Computing maximally-permissive strategies in acyclic timed automata

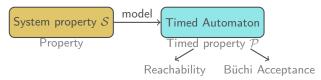
Emily Clement^{1,2} Thierry Jéron¹ Nicolas Markey¹ David Mentré²

¹IRISA, Inria & CNRS & Univ. Rennes, France
²Mitsubishi Electric R&D Centre Europe – Rennes. France

March 29, 2023

Context & Motivations - Verify properties despite perturbations

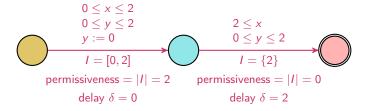
Mathematical model with perfect clocks



- Robustness
 - Clocks are imperfects
 - ▶ Robustness:
 - (1) model these imperfections
 - (2) verify ${\cal P}$ despite these imperfections.

Introduction - Intuition of our robustness

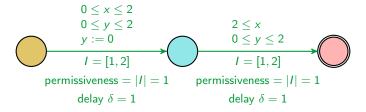
A run and its robustness



Permissiveness: min(0, 2) = 0

Introduction - Intuition of our robustness

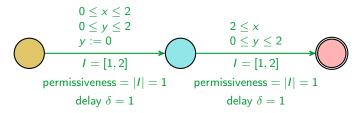
A run and its robustness



Permissiveness: min(1,1) = 1

Introduction - Intuition of our robustness

A run and its robustness



Permissiveness: min(1,1) = 1

- Our definition of robustness: the permissiveness function
 - ▶ The permissiveness function of a run is the size of the shortest interval that the player has proposed.
 - ightharpoonup We introduce a player (choice of intervals I) and an opponent (choice of delays δ)
 - \triangleright The permissiveness function of a configuration (I, v) is the permissiveness of the run where the **player maximizes** the permissiveness and the **opponent minimizes** it.

Introduction - State of the art of the robustness

- Topological robustness
 - ▶ Gupta, Henzinger, Jagadeesan "Robust Timed Automata", 1997
 - ▶ Tools: stability theorems.
- Guard enlargement
 - ▶ Sankur "Robustness in Timed Automata", PhD Thesis, 2013
 - ▶ Tools: game theory, parameterized DBM.
- Delay enlargement
 - Bouyer, Fang, Markey "Permissive strategies in timed automata and games", AVOCS'15
 - ▶ Tools: game theory
 - ▶ An algorithm:
 - ▶ Multiple clocks: X.

Introduction - Our goal

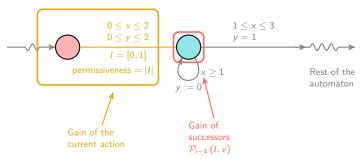
- Define our semantic of robustness:
 - ▶ We take a context of reachability and of worst cases.
 - ▶ We will call this robustness the permissiveness function.
- Construct an algorithm that answers the following question:

For a timed automaton A and a location I, compute the permissiveness function.

- Our Method
 - Construct an algorithm that computes exactly the robustness of any automaton/configuration.

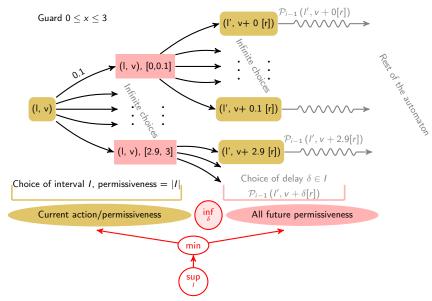
Permissiveness computation - A sequence to compute the permissiveness.

- The permissiveness: a way to quantify robustness
 - ▶ permissiveness \(\sqrt{} = \text{robustness} \(\sqrt{} \)
 - \triangleright A recursive calculus of a function $\mathcal{P}_i(I, v)$.
- A recursive algorithm to compute the permissiveness



Gain of the automaton: minimum of current permissiveness and the permissiveness of the successors

Permissiveness computation - What is the permissiveness?



Permissiveness computation - The formula to compute the permissiveness

Algorithm by steps

We denote moves(I, v) the set of available (interval, action):

- ▶ Step 0, if $I = I_f$, $\mathcal{P}_0(I, v) = +\infty$, if not, 0
- ▷ Step i, if $moves(I, v) = \emptyset$, $\mathcal{P}_i(I, v) = 0$, if not

$$\mathcal{P}_{i}\left(I,v\right) = \sup_{(a,I) \in moves(I,v)} \min\left(\left|I\right|, \inf_{\delta \in I} \mathcal{P}_{i-1}\left(\operatorname{succ}\left(v,I,\delta,a\right)\right)\right).$$

- The sequence converges to the permissiveness function for acyclic automata in a finite number of steps
- Two player games
 - ▷ Player: choice of the moves $(a, I) \in moves(I, v)$
- Issues
 - ▶ inf / sup: **infinite** choices & **opposite** strategies: $^{\bullet}$ determine a finite number of strategies to test of the two players: inf \Rightarrow min and sup \Rightarrow max.
 - $\triangleright \mathcal{P}_i(I, v)$ has to be computed for all v.

Strategy of the opponent for linear automata

We consider only linear automata :no

- Lemma for linear T.A $v \mapsto \mathcal{P}_i(I, v)$ is a **concave** function over the set of valuations.
- Consequences

If the **player** proposes the interval $[\alpha,\beta]$, the best strategy of the opponent is to propose the delay α or β

$$\mathcal{P}_{i}(I, v) = \sup_{(a, l) \in moves(I, v)} \min \left(|I|, \inf_{\delta \in I} \mathcal{P}_{i-1} \left(\operatorname{succ} \left(v, I, \delta, a \right) \right) \right) \text{ becomes}$$

$$\mathcal{P}_{i}(I, v) = \sup_{([\alpha, \beta], a) \in moves(I, v)} \min(|\beta - \alpha|, \min_{\delta = \alpha, \beta} \mathcal{P}_{i-1} \left(\operatorname{succ} \left(v, I, \delta, a \right) \right) \right).$$

- Next step
 - ightharpoonup sup ightharpoonup max
 - □ That means, determine the strategy of the player

Strategy of the player for linear automata - the steps.

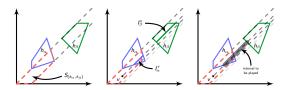
$$\mathcal{P}_{i}(l,v) = \sup_{([\alpha,\beta],a) \in moves(l,v)} \min(|\beta - \alpha|, \min_{\delta = \alpha,\beta} \mathcal{P}_{i-1}(\operatorname{succ}(v,l,\delta,a)))$$

• Goal: Find the interval $[\alpha, \beta]$ that maximizes:

$$\min(|\beta - \alpha|, \mathcal{P}_{i-1} \left(\mathsf{succ} \left(v, I, \alpha, a \right) \right), \mathcal{P}_{i-1} \left(\mathsf{succ} \left(v, I, \beta, a \right) \right) \right)$$

- Tool-Lemma: Proprerty of the permissiveness function For any i and any location I, $v \mapsto \mathcal{P}_i(I, v)$ is an n-dim piecewise-affine function, with bounded number of pieces.
- Issue: How to optimize the minimum of three piece-wise affine functions?
 - \triangleright (1) "Fix" the pieces where $v + \alpha[r]$ and $v + \beta[r]$ ends up: an algorithm

Strategy of the player for linear automata - The algorithm.



• Goal: which interval $[\alpha, \beta]$ maximizes

$$\min(|\beta - \alpha|, \mathcal{P}_{i-1} (\operatorname{succ}(v, l, \alpha, a)), \mathcal{P}_{i-1} (\operatorname{succ}(v, l, \beta, a)))?$$

- Steps of the algorithm:
 - \triangleright (1) Fix two arbitrary cells h_{α} , h_{β} s.t. $v + \alpha[r] \in h_{\alpha}$ and $v + \beta[r] \in h_{\beta}$
 - $\triangleright (2) \text{ Compute } S_{h_{\alpha},h_{\beta}} = \{ v \in \mathbb{R}^{n} | \exists \alpha,\beta,v + \alpha[r] \in h_{\alpha},v + \beta[r] \in h_{\beta} \}$
 - \triangleright (3) Fix $v \in S_{h_{\alpha},h_{\beta}}$ and compute the intervals of enabled α , β : I_{α}^{v} , I_{β}^{v}
 - \triangleright (4) The technical lemma: find such α and β in $I_{\alpha}^{\nu} \times I_{\beta}^{\nu}$ s.t $\alpha \leq \beta$ that maximizes

$$\min(\beta - \alpha, \mathcal{P}_i(I, \mathbf{v} + \alpha[r]), \mathcal{P}_i(I, \mathbf{v} + \beta[r])).$$

> (5) Iterate for all pieces and compare

Strategy of the player for linear automata - The technical lemma

To maximize the quantity $\min(\beta - \alpha, a\alpha + b, c\beta + d)$ over α and β in $[m_{\alpha}, M_{\alpha}] \times [m_{\beta}, M_{\beta}]$ s.t $\alpha \leq \beta$:

• Detail of the case: $a \ge 0$ and $c \ge 0$

Condition	coordinates of maximal point	value of maximal point
$\frac{M_{\beta}-b}{a+1} \leq m_{\alpha}$	(m_{α}, M_{β})	$min\{M_{\beta} - m_{\alpha}, cM_{\beta} + d\}$
$m_{\alpha} \leq \frac{M_{\beta}-b}{a+1} \leq \min\{M_{\alpha}, M_{\beta}\}$	$(\frac{M_{\beta}-b}{s+1}, M_{\beta})$	$\min\{\frac{aM_{\beta}+b}{a+1}, cM_{\beta}+d\}$
$min\{M_{\alpha}, M_{\beta}\} \le \frac{M_{\beta}-b}{a+1}$	$(\min\{M_{\alpha}, M_{\beta}\}, M_{\beta})$	$\min\{aM_{\alpha}+b,aM_{\beta}+b,cM_{\beta}+d\}$

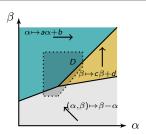
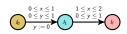


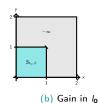
Figure: Value of $\min(\beta - \alpha, a\alpha + b, c\beta + d)$ over \mathbb{R}^2 , where $D = \{\alpha \in [m_{\alpha}, M_{\alpha}], \beta \in [m_{\beta}, M_{\beta}] | \alpha \leq \beta\}$

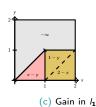
• Other cases: similar.

Example of this strategy



(a) A two-transitions automaton





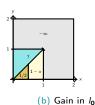
 \triangleright Let's take $h_{\alpha} = h_{\beta} = \underbrace{x-y}$. Then $S_{h_{\alpha},h_{\beta}}$

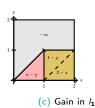
- \triangleright For v = (x, y), $I_{\alpha}^{v} = [0, min(1 x, 1 y)]$ and $I_{\beta}^{v} = [0, min(1 x, 1 y)]$
- \triangleright Suppose that 1-x<1-y then $I_{\alpha}^{\nu}=[0,1-x]$ and $I_{\beta}^{\nu}=[0,1-x]$
- ▶ Let's find $\alpha < \beta$ in $I_{\alpha}^{\nu} \times I_{\beta}^{\nu}$ that maximizes min $(\beta \alpha, 1 \cdot \alpha + x, 1 \cdot \beta + x)$
- The technical lemma application : $a = c = 1 \ge 0, \frac{M_{\beta} - b}{2 + 1} = \frac{1 - x - 1}{1 + 1} = x/2, m_{\alpha} = 0, \min\{M_{\alpha}, M_{\beta}\} = 1 - x.$
- \triangleright If x > 1/2 then $\mathcal{P}_2(I_0, v) = 1 x$, otherwise 1/2

Example of this strategy



(a) A two-transitions automaton





$$ho$$
 Let's take $h_{lpha}=h_{eta}=$ $(x-y)$. Then $S_{h_{lpha},h_{eta}}=$

- \triangleright For v = (x, y), $I_{\alpha}^{v} = [0, min(1 x, 1 y)]$ and $I_{\beta}^{v} = [0, min(1 x, 1 y)]$
- \triangleright Suppose that 1-x<1-y then $I_{\alpha}^{\nu}=[0,1-x]$ and $I_{\beta}^{\nu}=[0,1-x]$
- ▶ Let's find $\alpha < \beta$ in $I_{\alpha}^{\nu} \times I_{\beta}^{\nu}$ that maximizes min($\beta \alpha, 1 \cdot \alpha + x, 1 \cdot \beta + x$)
- The technical lemma application : $a = c = 1 \ge 0, \frac{M_{\beta} - b}{2 + 1} = \frac{1 - x - 1}{1 + 1} = x/2, m_{\alpha} = 0, \min\{M_{\alpha}, M_{\beta}\} = 1 - x.$
- \triangleright If x > 1/2 then $\mathcal{P}_2(I_0, v) = 1 x$, otherwise 1/2

Our contribution - Complexity of the algorithm for general cases

Linear automata

For a linear timed automaton, with d locations and n clocks, the permissiveness function is a **piecewise-affine concave** function and can be computed in time $\mathcal{O}(n+1)^{8d}$, so in **double-exponential time**.

Acyclic automata & timed games

For an acyclic timed automaton or for timed games the permissiveness function is a **piecewise-affine** function and can be computed **non-elementary time**

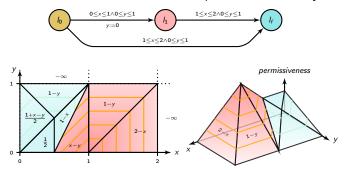
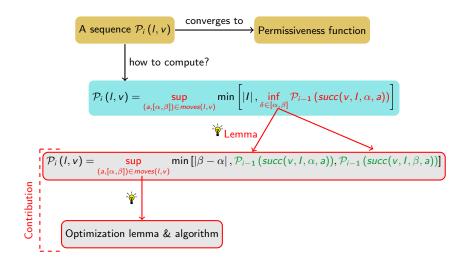
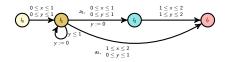


Figure: A timed automaton and its (non-concave) permissiveness function in I₀

Conclusion - Our contribution



Conclusion - Achieved, ongoing and future works



Achieved works

Computation of the robustness:

- ▷ Operator: max.
- ⊳ 🖰: 🗸
- ⊳ **⊘** ... **⊘**:√
- D → C → I ✓
- ▶ Timed games: √
- Constructive algorithm and worstcase complexity: √

Future works

- ▷ Implementation (Python)
- ▷ General permissiveness function
- ▶ Binary robustness