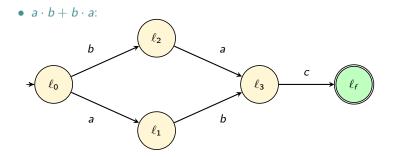
Higher Dimensional Timed Automata

Emily Clement

6th of December 2023

Uli Fahrbenberg


Amazigh Amrane

Hugo Bazille

Emily Clement

Concurrency in Automata: interleaving concurrency

Represent several events $a, b, c \cdots$ and their order

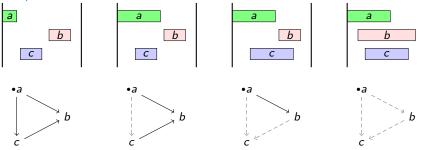
Represent several events $a, b, c \cdots$ and their order Simple case: a and b can occur in parallel

Represent several events $a, b, c \cdots$ and their order Simple case: a and b can occur in parallel Or.. a can **begin** before b does and a can **end** before b does ...

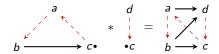
Represent several events $a, b, c \cdots$ and their order Simple case: a and b can occur in parallel Or.. a can **begin** before b does and a can **end** before b does ... While c happens before the end of b and a !

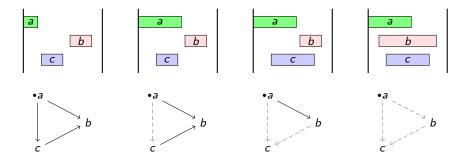
• Two partial order events

 \triangleright < : precedence order (rep with \longrightarrow)

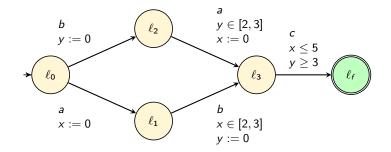

 \triangleright --+ : event order.

 \triangleright < \cup --+: total.


Interfaces


Source/Target interfaces: S/T: < -minimal/maximal.

• Representation of events as interval



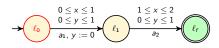
Example of operation: gluing

Interleaving concurrency with Timed Automata

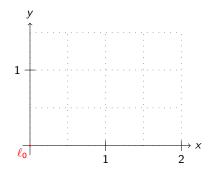
• HDA:

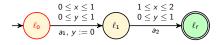
- Representation concurrency relation
- > Extension of some properties of classic Automata

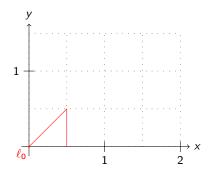
Issues:

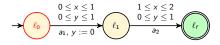

- > No information about time duration of each events
- ▷ How to represent timing perturbation ?

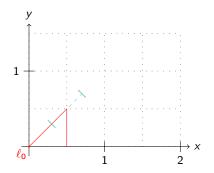
• Goals:


Extend the objects/operation/results from HDA to HDTA: adding information on the start/end dates of each event.

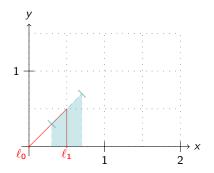

• Timed automaton \mathcal{A} :

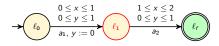

• Run with delay perturbations of at most $\delta=0.2$

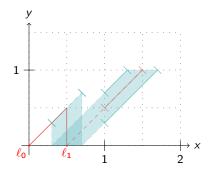

• Timed automaton \mathcal{A} :

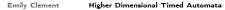

• Run with delay perturbations of at most $\delta=0.2$

• Timed automaton \mathcal{A} :

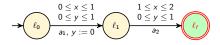

• Run with delay perturbations of at most $\delta=0.2$


• Timed automaton \mathcal{A} :

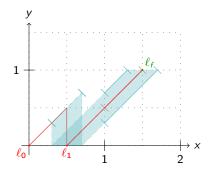

• Run with delay perturbations of at most $\delta=0.2$

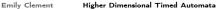


• Timed automaton \mathcal{A} :



• Run with delay perturbations of at most $\delta=0.2$





• Timed automaton \mathcal{A} :

• Run with delay perturbations of at most $\delta=0.2$

• No timing perturbation: c and d are not in concurrency

• timing perturbation. Let us introduce a 0.1 delay on the end date of c:

