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Introduction

Dynamic multi-agent system’s verification
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Our objectives

• A running example
https://perso.eleves.ens-rennes.fr/people/Emily.Clement/Videos/example_
episodes/ex_0.mp4

Timed Automata Reinforcement Learning

Model
Abstract representation
(acceleration)

Waekness Time of execution
Combinatorial or
Continuous aspects
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Our layered approach

• Our assumptions

▷ Speed: x

v(x)

1 2 3 4 5 6
0

1

▷ Paths of cars: fixed trajectories, fixed finals & initial positions.

▷ Trajectories: we abstract from the curves of the trajectories.

▷ Our control: the speed of (all) cars.

▷ Goal: reach goals while avoiding collisions between agents.

• Our contribution: Three-layered Controller synthesis

SWA

Stage 1: Reachability
algorithm on a simpli-
fied ISWA model

SMT

Stage 2: Refine the
model of the speed

SWA-SMT Solver

Generate a dataset
for random initial
positions

Dataset

Stage 3: Train an RL
algorithm with our
dasaset

RL

RL training
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SWA-SMT solver

SWA solver

SWA

Stage 1: Reachability
algorithm on system
of ISWA

SMT

Stage 2: Model the
accelleration and de-
celeration
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Rules to model collision avoidance

•#1: security distance when driving in the same direction and between
neighbouring sections

εε

A B C

•#2: cars cannot share a section if driving in opposite direction

n0 n1 n2(s,_)A

n0 n1 n3(s,_) B ✓

n0 n1 n2(s,_)A

n0n1 n3(s,^) B
✗

•#3: No Overtaking between cars
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Model for a car traffic

▷ A point in R2: a node
n0

▷ A section s[n0,n1],L of the road:
n0 n1

L

▷ A path: p0 :
n0 n1 n3 n4 n6 n11

▷ Car: (position, speed, trajectory)

▷ A car traffic: c0, c1, c2 are each assigned paths p0, p1, p2:
n0 n1 n2

n3

n4 n5n6n7 n8 n9

n10n11

p0 :
n0 n1 n3 n4 n6 n11

p1 :
n1n2 n3 n5 n8 n10

p2 :
n4 n5n6n7 n8 n9
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What type of Timed Automata to use to model this?

• Needs

▷ Stopwatch Timed Automata: x

v(x)

1 2 3 4
0

1

▷ Clocks of TA: Monitor each car’s progress.

▷ Synchronised action: Compute distance between each cars.

▷ FiFo channels: A car cannot overtake another car.
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What is a Timed Automaton (and its variants) ?

• A classic timed automaton

ℓ0 ℓ1 ℓ1 ℓf

0 ≤ x ≤ 2
sync(a)

x ← 0

2 ≤ x ≤ 3
sync(b) 0 ≤ x ≤ 5

Initial location

Location

Goal location

Action Clocks
Guard

Reset

• Variants

▷ Stopwatch ℓ0

{x}

: clock x is stopped in location ℓ0.

▷ Channels: FiFo queue of symbols (actions) to be pushed/read
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A run of a timed automaton

• A run of a two-clock Timed Automaton

ℓ0 ℓ1 ℓf

0 ≤ x ≤ 1
0 ≤ y ≤ 1

a1, y ← 0

1 ≤ x ≤ 2
0 ≤ y ≤ 1

a2

x

y

1 2

1

ℓ0
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A run of a timed automaton

• A run with a (two-clock) stopwatch timed automaton (ISWA)

ℓ0 ℓ1 ℓf

{y} {} {}

0 ≤ x ≤ 1
0 ≤ y ≤ 1

a1

1 ≤ x ≤ 2
0 ≤ y ≤ 1

a2

x

y

1 2

1

ℓ0
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Initialized Stopwatch Timed Automata with bounded channels

• Example of a two-clocks Stopwatch Timed Automata

ℓ0 ℓ1 ℓf

{y} {} {}

0 ≤ x ≤ 1
0 ≤ y ≤ 1

a1

1 ≤ x ≤ 2
0 ≤ y ≤ 1

a2

x

y

1 2

1

ℓ0

▷ Reachability is Undecidable in general cases.

• Initialized Stopwatch Timed Automata

▷ Reset the stopped clock in the previous or following transition:

ℓp ℓ ℓf

{y}{} {}

▷ Reachability becomes Decidable for this fragment of SWA.

• Bounded channels
▷ Channels: FiFo queue of symbols (actions) to be pushed/read
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Model the car progress

• Car A progress along its paths

Path: s s ′ s”

L0 L

• Car A Timed automaton:

as ws′ ds′ as′ ws′′

{} {xA} {} {} {xA}

xA = L0

syncs′(xA)

xA = L0

cs′?xA

xA = L0 + L

cs′′ !xA

xA = L0 + L

syncs′′(xA)

▷ Clock xA: distance travelled along its paths

▷ Stopwatches {xA}: the car A stops instantly.

▷ Channels cs′ !xA/cs′?xA: respect the order of cars in a section s ⇒ no over-
taking.

▷ Intersection: use classical synchronized action to activate intersection auto-
mata
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▷ Intersection: use classical synchronized action to activate intersection auto-
mata
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Model distance between cars: intersection

Path of car A:
sA s ′ sA”

Path of car B:
sB s ′ sB”

• Intersection automaton

fs′ bs′,_ sfs′,_

syncs′(xB)

xs′ ← 0

syncs′(xA)

xs′ ← 0

xs′ = ε

syncs′(xB)

xs′ ← 0

syncs′(xA)

xs′ ← 0

xs′ = L+ ε
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Our Algorithm: a DFS with an optimised succ function

Transition t available

t ∈ car TA ?

loc = ws′?

∃ other t′ available?

take t wait for t′

take t

loc=bs,_?

take t

∃ car asking to
enter in s,_
(t′) ?

take t take t or t′

Yes No

Yes No

Choice 1 Choice 2

Yes No

YesNo
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SWA-SMT solver

SMT solver

SWA

Stage 1: Reachability
algorithm on system
of ISWA

SMT

Stage 2: Model the
accelleration and de-
celeration
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Why use of SMT solver?

SWA

Stage 1: Reachability
algorithm on a simpli-
fied ISWA model

Solved: combinatorial
aspect of the problem.
Results: Important
events and their relat-
ive order
Drawback: A very ab-
stract model of speed

SMT

Stage 2: Refine the
model of the speed

DFS algorithm SMT Solver

Generate a dataset
for random initial
positions

Dataset

Stage 3: Train an RL
algorithm with our
dasaset

RL

RL training

• SMT solver
▷ The continuous aspect of the problem

▷ Introduce a more realistic model of speed
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New model for speed graph

• A constant piecewise affine function

▷ A more realistic model that takes into account the dynamic of the system
▷ Different car speeds

▷ Bounds on deceleration and acceleration

vi (t) ⇒ ṽi (0), · · · , ṽi (k − 1)
x(t) ⇒ x̃i (k) =

∑k−1
l=0 ṽi (l)

t

v(t)

1 2 3 4 5 6
0

1

2

ṽ(0), · · · , ṽ(6)

t

ṽ(t)

1 2 3 4 5 6
0

1

2
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How to preserve security distance ?

• New positions/speeds

▷ x̃i (k) =
∑k−1

l=0 ṽi (l)

▷ ṽi (0), · · · , ṽi (k − 1)

• Example of SMT solver’s inequalities
For each step k :

▷ ṽi (k)− dmax ≤ ṽi (k + 1) ≤ ṽi (k) + amax

▷ 0 ≤ ṽi (k) ≤ vmax
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▷ ṽi (k)− dmax ≤ ṽi (k + 1) ≤ ṽi (k) + amax
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RL training

Generate a dataset
for random initial
positions

Dataset

Stage 3: Train an RL
algorithm with our
dasaset

RL

19 / 24 Emily Clement Layered controller synthesis for dynamic multi-agent systems



Why use of SMT solver?

SWA

Stage 1: Reachability
algorithm on a simpli-
fied ISWA model

Solved: combinatorial
aspect of the problem.
Results: Important
events and their relat-
ive order
Drawback: A very ab-
stract model of speed

SMT

Stage 2: Refine the
model of the speed

A more realistic
model of speed
Results: traces that
takes into account
the dynamical aspect
of the problem
Drawback: runtime
execution

DFS algorithm SMT Solver

SWA-SMT solver

Generate a dataset
for random initial
positions

Dataset

Stage 3: Train an RL
algorithm with our
dasaset

RL

RL training

Drawback: our problem has both combinat-
orial and continuous aspects
Goal: get an intuition from dataset to
avoid unsuccessful choices

• RL training dataset

▷ Create random initial positions/speeds for cars

▷ Generate traces with the SWA-SMT solver
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Model

• Markov Decision Process
▷ Deterministic running example: deterministic transition function.

▷ State si . For each section s, if a car c is in s: vi,c , posi,c , idc, 1

▷ Action acti : (acci,c)c∈Cars(
posi,c , vi,c

)
i

(
posi,c + vi , vi,c + acci,c

)
i + 1

▷ Trajectories si , Obsi , acti
▷ Reward:

◦ +2000 if goals are achieved
◦ −100 if distance rules are not respected
◦ ↗ with speed
◦ ↗ with the increase of distance between cars
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Results with SWA-SMT solver, post SWA-SMT solver RL and single RL
training
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Steps of the layered method

SWA

Stage 1: Reachability
algorithm on a simpli-
fied ISWA model

Solved: combinatorial
aspect of them problem.
Results: Important
events and their relat-
ive order
Drawback: A very ab-
stract model of speed

SMT

Stage 2: Refine the
model of the speed

A more realistic
model of speed
Results: traces that
takes into account
the dynamical aspect
of the problem
Drawback: runtime
execution

DFS algorithm SMT Solver

SWA-SMT solver

Generate a dataset
for random initial
positions

Dataset

Stage 3: Train an RL
algorithm with our
dasaset

RL

RL training

Drawback: our problem has both combinat-
orial and continuous aspects
Method: get an intuition from dataset to
avoid unsuccessful choices
MDP model to reward short-time episode
and distance between cars
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Conclusion

• SWA-SMT Solver

Automata-based model
Efficient algorithm
Abstract model with unrealistic speed model

Piecewise-affine speed graph
Bounded accelleration and deceleration
Different speed
SMT solver to model and solve the distance
constraints

n0 n1 n2

n3

n4 n5n6n7 n8 n9

n10n11

t

v(t)

1 2 3 4 5 6
0

1

2

ṽ(0), · · · , ṽ(6)

t

ṽ(t)

1 2 3 4 5 6
0

1

2

• RL training

Dataset
Trace generated with SWA-SMT solver
Random positions & speeds

Performance of RL (helped
with SWA-SMT solver)

Better than single RL
Better than SWA-SMT solver
Runtime: ∼ 2 days

• Future work: Decentralized multi-agent systems
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ṽ(t)

1 2 3 4 5 6
0

1

2

• RL training

Dataset
Trace generated with SWA-SMT solver
Random positions & speeds

Performance of RL (helped
with SWA-SMT solver)

Better than single RL
Better than SWA-SMT solver
Runtime: ∼ 2 days

• Future work: Decentralized multi-agent systems

24 / 24 Emily Clement Layered controller synthesis for dynamic multi-agent systems



Conclusion

• SWA-SMT Solver

Automata-based model
Efficient algorithm
Abstract model with unrealistic speed model

Piecewise-affine speed graph
Bounded accelleration and deceleration
Different speed
SMT solver to model and solve the distance
constraints

n0 n1 n2

n3

n4 n5n6n7 n8 n9

n10n11

t

v(t)

1 2 3 4 5 6
0

1

2
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