \leq \beta\}$ 



(a) A two-transitions automaton



(b) Permissiveness in  $l_0$ 



(c) Permissiveness in  $I_1$ 



(a) A two-transitions automaton



(b) Permissiveness in I<sub>0</sub>



(c) Permissiveness in l<sub>1</sub>

$$ho$$
 Let's take  $h_{lpha}=h_{eta}=$  Then  $S_{h_{lpha},h_{eta}}$ 

en 
$$S_{h_{lpha}}$$



(a) A two-transitions automaton



(b) Permissiveness in In



(c) Permissiveness in I<sub>1</sub>

$$ho$$
 Let's take  $h_{lpha}=h_{eta}=$   $(x-y)$ . Then  $S_{h_{lpha},h_{eta}}=$ 

ightharpoonup For v = (x, y),  $I_{\alpha}^{v} = [0, min(1 - x, 1 - y)]$  and  $I_{\beta}^{v} = [0, min(1 - x, 1 - y)]$ 



(a) A two-transitions automaton



(b) Permissiveness in In



(c) Permissiveness in I<sub>1</sub>



- $\triangleright$  For v = (x, y),  $I_{\alpha}^{v} = [0, min(1 x, 1 y)]$  and  $I_{\beta}^{v} = [0, min(1 x, 1 y)]$
- $\triangleright$  Suppose that 1-x<1-y then  $I_{\alpha}^{\nu}=[0,1-x]$  and  $I_{\beta}^{\nu}=[0,1-x]$



(a) A two-transitions automaton



(b) Permissiveness in In



(c) Permissiveness in I<sub>1</sub>





- $\triangleright$  Suppose that 1-x<1-y then  $I^{\mathsf{v}}_{\alpha}=[0,1-x]$  and  $I^{\mathsf{v}}_{\beta}=[0,1-x]$
- ▶ Let's find  $\alpha < \beta$  in  $I_{\alpha}^{\nu} \times I_{\beta}^{\nu}$  that maximizes min $(\beta \alpha, 1 \cdot \alpha + x, 1 \cdot \beta + x)$



(a) A two-transitions automaton



(b) Permissiveness in In



(c) Permissiveness in  $l_1$ 





- $\triangleright$  For v = (x, y),  $I_{\alpha}^{v} = [0, min(1 x, 1 y)]$  and  $I_{\beta}^{v} = [0, min(1 x, 1 y)]$
- $\triangleright$  Suppose that 1-x<1-y then  $I_{\alpha}^{\nu}=[0,1-x]$  and  $I_{\beta}^{\nu}=[0,1-x]$
- ▶ Let's find  $\alpha < \beta$  in  $I_{\alpha}^{\nu} \times I_{\beta}^{\nu}$  that maximizes min $(\beta \alpha, 1 \cdot \alpha + x, 1 \cdot \beta + x)$
- The technical lemma application :  $a = c = 1 > 0, \frac{M_{\beta} - b}{1 + 1} = \frac{1 - x - 1}{1 + 1} = x/2, m_{\alpha} = 0, \min\{M_{\alpha}, M_{\beta}\} = 1 - x.$



(a) A two-transitions automaton



(b) Permissiveness in In



(c) Permissiveness in I<sub>1</sub>





- $\triangleright$  For v = (x, y),  $I_{\alpha}^{v} = [0, min(1 x, 1 y)]$  and  $I_{\beta}^{v} = [0, min(1 x, 1 y)]$
- $\triangleright$  Suppose that 1-x<1-y then  $I_{\alpha}^{\nu}=[0,1-x]$  and  $I_{\beta}^{\nu}=[0,1-x]$
- ▶ Let's find  $\alpha < \beta$  in  $I_{\alpha}^{\nu} \times I_{\beta}^{\nu}$  that maximizes min( $\beta \alpha, 1 \cdot \alpha + x, 1 \cdot \beta + x$ )
- The technical lemma application :  $a = c = 1 \ge 0, \frac{M_{\beta} - b}{2 + 1} = \frac{1 - x - 1}{1 + 1} = x/2, m_{\alpha} = 0, \min\{M_{\alpha}, M_{\beta}\} = 1 - x.$
- $\triangleright$  If x > 1/2 then  $\mathcal{P}_2(I_0, v) = 1 x$ , otherwise 1/2

# Our contribution - Complexity of the algorithm for general cases

#### Linear automata

For a linear timed automaton, with d locations and n clocks, the permissiveness function is a piecewise-affine concave function and can be computed in time  $\mathcal{O}(n+1)^{8^d}$ , so in **double-exponential time**.

# Our contribution - Complexity of the algorithm for general cases

#### Linear automata

For a linear timed automaton, with d locations and n clocks, the permissiveness function is a **piecewise-affine concave** function and can be computed in time  $\mathcal{O}(n+1)^{8d}$ , so in **double-exponential time**.

### • Acyclic automata & timed games

For an acyclic timed automaton or for timed games the permissiveness function is a **piecewise-affine** function and can be computed **non-elementary time** 

## Our contribution - Complexity of the algorithm for general cases

#### • Linear automata

For a linear timed automaton, with d locations and n clocks, the permissiveness function is a **piecewise-affine concave** function and can be computed in time  $\mathcal{O}(n+1)^{8d}$ , so in **double-exponential time**.

### • Acyclic automata & timed games

For an acyclic timed automaton or for timed games the permissiveness function is a **piecewise-affine** function and can be computed **non-elementary time** 



Figure: A timed automaton and its (non-concave) permissiveness function in I<sub>0</sub>

### Conclusion - Our contribution



# Conclusion - Achieved, ongoing and future works



#### Achieved works

Computation of the robustness:

- ▷ Operator: min.
- ⊳ Ø: ✓
- **⊳** 🖾 ... 🗠:√
- ⊳ **○**ઃ ✓
- ▷ Timed games: ✓
- ▷ Constructive algorithm and worstcase complexity: √

### Conclusion - Achieved, ongoing and future works



#### Achieved works

Computation of the robustness:

- Departor: min.
- ⊳ Ø: ✓
- > Ø...Ø.√
- ▶ Timed games: √
- ▷ Constructive algorithm and worstcase complexity: ✓

### Future works



- Implementation (Python)
- General permissiveness function
- Binary robustness

### Appendix - The technical lemma

To maximize the quantity  $\min(\beta - \alpha, a\alpha + b, c\beta + d)$  over  $\alpha$  and  $\beta$  in  $[m_{\alpha}, M_{\alpha}] \times [m_{\beta}, M_{\beta}]$  s.t  $\alpha \leq \beta$ :

• If  $a \le 0$  and  $c \ge 0$ 

| coordinates of maximal point |                           | value of maximal point                                           |  |
|------------------------------|---------------------------|------------------------------------------------------------------|--|
| ı                            | $(m_{\alpha}, M_{\beta})$ | $min\{M_{\beta} - m_{\alpha}, am_{\alpha} + b, cM_{\beta} + d\}$ |  |

• If a > 0 and c > 0

| Condition                                                                    | coordinates of maximal point                      | value of maximal point                                      |
|------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------|
| $\frac{M_{\beta}-b}{a+1} \le m_{\alpha}$                                     | $(m_{\alpha}, M_{\beta})$                         | $min\{M_{\beta} - m_{\alpha}, cM_{\beta} + d\}$             |
| $m_{\alpha} \leq \frac{M_{\beta}-b}{s+1} \leq \min\{M_{\alpha}, M_{\beta}\}$ | $\left(\frac{M_{\beta}-b}{a+1}, M_{\beta}\right)$ | $\min\left\{\frac{aM_{\beta}+b}{a+1}, cM_{\beta}+d\right\}$ |
| $min\{M_{\alpha}, M_{\beta}\} \le \frac{M_{\beta} - b}{a+1}$                 | $(\min\{M_{\alpha}, M_{\beta}\}, M_{\beta})$      | $min\{aM_{\alpha} + b, aM_{\beta} + b, cM_{\beta} + d\}$    |

• If  $a \le 0$  and  $c \le 0$ 

Symetric case of  $a \ge 0$  and  $c \ge 0$ 

Otherwise:

|                                                                                                               | Condition                                                      | coordinates of maximal point                         | value of maximal point                    |  |  |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|-------------------------------------------|--|--|
| f ≤                                                                                                           | $g, h$ at $(min\{M_{\alpha}, M_{\beta}\}, M_{\beta})$          | $(\min\{M_{\alpha}, M_{\beta}\}, M_{\beta})$         | $min\{aM_{\alpha} + b, aM_{\beta} + b\})$ |  |  |
| $g \le f$ , $h$ at $(m_{\alpha}, \max\{m_{\alpha}, m_{\beta}\})$                                              |                                                                | $(m_{\alpha}, \max\{m_{\alpha}, m_{\beta}\})$        | $min\{cm_{\alpha} + d, cm_{\beta} + d\}$  |  |  |
|                                                                                                               | $h \le f, g$ at $(m_\alpha, M_\beta)$                          | $(m_{\alpha}, M_{\beta})$                            | $M_\beta - m_\alpha$                      |  |  |
| Otherwise, let $T_{\alpha} = \frac{d - b(1-c)}{(s+1)(1-c)-1}$ and $T_{\beta} = \frac{d(s+1)-b}{(s+1)(1-c)-1}$ |                                                                |                                                      |                                           |  |  |
| $T_{\beta} \ge M_{\beta}$<br>$T_{\alpha} \le m_{\alpha}$                                                      |                                                                | $\left(\frac{M_{\beta}-b}{s+1},M_{\beta}\right)$     | $\frac{aM_{\beta}+b}{a+1}$                |  |  |
|                                                                                                               |                                                                | $\left(m_{\alpha}, \frac{m_{\alpha}+d}{1-c}\right)$  | <u>cm<sub>ii</sub>+d</u><br>1−c           |  |  |
|                                                                                                               | $g \le f$ , $h$ at $(\min\{m_\beta, M_\alpha\}, m_\beta)$      | $(\frac{cm_{\beta}+d-b}{a}, m_{\beta})$              | $cm_{\beta} + d$                          |  |  |
| $ad \leq bc$                                                                                                  | $g \le f, h \text{ at } (M_\alpha, \max\{m_\beta, M_\alpha\})$ | $\left(\frac{d-b}{a-c}, \frac{d-b}{a-c}\right)$      | <u>ad−bc</u><br>a−c                       |  |  |
|                                                                                                               | otherwise                                                      | $\left(M_{\alpha}, \frac{aM_{\alpha}+b-d}{c}\right)$ | $aM_{\alpha} + b$                         |  |  |
|                                                                                                               | $T_{\beta} \leq m_{\beta}$                                     | $((1-c)m_{\beta}-d, m_{\beta})$                      | $cm_{\beta} + d$                          |  |  |
| $ad \ge bc$                                                                                                   | $T_{\alpha} \ge M_{\alpha}$                                    | $(M_\alpha, (a+1)M_\alpha + b)$                      | $aM_{\alpha} + b$                         |  |  |
| 1                                                                                                             | othonuico                                                      | (T T.)                                               | ad – bc                                   |  |  |