
Computing maximally-permissive strategies in acyclic timed
automata

Emily Clement1,2 Thierry Jéron1 Nicolas Markey1 David Mentré2

1IRISA, Inria & CNRS & Univ. Rennes, France
2Mitsubishi Electric R&D Centre Europe – Rennes, France

March 29, 2023

1 / 16 Emily Clement Computing maximally-permissive strategies in acyclic timed automata

Context & Motivations - Verify properties despite perturbations

• Mathematical model with perfect clocks

System property S Timed Automaton

Property Timed property P

Reachability Büchi Acceptance

model

• Robustness
▷ Clocks are imperfects
▷ Robustness:

(1) model these imperfections
(2) verify P despite these imperfections.

2 / 16 Emily Clement Computing maximally-permissive strategies in acyclic timed automata

Introduction - Intuition of our robustness

• A run and its robustness

0 ≤ x ≤ 2
0 ≤ y ≤ 2
y := 0

I = [0, 2]

permissiveness = |I | = 2

delay δ = 0

2 ≤ x
0 ≤ y ≤ 2

I = {2}
permissiveness = |I | = 0

delay δ = 2

Permissiveness: min(0, 2) = 0

• Our definition of robustness: the permissiveness function

▷ The permissiveness function of a run is the size of the shortest interval that
the player has proposed.

▷ We introduce a player (choice of intervals I) and an opponent (choice of
delays δ)

▷ The permissiveness function of a configuration (l , v) is the permissiveness
of the run where the player maximizes the permissiveness and the opponent
minimizes it.

3 / 16 Emily Clement Computing maximally-permissive strategies in acyclic timed automata

Introduction - Intuition of our robustness

• A run and its robustness

0 ≤ x ≤ 2
0 ≤ y ≤ 2
y := 0

I = [1, 2]

permissiveness = |I | = 1

delay δ = 1

2 ≤ x
0 ≤ y ≤ 2

I = [1, 2]

permissiveness = |I | = 1

delay δ = 1

Permissiveness: min(1, 1) = 1

• Our definition of robustness: the permissiveness function

▷ The permissiveness function of a run is the size of the shortest interval that
the player has proposed.

▷ We introduce a player (choice of intervals I) and an opponent (choice of
delays δ)

▷ The permissiveness function of a configuration (l , v) is the permissiveness
of the run where the player maximizes the permissiveness and the opponent
minimizes it.

3 / 16 Emily Clement Computing maximally-permissive strategies in acyclic timed automata

Introduction - Intuition of our robustness

• A run and its robustness

0 ≤ x ≤ 2
0 ≤ y ≤ 2
y := 0

I = [1, 2]

permissiveness = |I | = 1

delay δ = 1

2 ≤ x
0 ≤ y ≤ 2

I = [1, 2]

permissiveness = |I | = 1

delay δ = 1

Permissiveness: min(1, 1) = 1

• Our definition of robustness: the permissiveness function

▷ The permissiveness function of a run is the size of the shortest interval that
the player has proposed.

▷ We introduce a player (choice of intervals I) and an opponent (choice of
delays δ)

▷ The permissiveness function of a configuration (l , v) is the permissiveness
of the run where the player maximizes the permissiveness and the opponent
minimizes it.

3 / 16 Emily Clement Computing maximally-permissive strategies in acyclic timed automata

Introduction - State of the art of the robustness

• Topological robustness

▷ Gupta, Henzinger, Jagadeesan "Robust Timed Automata", 1997

▷ Tools: stability theorems.

• Guard enlargement

▷ Sankur "Robustness in Timed Automata",PhD Thesis, 2013

▷ Tools: game theory, parameterized DBM.

• Delay enlargement

▷ Bouyer, Fang, Markey "Permissive strategies in timed automata and
games", AVOCS’15

▷ Tools: game theory

▷ An algorithm: ✓

▷ Multiple clocks: ✗.

4 / 16 Emily Clement Computing maximally-permissive strategies in acyclic timed automata

Introduction - Our goal

• Define our semantic of robustness:
▷ We take a context of reachability and of worst cases.
▷ We will call this robustness the permissiveness function.

• Construct an algorithm that answers the following question:

For a timed automaton A and a location l , compute the permissiveness function.

• Our Method
▷ Construct an algorithm that computes exactly the robustness of any

automaton/configuration.

5 / 16 Emily Clement Computing maximally-permissive strategies in acyclic timed automata

Permissiveness computation - A sequence to compute the permissiveness.

• The permissiveness: a way to quantify robustness

▷ permissiveness ↘ = robustness ↘
▷ A recursive calculus of a function Pi (l , v).

• A recursive algorithm to compute the permissiveness

I = [0, 1]

permissiveness = |I |

0 ≤ x ≤ 2
0 ≤ y ≤ 2

1 ≤ x ≤ 3
y = 1

x ≥ 1

y := 0

Rest of the
automaton

Gain of the
current action

Gain of
successors
Pi−1 (l , v)

Gain of the automaton: minimum of current permissiveness and the
permissiveness of the successors

6 / 16 Emily Clement Computing maximally-permissive strategies in acyclic timed automata

Permissiveness computation - What is the permissiveness?

(l, v)

(l, v), [0,0.1]

(l, v), [2.9, 3]

(l’, v+ 0 [r])

(l’, v+ 0.1 [r])

(l’, v+ 2.9 [r])

0.1

Rest
of the

autom
aton

Pi−1 (l
′, v + 0[r])

Pi−1 (l
′, v + 2.9[r])

...
...

Infinite
choices

Guard 0 ≤ x ≤ 3

...
...

Infinite
choices

Choice of interval I , permissiveness = |I |

Current action/permissiveness

Choice of delay δ ∈ I

Pi−1 (l
′, v + δ[r])

inf
δ

All future permissiveness

min

sup
I

7 / 16 Emily Clement Computing maximally-permissive strategies in acyclic timed automata

Permissiveness computation - The formula to compute the permissiveness

• Algorithm by steps
We denote moves(l , v) the set of available (interval,action):

▷ Step 0, if l = lf , P0 (l , v) = +∞, if not, 0

▷ Step i , if moves(l , v) = ∅, Pi (l , v) = 0, if not

Pi (l , v) = sup
(a,I)∈moves(l,v)

min

(
|I | , inf

δ∈I
Pi−1 (succ (v , l , δ, a))

)
.

▷ The sequence converges to the permissiveness function for acyclic automata
in a finite number of steps

• Two player games

▷ Player: choice of the moves (a, I) ∈ moves(l , v)

▷ Opponent: choice of the delays δ ∈ I

• Issues

▷ inf / sup: infinite choices & opposite strategies: determine a finite num-
ber of strategies to test of the two players: inf ⇒ min and sup ⇒ max .

▷ Pi (l , v) has to be computed for all v .

8 / 16 Emily Clement Computing maximally-permissive strategies in acyclic timed automata

Strategy of the opponent for linear automata

We consider only linear automata :no .

• Lemma for linear T.A
v 7→ Pi (l , v) is a concave function over the set of valuations.

• Consequences
If the player proposes the interval [α, β], the best strategy of the opponent is
to propose the delay α or β

Pi (l , v) = sup
(a,I)∈moves(l,v)

min

(
|I | , inf

δ∈I
Pi−1 (succ (v , l , δ, a))

)
becomes

Pi (l , v) = sup
([α,β],a)∈moves(l,v)

min(|β − α|, min
δ=α,β

Pi−1 (succ (v , l , δ, a))).

• Next step

▷ sup → max

▷ That means, determine the strategy of the player .

9 / 16 Emily Clement Computing maximally-permissive strategies in acyclic timed automata

Strategy of the player for linear automata - the steps.

Pi (l , v) = sup
([α,β],a)∈moves(l,v)

min(|β − α|, min
δ=α,β

Pi−1 (succ (v , l , δ, a)))

• Goal: Find the interval [α, β] that maximizes:

min(|β − α|,Pi−1 (succ (v , l , α, a)),Pi−1 (succ (v , l , β, a)))

• Tool-Lemma: Proprerty of the permissiveness function
For any i and any location l , v 7→ Pi (l , v) is an n-dim piecewise-affine
function, with bounded number of pieces.

• Issue: How to optimize the minimum of three piece-wise affine
functions?

▷ (1) "Fix" the pieces where v + α[r] and v + β[r] ends up: an algorithm

▷ (2) Optimize the minimum of three affine functions: a technical lemma

10 / 16 Emily Clement Computing maximally-permissive strategies in acyclic timed automata

Strategy of the player for linear automata - The algorithm.

hβ
hα

S(hα,hβ)

hβ
hα

v

I vα

I vβ

hβ
hα

v

interval to
be played

• Goal: which interval [α, β] maximizes

min(|β − α|,Pi−1 (succ (v , l , α, a)),Pi−1 (succ (v , l , β, a)))?

• Steps of the algorithm:

▷ (1) Fix two arbitrary cells hα, hβ s.t. v + α[r] ∈ hα and v + β[r] ∈ hβ

▷ (2) Compute Shα,hβ = {v ∈ Rn|∃α, β, v + α[r] ∈ hα, v + β[r] ∈ hβ}
▷ (3) Fix v ∈ Shα,hβ and compute the intervals of enabled α, β: I vα, I

v
β

▷ (4) The technical lemma : find such α and β in I vα × I vβ s.t α ≤ β that
maximizes

min(β − α,Pi (l , v + α[r]) ,Pi (l , v + β[r])).

▷ (5) Iterate for all pieces and compare

11 / 16 Emily Clement Computing maximally-permissive strategies in acyclic timed automata

Strategy of the player for linear automata - The technical lemma

To maximize the quantity min(β − α, aα+ b, cβ + d) over α and β in
[mα,Mα]× [mβ ,Mβ] s.t α ≤ β:

• Detail of the case: a ≥ 0 and c ≥ 0

Condition coordinates of maximal point value of maximal point
Mβ−b

a+1 ≤ mα (mα,Mβ) min{Mβ −mα, cMβ + d}
mα ≤ Mβ−b

a+1 ≤ min{Mα,Mβ} (
Mβ−b

a+1 ,Mβ) min{ aMβ+b

a+1 , cMβ + d}
min{Mα,Mβ} ≤ Mβ−b

a+1 (min{Mα,Mβ},Mβ) min{aMα + b, aMβ + b, cMβ + d}

α

β
α 7→aα+b

β 7→cβ+d

(α,β) 7→β−α

D

Figure: Value of min(β − α, aα+ b, cβ + d) over R2, where
D = {α ∈ [mα,Mα], β ∈ [mβ ,Mβ]|α ≤ β}

• Other cases: similar.

12 / 16 Emily Clement Computing maximally-permissive strategies in acyclic timed automata

Example of this strategy

l0 l1 lf

0 ≤ x ≤ 1
0 ≤ y ≤ 1

y := 0

1 ≤ x ≤ 2
0 ≤ y ≤ 1

(a) A two-transitions
automaton

x

y

1 2

1

2

−∞

Shα,β

(b) Gain in l0

x

y

1 2

1

2

2 − x

1 − y

−∞

x − y

(c) Gain in l1

▷ Let’s take hα = hβ = x − y . Then Shα,hβ =

?

▷ For v = (x , y), I vα = [0,min(1 − x , 1 − y)] and I vβ = [0,min(1 − x , 1 − y)]

▷ Suppose that 1 − x < 1 − y then I vα = [0, 1 − x] and I vβ = [0, 1 − x]

▷ Let’s find α < β in I vα × I vβ that maximizes min(β − α, 1 · α+ x , 1 · β + x)

▷ The technical lemma application :

a = c = 1 ≥ 0, Mβ−b

a+1 = 1−x−1
1+1 = x/2,mα = 0,min{Mα,Mβ} = 1 − x .

▷ If x > 1/2 then , P2 (l0, v) = 1 − x , otherwise 1/2

13 / 16 Emily Clement Computing maximally-permissive strategies in acyclic timed automata

Example of this strategy

l0 l1 lf

0 ≤ x ≤ 1
0 ≤ y ≤ 1

y := 0

1 ≤ x ≤ 2
0 ≤ y ≤ 1

(a) A two-transitions
automaton

x

y

1 2

1

2

−∞

1/2
1 − x

?

(b) Gain in l0

x

y

1 2

1

2

2 − x

1 − y

−∞

x − y

(c) Gain in l1

▷ Let’s take hα = hβ = x − y . Then Shα,hβ =

?

▷ For v = (x , y), I vα = [0,min(1 − x , 1 − y)] and I vβ = [0,min(1 − x , 1 − y)]

▷ Suppose that 1 − x < 1 − y then I vα = [0, 1 − x] and I vβ = [0, 1 − x]

▷ Let’s find α < β in I vα × I vβ that maximizes min(β − α, 1 · α+ x , 1 · β + x)

▷ The technical lemma application :

a = c = 1 ≥ 0, Mβ−b

a+1 = 1−x−1
1+1 = x/2,mα = 0,min{Mα,Mβ} = 1 − x .

▷ If x > 1/2 then , P2 (l0, v) = 1 − x , otherwise 1/2

13 / 16 Emily Clement Computing maximally-permissive strategies in acyclic timed automata

Our contribution - Complexity of the algorithm for general cases

• Linear automata
For a linear timed automaton, with d locations and n clocks, the
permissiveness function is a piecewise-affine concave function and can be
computed in time O(n + 1)8d , so in double-exponential time.

• Acyclic automata & timed games
For an acyclic timed automaton or for timed games the permissiveness function
is a piecewise-affine function and can be computed non-elementary time

l0 l1 lf
0≤x≤1∧0≤y≤1

y :=0

1≤x≤2∧0≤y≤1

1≤x≤2∧0≤y≤1

x

y

0
0

1

1

2

1
2

1−
x

1−y

1+x−y
2

x−y

2−x

1−y

−∞

−∞

x
y

permissiveness

2−x 1−y

Figure: A timed automaton and its (non-concave) permissiveness function in l0

14 / 16 Emily Clement Computing maximally-permissive strategies in acyclic timed automata

Conclusion - Our contribution

Permissiveness functionA sequence Pi (l , v)

Pi (l , v) = sup
(a,[α,β])∈moves(l,v)

min

[
|I | , inf

δ∈[α,β]
Pi−1 (succ(v , I , α, a))

]

Pi (l , v) = sup
(a,[α,β])∈moves(l,v)

min [|β − α| ,Pi−1 (succ(v , I , α, a)),Pi−1 (succ(v , I , β, a))]

Optimization lemma & algorithm

converges to

how to compute?

Lemma

C
on

tr
ib

ut
io

n

15 / 16 Emily Clement Computing maximally-permissive strategies in acyclic timed automata

Conclusion - Achieved, ongoing and future works

l0 l1 l2 lf

0 ≤ x ≤ 1
0 ≤ y ≤ 1 a1,

0 ≤ x ≤ 1
0 ≤ y ≤ 1

y := 0

1 ≤ x ≤ 2
1 ≤ y ≤ 2

a2,
1 ≤ x ≤ 2
0 ≤ y ≤ 1

y ≤ 1

y := 0

• Achieved works
Computation of the robustness:

▷ Operator: max.

▷ : ✓

▷ · · · :✓

▷ : ✓

▷ Timed games: ✓

▷ Constructive algorithm and worst-
case complexity: ✓

• Future works

▷

▷ Implementation (Python)

▷ General permissiveness function

▷ Binary robustness

▷ Stochastic opponent

16 / 16 Emily Clement Computing maximally-permissive strategies in acyclic timed automata

	Context and motivations
	Presentation of our robustness: the permissiveness function
	Intuition of our robustness
	Our algorithm to compute our robustness

	Our contribution
	Computing the permissiveness function for linear automata
	Extension for general cases

	Future work

