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Introduction

Dynamic multi-agent system’s verification
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Our objectives

e A running example
https://perso.eleves.ens-rennes.fr/people/Emily.Clement/Videos/example_

episodes/ex_0.mp4

Abstract representation
Model (acceleration)

Combinatorial or
Continuous aspects

Waekness| Time of execution
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https://perso.eleves.ens-rennes.fr/people/Emily. Clement/Videos/example_episodes/ex_0.mp4
https://perso.eleves.ens-rennes.fr/people/Emily. Clement/Videos/example_episodes/ex_0.mp4

Our layered approach

e Our assumptions

v(x)
1

> Speed: 0 X
1 2 3 4 5 6
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Our layered approach

e Our assumptions

v(x)
1

> Speed: 0 X
1 2 3 4 5 6
> Paths of cars: fixed trajectories, fixed finals & initial positions.
> Trajectories: we abstract from the curves of the trajectories.
> Our control: the speed of (all) cars.

> Goal: reach goals while avoiding collisions between agents.

e Our contribution: Three-layered Controller synthesis
SWA-SMT Solver

Stage 1: Reachability
algorithm on a simpli-
fied ISWA model

SWA
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Our layered approach

e Our assumptions

v(x)
1

> Speed: 0

1 2 3 4 5 6

> Paths of cars: fixed trajectories, fixed finals & initial positions.

> Trajectories: we abstract from the curves of the trajectories.

> Our control: the speed of (all) cars.

> Goal: reach goals while avoiding collisions between agents.

e Our contribution: Three-layered Controller synthesis

SWA-SMT Solver

Stage 1: Reachability Stage 2: Refine the
algorithm on a simpli- model of the speed

fied ISWA model
SWA

RL training
Generate a dataset Stage 3: Train an RLE
for random initial algorithm with our
positions dasaset
Dataset RL

Emily Clement

Layered




SWA-SMT solver

SWA solver

Stage 1: Reachability Stage 2: Model the

algorithm on system accelleration and de-
of ISWA celeration
SWA SMT
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Rules to model collision avoidance

e#1: security distance when driving in the same direction and between
neighbouring sections

L8>
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Rules to model collision avoidance

e#1: security distance when driving in the same direction and between
neighbouring sections
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e#£2: cars cannot share a section if driving in opposite direction

no A(s,—) n n2
O—= O O /
no(s,—) B n n
5; =ING 3
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Rules to model collision avoidance

e#1: security distance when driving in the same direction and between
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Rules to model collision avoidance

e#1: security distance when driving in the same direction and between
neighbouring sections

@

0O
1%
>

L8>

™1
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¢
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€

e#£2: cars cannot share a section if driving in opposite direction

no A(s,—) n n2
O—= O O /
no(s,—) B n n
5; =ING 3
AT 3|
s 2k 3

e#3: No Overtaking between cars
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Model for a car traffic

n
> A point in R%: a node (S

. n n
> A section sj,g n,),. Of the road: C()i’—»é
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Model for a car traffic

n
> A point in R%: a node (8

. n n
> A section sj,g n,),. Of the road: @—»é

> A path: Po 3n( 0)—>(n1)—>(n3)—>(n4)—>(n6)—>(n )1

> Car: (position, speed, trajectory)

> A car traffic: co, c1, c2 are each assigned paths po, p1, p2:
no m n»

o m ns3 na ne nNi1
po :

n2 m n3 Ns  nNg Nio
pr:

n7 Ne na Ns ng ng
p2:
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What type of Timed Automata to use to model this?

e Needs
v(x)

1
> Stopwatch Timed Automata: 0 |

|
T
1 2 3 4
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What type of Timed Automata to use to model this?

e Needs
v(x)
1
> Stopwatch Timed Automata: 0 | | X
1 2 3 4
> Clocks of TA: Monitor each car's progress.
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What type of Timed Automata to use to model this?

e Needs
v(x)
1
> Stopwatch Timed Automata: 0 | | X
1 2 3 4
> Clocks of TA: Monitor each car's progress.
> Synchronised action: Compute distance between each cars.
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What type of Timed Automata to use to model this?

o Needs
v(x)
1

> Stopwatch Timed Automata: 0 | | X
1 2 3 4

> Clocks of TA: Monitor each car's progress.

> Synchronised action: Compute distance between each cars.

> FiFo channels: A car cannot overtake another car.
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What is a Timed Automaton (and its variants) ?

o A classic timed automaton

0<x<?2 2<x<3

@sync(a) /el\sync(b) 61\0 <x< 5@
el ()

e Variants
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What is a Timed Automaton (and its variants) ?

o A classic timed automaton

Action

Location

()

Initial location Goal location

e Variants
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What is a Timed Automaton (and its variants) ?

o A classic timed automaton

Action Cueie Clocks

Location
eynela) (77 el 0 -5@
f

\J

Initial location Goal location

e Variants

> Stopwatch . clock x is stopped in location £g.

O}
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What is a Timed Automaton (and its variants) ?

o A classic timed automaton

Action Cueie Clocks

Location
eynela) (77 Nl 0 -5@
f

\J

Initial location Goal location

e Variants

> Stopwatch . clock x is stopped in location £g.

{x}
> Channels: FiFo queue of symbols (actions) to be pushed/read
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A run of a timed automaton

e A run of a two-clock Timed Automaton

0<x<1 1<x<2
0<y<1 0<y<l1
Lo 61\ Le
a1,y<—0 U az
y
1_ ..........................
| L
fo 1 2
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A run of a timed automaton

e A run of a two-clock Timed Automaton
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A run of a timed automaton

o A run with a (two-clock) stopwatch timed automaton (ISWA)

0<x<1 1<x<2
0<y<1 0<y<1
ai U az
{v} { {
y
1 e e
. i . .
o 1 2
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A run of a timed automaton

o A run with a (two-clock) stopwatch timed automaton (ISWA)

0<x<1 1<x<2
0<y<1 0<y<1
205 200
{v} {3 {}
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A run of a timed automaton

o A run with a (two-clock) stopwatch timed automaton (ISWA)

0<x<1 1<x<2
0<y<1 0<y<1
20 0L 0
ai U az
{v} {3 {}
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Initialized Stopwatch Timed Automata with bounded channels

e Example of a two-clocks Stopwatch Timed Automata

y
0<x<1 1<x<2
0<y<1 0<y<1
{v} {} {}
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Initialized Stopwatch Timed Automata with bounded channels

e Example of a two-clocks Stopwatch Timed Automata
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{v} {} {}

> Reachability is Undecidable in general cases.
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Initialized Stopwatch Timed Automata with bounded channels

e Example of a two-clocks Stopwatch Timed Automata

0<x<1 1<x<2
0<y<1 0<y<1
{v} {} {}

> Reachability is Undecidable in general cases.

e Initialized Stopwatch Timed Automata
> Reset the stopped clock in the previous or following transition:
& [N\ &
s i} s
> Reachability becomes Decidable for this fragment of SWA.
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Initialized Stopwatch Timed Automata with bounded channels

e Example of a two-clocks Stopwatch Timed Automata

0<x<1 1<x<2
0< 1
Lo v = 61\ 0=v=t L
EN U a
{v} {} {}

> Reachability is Undecidable in general cases.

e Initialized Stopwatch Timed Automata
> Reset the stopped clock in the previous or following transition:
& [N\ &
s i} s
> Reachability becomes Decidable for this fragment of SWA.

e Bounded channels
> Channels: FiFo queue of symbols (actlons) to be pushed/read
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Model the car progress

e Car A progress along its paths
S S S

xa = Lo xa = Lo xa= Lo+ L xa= Lo+ L
- - Wi s, -
syncs, (xa) s 7xa U corrlxa syncgr (xa)
{xa} {xa}
> Clock xa: distance travelled along its paths

> Stopwatches {xs}: the car A stops instantly.

> Channels ¢/ !xa/css 7xa: respect the order of cars in a section s = no over-
taking.

> Intersection: use classical synchronized action to activate intersection auto-
mata
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Model distance between cars: intersection

Path of car A: © A @ s R

Path of car B: O °6 O s 55 O

O
O

e Intersection automaton

xg =L+¢

sync,, (xs) syncy (xa)
Xs 0 Xst < 0
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Model distance between cars: intersection

Path of car A: © A O—@ s i

Path of car B: O °6 O s 5 O

O
O

e Intersection automaton

xg =L+¢

sync,, (xs) syncy (xa)
Xs 0 Xgr < 0
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Model distance between cars: intersection

SA

n
¥

Path of car A: © O O O O
5 / sg”
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Model distance between cars: intersection
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;

Path of car B: O °6 O s °

C
)
O
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Model distance between cars: intersection

s, s
Path of car A: © A O ° O é O
5 / sg”
Path of car B: O 5 O ° O—@ c O
e Intersection automaton
xg =L+¢

sync, (xs) syncy (xa)
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Model distance between cars: intersection

s, s
Path of car A: © A O ° O é O
5 / sg”
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Our Algorithm: a DFS with an optimised succ function

Transition t available
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Our Algorithm: a DFS with an optimised succ function

Transition t available

Choice

3 car asking to
enter in s, —»
()7
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Our Algorithm: a DFS with an optimised succ function

Transition t available

Choice

3 car asking to
enter in s, —
()7

take t or t/
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SWA-SMT solver

SMT solver

Stage 1: Reachability Stage 2: Model the

algorithm on system accelleration and de-
of ISWA celeration
SWA SMT
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Why use of SMT solver?

16 / 24

DFS algorithm

Stage 1: Reachability
algorithm on a simpli- ::

fied ISWA model
SWA

Solved: combinatorial
: aspect of the problem.

: Results: Important

: events and their relat-
! ive order

: Drawback: A very ab-
: stract model of speed

Emily Clement

SMT Solver

model of the speed

Layered

Stage 2: Refine the

RL training

Generate a dataset
for random initial

algorithm with our

positions dasaset
Dataset RL
[} ynthesis for dy ic multi-agent systems




Why use of SMT solver?

DFS algorithm SMT Solver RL training
Stage 1: Reachability i Stage 2: Refine the : ~ Generate a dataset
algorithm on a simpli- *:  model of the speed : - for random initial algorithm with our
fied ISWA model : positions dasaset
SWA 3§ sMT Dataset RL

* Solved: combinatorial
: aspect of the problem.
: Results: Important
events and their relat-
! ive order

: Drawback: A very ab-
stract model of speed

o SMT solver

> The continuous aspect of the problem

> Introduce a more realistic model of speed
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New model for speed graph

e A constant piecewise affine function

> A more realistic model that takes into account the dynamic of the system
> Different car speeds

> Bounds on deceleration and acceleration

v(t) = (0),-- (k—1)
x(t) = xi(k)= Y (N

=0 Vi

v(t) 7(t)
2 2

7(0),---, (6)
1 E e 1
e i t 0 t

2 3 4 5 6 1 2 3 4 5 6
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How to preserve security distance ?

e New positions/speeds
> Si(k) = 2o ()
> \7,'(0), BN \7,'(k — 1)

18 /24 Emily Clement Layered [} ynthesis for dy ic multi-agent systems



How to preserve security distance ?

e New positions/speeds
> %i(k) = o5 wi(l)
> \7,'(0), BN \7,'(k — 1)
e Example of SMT solver’s inequalities

For each step k :
> Vl(k) - dmax S Vl(k + 1) S Vl(k) + dmax
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How to preserve security distance ?

e New positions/speeds
> Si(k) = 2o ()
> \7,'(0), BN \7,'(k — 1)

e Example of SMT solver's inequalities
For each step k :
> Vi(k) = dmax < Vi(k + 1) < (k) + amax
> 0< Vi(k) < Vmax
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Generate a dataset Stage 3: Train an RL:
for random initial algorithm with our
positions dasaset

Dataset RL
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Why use of SMT solver?

DFS algorithm

Stage 1: Reachability
algorithm on a simpli-

fied ISWA model
SWA

Solved: combinatorial

: aspect of the problem.
: Results: Important

i events and their relat-
: ive order

: Drawback: A very ab-

i stract model of speed

SMT Solver RL training
Stage 2: Refine the ' : Generate a dataset Stage 3: Train an RL:
model of the speed : : for random initial algorithm with our
. 1 positions dasaset
SMT P Dataset RL
A more realistic  :  Drawback: our problem has both combinat-
model of speed : orial and continuous aspects
Results: traces that :  Goal: get an intuition from dataset to
takes into account '  avoid unsuccessful choices

the dynamical aspect :
of the problem
Drawback: runtime
execution
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Why use of SMT solver?

DFS algorithm

Stage 1: Reachability
algorithm on a simpli- '

fied ISWA model
SWA

: Solved: combinatorial
: aspect of the problem.
: Results: Important

: events and their relat-
ive order

: Drawback: A very ab-
i stract model of speed

SMT Solver

Stage 2: Refine the
model of the speed

SMT

A more realistic
model of speed :
Results: traces that :
takes into account
the dynamical aspect :
of the problem
Drawback: runtime
execution

SWA-SMT solver

e RL training dataset

RL training
Generate a dataset Stage 3: Train an RL?
for random initial algorithm with our
positions dasaset
Dataset RL

Drawback: our problem has both combinat-
orial and continuous aspects

Goal: get an intuition from dataset to
avoid unsuccessful choices

> Create random initial positions/speeds for cars
> Generate traces with the SWA-SMT solver

20/24 Emily Clement Layered
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e Markov Decision Process

> Deterministic running example: deterministic transition function.
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e Markov Decision Process
> Deterministic running example: deterministic transition function.

> State s;. For each section s, if a car c is in s: Vi, pos; ., idc, 1
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e Markov Decision Process
> Deterministic running example: deterministic transition function.

> State s;. For each section s, if a car c is in s: Vi, pos; ., idc, 1
> Action act;: (acci,c)cecars
(080 vic) ==+ (PO + v Ve + accic)
i i+1
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e Markov Decision Process

> Deterministic running example: deterministic transition function.

> State s;. For each section s, if a car c is in s: Vi, pos; ., idc, 1
> Action act;: (acci,c)cecars

(POS; ¢y Vi) ------ > (pos; . + Vi, vi,c + acci,c)
i i+1

> Trajectories s;, Obs;, act;
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e Markov Decision Process

> Deterministic running example: deterministic transition function.

> State s;. For each section s, if a car c is in s: Vi, pos; ., idc, 1
> Action act;: (acci,c)cecars

(POS; ¢y Vi) ------ > (pos; . + Vi, vi,c + acci,c)
i i+1

> Trajectories s;, Obs;, act;

> Reward:

42000 if goals are achieved

—100 if distance rules are not respected

" with speed

" with the increase of distance between cars

O O O ©
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Results with SWA-SMT solver, post SWA-SMT solver RL and single RL

training

—— TD3BC (RL from expert dataset)
40 standard deviation
—— TD3 (RL from scratch)
standard deviation
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Steps of the layered method

DFS algorithm

Stage 1: Reachability :
algorithm on a simpli-

fied ISWA model
SWA

Solved: combinatorial

: aspect of them problem.

! Results: Important

: events and their relat-
! ive order

: Drawback: A very ab-
: stract model of speed

SMT Solver

Stage 2: Refine the
model of the speed :

SMT

A more realistic
model of speed
Results: traces that
takes into account
the dynamical aspect '
of the problem :
Drawback: runtime
execution

SWA-SMT solver

23 /24 Emily Clement Layered

RL training
Generate a dataset Stage 3: Train an Rl
for random initial algorithm with our
positions dasaset
Dataset RL

Drawback: our problem has both combinat-
orial and continuous aspects

Method: get an intuition from dataset to
avoid unsuccessful choices

MDP model to reward short-time episode
and distance between cars

Yy is for dy ic multi-agent systems



Conclusion

o SWA-SMT Solver

Automata-based model

Efficient algorithm
Abstract model with unrealistic speed model

v(t) w(t)

Piecnisefine sped graph z z

Bounded accelleration and deceleration 9(0).--+ . #(6)
Different speed 1 = 1
SMT solver to model and solve the distance
constraints
- L
[ T t t
1 2 3 4 5 6 1 2 3 4 5 6
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Conclusion

o SWA-SMT Solver

Automata-based model

Efficient algorithm
Abstract model with unrealistic speed model

v(t) w(t)
Piscenise-affine speed graph : :

Bounded accelleration and deceleration

Different speed 1 7(0), 'I-V(@ )
SMT solver to model and solve the distance
constraints
- ! . .
| 1 1 T
1 2 3 4 5 6 1 2 3 4 5 6
e RL training
Dataset

Trace generated with SWA-SMT solver
Random positions & speeds

Better than single RL
Better than SWA-SMT solver
Runtime: ~ 2 days

S —

percentage af s

seps 106
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Conclusion

o SWA-SMT Solver

Automata-based model

Efficient algorithm
Abstract model with unrealistic speed model

v(t) w(t)
Piscenise-affine speed graph : :

Bounded accelleration and deceleration 9(0).--+ . #(6)
Different speed 1 —
SMT solver to model and solve the distance
constraints

e RL training

Dataset

Trace generated with SWA-SMT solver
Random positions & speeds

Better than single RL
Better than SWA-SMT solver
Runtime: ~ 2 days

S —

percentage af s

seps 106

e Future work: Decentralized multi-agent systems
24 /24 Emily Clement Layered [} hesis for dy
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