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Context & Motivations - Verify properties despite perturbations

e Mathematical model with perfect clocks

model )
Timed Automaton

Property Timed property P
‘/

Reachability ~ Biichi Acceptance

e Robustness
> Clocks are imperfects

> Robustness:
(1) model these imperfections
(2) verify P despite these imperfections.
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Introduction - Intuition of our robustness

e A run and its robustness

0<x<?2
0<y<?2 2< x
y=0 M) 0<y<2
‘ I=p0,2 O/ 1= {2} O
permissiveness = |/| = 2 permissiveness = |/| = 0

delay 6 =0 delay § =2

Permissiveness: min(0,2) =0
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Introduction - Intuition of our robustness

e A run and its robustness

0<x<2
0<y<2 2<x
y:=0 M\ 0<y<?2
O =2 N\ =2 O
permissiveness = |/| = 1 permissiveness = |/| = 1
delay § =1 delay § =1

Permissiveness: min(1,1) =1
e Our definition of robustness: the permissiveness function
> The permissiveness function of a run is the size of the shortest interval that
the player has proposed.

> We introduce a player (choice of intervals /) and an opponent (choice of
delays §)

> The permissiveness function of a configuration (/, v) is the permissiveness
of the run where the player maximizes the permissiveness and the opponent
minimizes it.
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Introduction - State of the art of the robustness

e Topological robustness
> Gupta, Henzinger, Jagadeesan "Robust Timed Automata", 1997

> Tools: stability theorems.

e Guard enlargement
> Sankur "Robustness in Timed Automata",PhD Thesis, 2013

> Tools: game theory, parameterized DBM.

e Delay enlargement

> Bouyer, Fang, Markey "Permissive strategies in timed automata and
games", AVOCS'15

> Tools: game theory
> An algorithm: v/
> Multiple clocks: X.
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Introduction - Our goal

e Define our semantic of robustness:
> We take a context of reachability and of worst cases.
> We will call this robustness the permissiveness function.

e Construct an algorithm that answers the following question:

For a timed automaton A and a location /, compute the permissiveness function. |

e Our Method
> Construct an algorithm that computes the robustness of

automaton/configuration.
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Permissiveness computation - A sequence to compute the permissiveness.

e The permissiveness: a way to quantify robustness

> permissiveness N\ = robustness
> A recursive calculus of a function P; (/, v).

e A recursive algorithm to compute the permissiveness

0<x<2 1<x<3

o<y<2 | (@AY =1 .

I =10,1]
permissiveness = |/| x>1 Rest of the
automaton

y:=0
. / Gain of
Gain of the. successors
current action Pi—1 (1, v)

Gain of the automaton: minimum of current permissiveness and the
permissiveness of the successors
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Permissiveness computation - What is the permissiveness?

. !
Guard 0 < x <3 -P'*l(lvv+0[’])

%
R
\ 5 Pioa (/v +2.9[r])
99T e
\ Choice of delay § € /

Chonce of interval /, permissiveness = |I|| | . ) |
P (I, v+ 8[r
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Permissiveness computation - The formula to compute the permissiveness

e Algorithm by steps

We denote moves(/, v) the set of available (interval,action):
> Step 0, if I = s, Po(l,v) = +o0, if not, 0
> Step i, if moves(l,v) =@, Pi(l,v) =0, if not

Pi(l,v) = sup min <|I| 7(isnefl Pi—1 (succ (v, 1,4, a))).

(a,l)emoves(l,v)

> The sequence converges to the permissiveness function for acyclic automata
in a finite number of steps
e Two player games

> Player: choice of the moves (a, /) € moves(/, v)

> Opponent: choice of the delays § € /

e Issues &

> inf /sup: infinite choices & opposite strategies: “? determine a finite num-
ber of strategies to test of the two players: inf = min and sup = max.

> Pi(l, v) has to be computed for all v.
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Strategy of the opponent for linear automata

0/16

We consider only | linear automata | :no C):I

e Lemma for linear T.A
v — Pi(l,v) is a concave function over the set of valuations.

e Consequences
If the player proposes the interval [, 3], the best strategy of the opponent is
to propose the delay a or 3

Pi(l,v) = sup min <|I| ,(isréfl Pi-1 (succ (v, 1,4, a))) becomes

(a,l)€moves(l,v)

Pi(l,v) = sup min(|8 — a|, min P;_1 (succ (v, 1,4, a))).
([ex,B],a) € moves(l,v) S=o,B

e Next step

> sup — max

> That means, | determine the strategy of the player |.
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Strategy of the player for linear automata - the steps.

Pi(l,v) = sup min(|8 — |, min Pi_1 (succ (v, 1,4, a)))
([ev,B],a) € moves(l,v) s=a,B

e Goal: Find the interval [, 5] that maximizes:
min(|8 — a|, Pi—1 (succ (v, [, o, a)), Pi—1 (succ (v, 1, 3, a)))

e Tool-Lemma: Proprerty of the permissiveness function
For any i and any location /, v — P;(/,v) is an n-dim piecewise-affine
function, with bounded number of pieces.

e Issue: How to optimize the minimum of three piece-wise affine
functions?

> (1) "Fix" the pieces where v + a[r] and v + [r] ends up:

> (2) Optimize the minimum of three affine functions: | a technical lemma |
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Strategy of the player for linear automata - The algorithm.
’ i "
s | 4%
el ’ 5 a
,’ );/ 7,7 ’

‘s
Py

/3

&

Sttana)

AN

%

e Goal: which interval [, 5] maximizes
min(|8 — a|, Pi—1 (succ (v, I, a, a)), Pi—1 (succ (v, 1, 3, a)))?

e Steps of the algorithm:
> (1) Fix two arbitrary cells ho, hg s.t. v + a[r] € ho and v + 3[r] € hg
> (2) Compute Sy, .y = {v € B"|Fc, B, v + alr] € ha, v + Blr] € ha}
> (3) Fix v € S5 5, and compute the intervals of enabled o, 8: I, /5

> (4) | The technical lemma |: find such a and 8 in /2 x I} st o < § that
maximizes

min(8 —a, Pi (I, v+ alr]), Pi(l,v + 5[r])).

> (5) Iterate for all pieces and compare
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Strategy of the player for linear automata - The technical lemma

To maximize the quantity min(8 — a, aa + b, c8 + d) over o and 3 in
[Mma, Mo] X [mg, Mg] s.t a < B3

12/16

e Detail of the case: a>0and ¢ >0

Condition coordinates of maximal point value of maximal point
TP < ma (ma, M) min{Ms — ma, cMs + d}
ma < 222 < min{Ma, Ms} (%2, Mp) min{ 7272 M + d}
min{Ma, Mz} < 2P (min{Ma, Mg}, Ms) min{aM, + b, aMy + b, cM; + d}

B

Figure: Value of min(8 — a, ac + b, ¢ + d) over R?, where

D= {a € [ma; Ma]aﬂ S [m,ﬁ'v MBHO‘ < B}

o Other cases: similar.
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Example of this strategy

0<x<1 1<x<2 iy
V=0 ey | 2 2-x
x

(a) A two-transitions
automaton (b) Gain in lo (c) Gainin i

Let's take ho = hg = A Then Sp, ny =

x

>

> For v =(x,y), Is = [0, min(1 — x,1 — y)] and I§ = [0, min(1 — x,1 — y)]
> Suppose that 1 —x <1 —y then /5 =[0,1—x] and /5 =[0,1 — x]

> Let's find oo < B in Iy x I§ that maximizes min(8 —a,1- a4+ x,1- 5+ x)
> | The technical lemma application |:

a=c=1>0"" =121 — s> m, =0,min{Ma, Mg} = 1 — x.

> If x > 1/2 then , P2 (l,v) =1 — x, otherwise 1/2
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Example of this strategy

0<x<1 1<x<2 a 1oy
0<y<1 0<y<1 ,’
=10="10
x

(a) A two-transitions
automaton (b) Gain in lo (c) Gainin i

Let's take ho = hg = A Then Sp, ny =

x

>

> For v =(x,y), Is = [0, min(1 — x,1 — y)] and I§ = [0, min(1 — x,1 — y)]
> Suppose that 1 —x <1 —y then /5 =[0,1—x] and /5 =[0,1 — x]

> Let's find oo < B in Iy x I§ that maximizes min(8 —a,1-a+x,1- 5+ x)
> | The technical lemma application |:

a=c=1>0"" =121 — s> m, =0,min{Ma, Mg} = 1 — x.

> If x > 1/2 then , P2 (l,v) =1 — x, otherwise 1/2
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Our contribution - Complexity of the algorithm for general cases

e Linear automata
For a linear timed automaton, with d locations and n clocks, the
permissiveness function is a piecewise-affine concave function and can be

computed in time O(n + 1)8d, so in double-exponential time.

e Acyclic automata & timed games

For an acyclic timed automaton or for timed games the permissiveness function
is a piecewise-affine function and can be computed non-elementary time

0<x<1A0<y<1 m 1<x<2A0<y<1
lo h I
y:=0
1<x<2A0<y<1
y : : permissiveness
- : :
1
1-y
1-y
4x—y * -
2 ~ bl
2
1
3 £
0 X
0 1 2

Figure: A timed automaton and its (non-concave) permissiveness function in lp
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Conclusion - Our contribution

lhow to compute?

Pi(l,v) = sup min |I|, |nf ’P, 1 (suce(v, I, a, a))
(a, [a,ﬁ])Emoves(l v)
@ Lem /\
g
Pi(l,v) = sup min [|8 — a|, Pi—1 (succ(v, I, o, a)), Pi—1 (succ(v, I, B, a)
(a,[x,B])Emoves(/,v)

03

N

Contribution

[Optimization lemma & algorithm]
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Conclusion - Achieved, ongoing and future works

e Achieved works
Computation of the robustness:

16 /16

> Operator: max.
> . v

> ---:/

> O:I: v

> Timed games: v

> Constructive algorithm and worst-
case complexity: v

e Future works

CO

Implementation (Python)
General permissiveness function
Binary robustness

Stochastic opponent

in acyclic timed automata
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