Layered controller synthesis for dynamic multi-agent systems

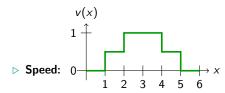
Emily Clement^{1 3} Nicolas Perrin-Gilbert¹ Philipp Schlehuber-Caissier²

¹Sorbonne Université, CNRS, Institut des Systèmes Intelligents et de Robotique, ISIR, F-75005 Paris, France ²EPITA Research Laboratory ³Universite Paris Cité, CNRS, IRIF, Paris, France

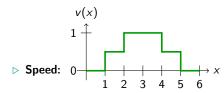
Septembre 28 2023

Emily Clement Layered controller synthesis for dynamic multi-agent systems

Introduction

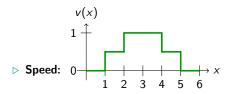

Dynamic multi-agent system's verification

• A running example


https://perso.eleves.ens-rennes.fr/people/Emily.Clement/Videos/example_episodes/ex_0.mp4

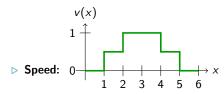
	Timed Automata	Reinforcement Learning	
	Abstract representation		
Model	(acceleration)		
		Combinatorial or	
Waekness	Time of execution	Continuous aspects	

• Our assumptions

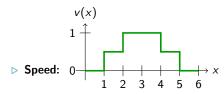


• Our assumptions

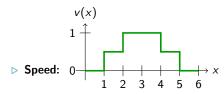
> Paths of cars: fixed trajectories, fixed finals & initial positions.


• Our assumptions

> Paths of cars: fixed trajectories, fixed finals & initial positions.


> **Trajectories:** we abstract from the curves of the trajectories.

• Our assumptions


- > Paths of cars: fixed trajectories, fixed finals & initial positions.
- > **Trajectories:** we abstract from the curves of the trajectories.
- ▷ **Our control:** the speed of (all) cars.

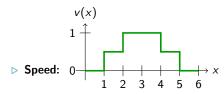
• Our assumptions

- > Paths of cars: fixed trajectories, fixed finals & initial positions.
- > **Trajectories:** we abstract from the curves of the trajectories.
- ▷ **Our control:** the speed of (all) cars.
- ▷ Goal: reach goals while avoiding collisions between agents.

• Our assumptions

- > Paths of cars: fixed trajectories, fixed finals & initial positions.
- > Trajectories: we abstract from the curves of the trajectories.
- ▷ Our control: the speed of (all) cars.
- ▷ Goal: reach goals while avoiding collisions between agents.

• Our contribution: Three-layered Controller synthesis


SWA-SMT Solver

Emily Clement

Stage 1: Reachability algorithm on a simplified ISWA model

• Our assumptions

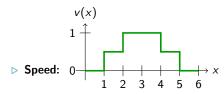
- > Paths of cars: fixed trajectories, fixed finals & initial positions.
- > Trajectories: we abstract from the curves of the trajectories.
- ▷ Our control: the speed of (all) cars.
- ▷ Goal: reach goals while avoiding collisions between agents.

• Our contribution: Three-layered Controller synthesis

SWA-SMT Solver

Stage 1: Reachability algorithm on a simplified ISWA model

Stage 2: Refine the model of the speed



Emily Clement Lay

Layered controller synthesis for dynamic multi-agent systems

• Our assumptions

- > Paths of cars: fixed trajectories, fixed finals & initial positions.
- > Trajectories: we abstract from the curves of the trajectories.
- ▷ Our control: the speed of (all) cars.

Emily Clement

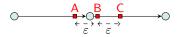
▷ Goal: reach goals while avoiding collisions between agents.

• Our contribution: Three-layered Controller synthesis

SWA-SM	T Solver	RL training		
Stage 1 : Reachability algorithm on a simpli- fied ISWA model	Stage 2 : Refine the model of the speed	Generate a dataset for random initial positions	Stage 3 : Train an RL algorithm with our dasaset	
SWA	SMT	Dataset	RL	

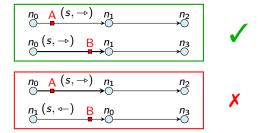
Layered controller synthesis for dynamic multi-agent systems

SWA-SMT solver

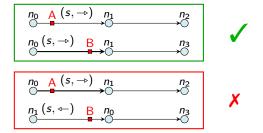

SWA solver

 \bullet #1: security distance when driving in the same direction and between neighbouring sections

 \bullet #1: security distance when driving in the same direction and between neighbouring sections


•#2: cars cannot share a section if driving in **opposite** direction


•#1: security distance when driving in the same direction and between neighbouring sections


•#2: cars cannot share a section if driving in **opposite** direction

 \bullet #1: security distance when driving in the same direction and between neighbouring sections

•#2: cars cannot share a section if driving in **opposite** direction

•#3: No Overtaking between cars

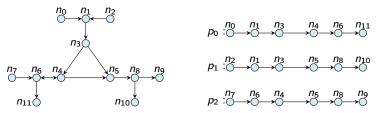
Emily Clement Layered controller synthesis for dynamic multi-agent systems

▷ A point in \mathbb{R}^2 : a node $\overset{n_0}{\bigcirc}$ ▷ A section $s_{[n_0,n_1],L}$ of the road: $\overset{n_0}{\bigcirc} \xrightarrow{n_1}_{L}$

▷ A point in
$$\mathbb{R}^2$$
: a node \bigcirc^{n_0}
▷ A section $s_{[n_0,n_1],L}$ of the road: $\bigcirc^{n_0}_{\leftarrow ----- } \bigcirc^{n_1}_{L}$

 $\triangleright A \text{ path: } p_0 \stackrel{n_0}{:} \stackrel{n_1}{\to} \stackrel{n_3}{\to} \stackrel{n_4}{\to} \stackrel{n_6}{\to} \stackrel{n_{11}}{\to} \stackrel{n_{11}}{\to} \stackrel{n_{12}}{\to} \stackrel{n_{11}}{\to} \stackrel{n_{11}}{\to} \stackrel{n_{12}}{\to} \stackrel{n_{12}}{\to} \stackrel{n_{13}}{\to} \stackrel{n_{14}}{\to} \stackrel{n_{16}}{\to} \stackrel{n_{11}}{\to} \stackrel{n_{11}}{\to} \stackrel{n_{12}}{\to} \stackrel{n_{12}}{\to}$

▷ A point in \mathbb{R}^2 : a node $\overset{n_0}{\bigcirc}$ ▷ A section $s_{[n_0,n_1],L}$ of the road: $\overset{n_0}{\bigcirc} \xrightarrow{\qquad n_1}_{L}$


 $\triangleright A \text{ path: } p_0 \stackrel{n_0}{\longrightarrow} \stackrel{n_1}{\longrightarrow} \stackrel{n_3}{\longrightarrow} \stackrel{n_4}{\longrightarrow} \stackrel{n_6}{\longrightarrow} \stackrel{n_{11}}{\longrightarrow} \stackrel{n_{12}}{\longrightarrow} \stackrel{n_{12}}{\longrightarrow} \stackrel{n_{13}}{\longrightarrow} \stackrel{n_{14}}{\longrightarrow} \stackrel{n_{16}}{\longrightarrow} \stackrel{n_{11}}{\longrightarrow} \stackrel{n_{16}}{\longrightarrow} \stackrel{n_{16}}{\longrightarrow}$

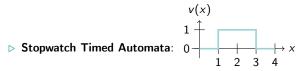
▷ A point in \mathbb{R}^2 : a node \bigcirc^{n_0}

$$\triangleright A \text{ section } s_{[n_0,n_1],L} \text{ of the road: } \bigcirc_{\leftarrow} \overset{n_0}{\underset{\leftarrow}{}} \overset{n_1}{\underset{\leftarrow}{}} \overset{\cap}{\underset{\leftarrow}{}} \overset{n_1}{\underset{\leftarrow}{}} \overset{\cap}{\underset{\leftarrow}{}} \overset{n_1}{\underset{\leftarrow}{}} \overset{\cap}{\underset{\leftarrow}{}} \overset{n_1}{\underset{\leftarrow}{}} \overset{n_2}{\underset{\leftarrow}{}} \overset{n_1}{\underset{\leftarrow}{}} \overset{n_2}{\underset{\leftarrow}{}} \overset{n_1}{\underset{\leftarrow}{}} \overset{n_2}{\underset{\leftarrow}{}} \overset{n_1}{\underset{\leftarrow}{}} \overset{n_2}{\underset{\leftarrow}{}} \overset{n_2}{\underset{\leftarrow}{} \overset{n_2}{\underset{\leftarrow}{}} \overset{n_2}{\underset{\leftarrow}{}} \overset{n_2}{\underset{\leftarrow}{} \overset{n_2}{\underset{\leftarrow}{}} \overset{n_2}{\underset{\leftarrow}{} \overset{n_2}{\underset{\leftarrow}{}} \overset{n_2}{\underset{\leftarrow}{}} \overset{n_2}{\underset{\leftarrow}{} \overset{n_2}{\underset{\leftarrow}{}} \overset{n_2}{\underset{\leftarrow}{}} \overset{n_2}{\underset{\leftarrow}{} \overset{n_2}{\underset{\leftarrow}{}} \overset{n_2}{\underset{\leftarrow}{}} \overset{n_2}{\underset{\leftarrow}{}} \overset{n_2}{\underset{\leftarrow}{} \overset{n_2}{\underset{\leftarrow}{}} \overset{n_$$

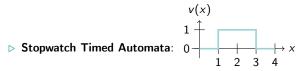
 $\triangleright A \text{ path: } p_0 \stackrel{n_0}{:} \stackrel{n_1}{\to} \stackrel{n_3}{\to} \stackrel{n_4}{\to} \stackrel{n_6}{\to} \stackrel{n_{11}}{\to} \stackrel{n_{11}}{\to} \stackrel{n_{12}}{\to} \stackrel{n_{11}}{\to} \stackrel{n_{11}}{\to} \stackrel{n_{12}}{\to} \stackrel{n_{12}}{\to} \stackrel{n_{12}}{\to} \stackrel{n_{13}}{\to} \stackrel{n_{14}}{\to} \stackrel{n_{16}}{\to} \stackrel{n_{11}}{\to} \stackrel{n_{12}}{\to} \stackrel{n_{12}}{\to}$

- ▷ Car: (position, speed, trajectory)
- ▷ A car traffic: c_0, c_1, c_2 are each assigned paths p_0, p_1, p_2 :

• Needs

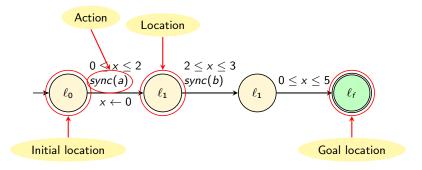

▷ Stopwatch Timed Automata: $\begin{matrix} v(x) \\ 1 & 1 \\ 0 & 1 \\ 1 & 2 & 3 & 4 \end{matrix}$

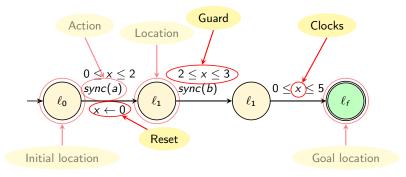
Needs


> Clocks of TA: Monitor each car's progress.

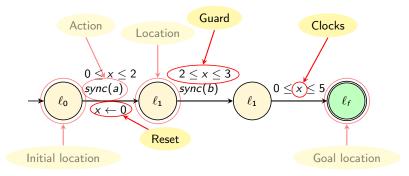
Needs

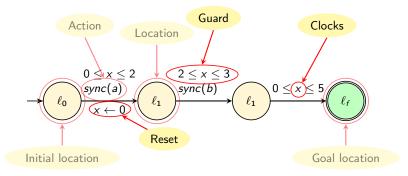
- > Clocks of TA: Monitor each car's progress.
- **Synchronised action**: Compute distance between each cars.


Needs

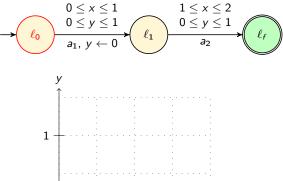

- Clocks of TA: Monitor each car's progress.
- **Synchronised action**: Compute distance between each cars.
- > FiFo channels: A car cannot overtake another car.

$$\xrightarrow{0 \le x \le 2} \underbrace{2 \le x \le 3}_{sync(a)} \xrightarrow{sync(b)} \underbrace{\ell_1}^{0 \le x \le 5} \underbrace{\ell_f}$$

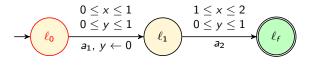

Variants

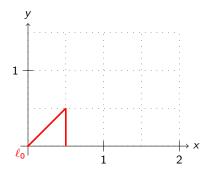

Variants

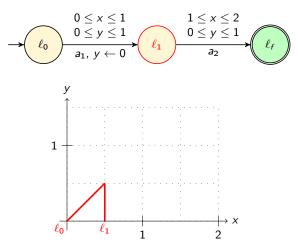
Variants

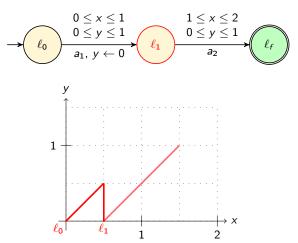

• Variants • Stopwatch $\rightarrow \ell_0$: clock x is stopped in location ℓ_0 . $\{x\}$

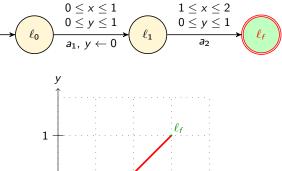
Variants


▷ Stopwatch
$$\rightarrow \underbrace{\ell_0}_{\{x\}}$$
: clock x is stopped in location ℓ_0 .

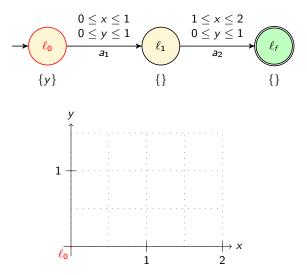

> Channels: FiFo queue of symbols (actions) to be pushed/read



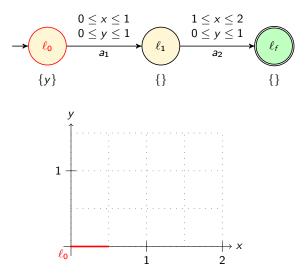

Emily Clement


Emily Clement

10/24

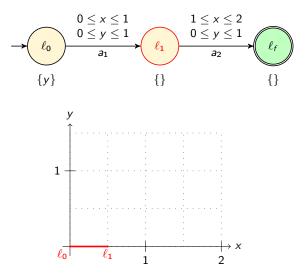

Emily Clement

A run of a timed automaton


• A run with a (two-clock) stopwatch timed automaton (ISWA)

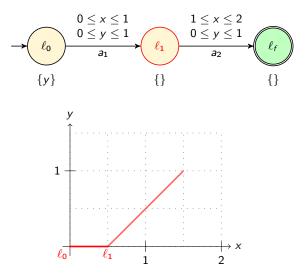
Emily Clement Layered controller synthesis for dynamic multi-agent systems

A run of a timed automaton


• A run with a (two-clock) stopwatch timed automaton (ISWA)

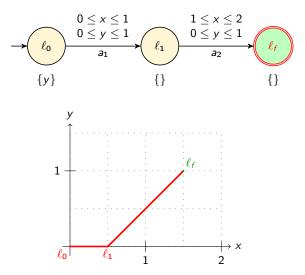
Emily Clement Layered controller synthesis for dynamic multi-agent systems

A run of a timed automaton

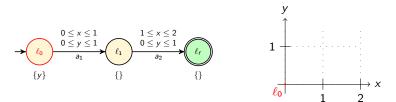

• A run with a (two-clock) stopwatch timed automaton (ISWA)

Emily Clement Layered controller synthesis for dynamic multi-agent systems

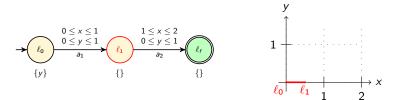
A run of a timed automaton


• A run with a (two-clock) stopwatch timed automaton (ISWA)

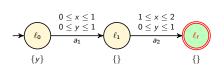
Emily Clement Layered controller synthesis for dynamic multi-agent systems

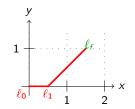

A run of a timed automaton

• A run with a (two-clock) stopwatch timed automaton (ISWA)

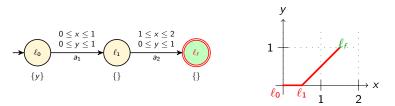


Emily Clement Layered controller synthesis for dynamic multi-agent systems

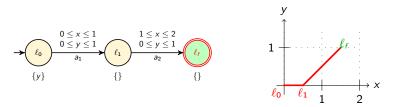

• Example of a two-clocks Stopwatch Timed Automata



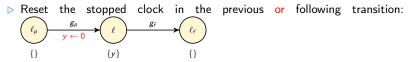
• Example of a two-clocks Stopwatch Timed Automata



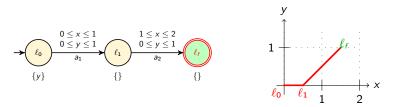
• Example of a two-clocks Stopwatch Timed Automata


• Example of a two-clocks Stopwatch Timed Automata

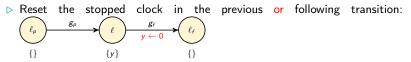
▶ Reachability is Undecidable in general cases.


Emily Clement Layered controller synthesis for dynamic multi-agent systems

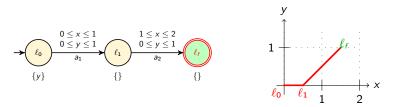
• Example of a two-clocks Stopwatch Timed Automata


▷ Reachability is Undecidable in general cases.

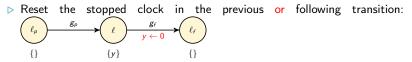
Initialized Stopwatch Timed Automata


> Reachability becomes Decidable for this fragment of SWA.

• Example of a two-clocks Stopwatch Timed Automata


▷ Reachability is Undecidable in general cases.

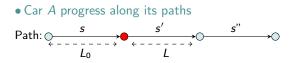
Initialized Stopwatch Timed Automata


> Reachability becomes Decidable for this fragment of SWA.

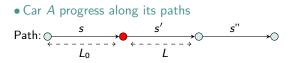
• Example of a two-clocks Stopwatch Timed Automata

▶ Reachability is Undecidable in general cases.

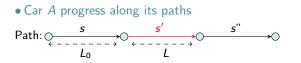
Initialized Stopwatch Timed Automata

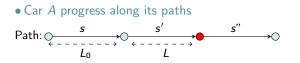

> Reachability becomes Decidable for this fragment of SWA.

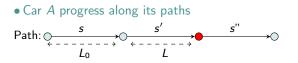
Bounded channels

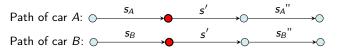

Channels: FiFo queue of symbols (actions) to be pushed/read Emily Clement

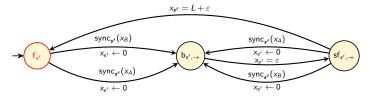
11/24


Layered controller synthesis for dynamic multi-agent systems

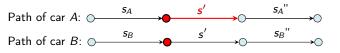

- \triangleright **Clock** x_A : distance travelled along its paths
- **Stopwatches** $\{x_A\}$: the car A stops instantly.
- ▷ **Channels** $c_{s'}!x_A/c_{s'}?x_A$: respect the order of cars in a section $s \Rightarrow$ no overtaking.
- Intersection: use classical synchronized action to activate intersection automata


- \triangleright **Clock** x_A : distance travelled along its paths
- **Stopwatches** $\{x_A\}$: the car A stops instantly.
- ▷ **Channels** $c_{s'}!x_A/c_{s'}?x_A$: respect the order of cars in a section $s \Rightarrow$ no overtaking.
- Intersection: use classical synchronized action to activate intersection automata

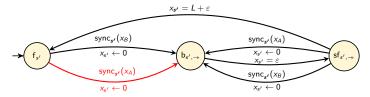

- \triangleright **Clock** x_A : distance travelled along its paths
- **Stopwatches** $\{x_A\}$: the car A stops instantly.
- ▷ **Channels** $c_{s'}!x_A/c_{s'}?x_A$: respect the order of cars in a section $s \Rightarrow$ no overtaking.
- Intersection: use classical synchronized action to activate intersection automata


- \triangleright **Clock** x_A : distance travelled along its paths
- **Stopwatches** $\{x_A\}$: the car A stops instantly.
- ▷ **Channels** $c_{s'}!x_A/c_{s'}?x_A$: respect the order of cars in a section $s \Rightarrow$ no overtaking.
- Intersection: use classical synchronized action to activate intersection automata

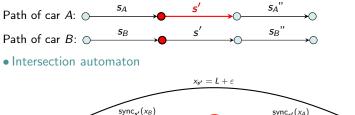
- \triangleright **Clock** x_A : distance travelled along its paths
- **Stopwatches** $\{x_A\}$: the car A stops instantly.
- ▷ **Channels** $c_{s'}!x_A/c_{s'}?x_A$: respect the order of cars in a section $s \Rightarrow$ no overtaking.
- Intersection: use classical synchronized action to activate intersection automata

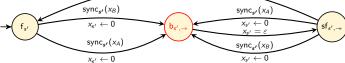


• Intersection automaton

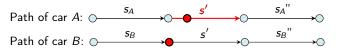


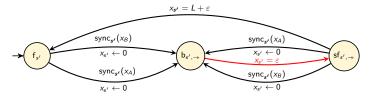
Emily Clement Layered controller synthesis for dynamic multi-agent systems

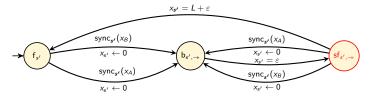

Emily

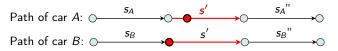


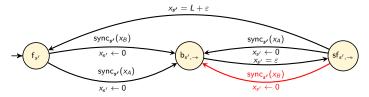
• Intersection automaton




E

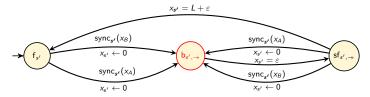

Emily Clement Layered controller synthesis for dynamic multi-agent systems

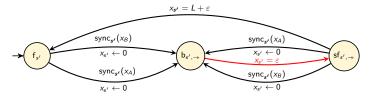




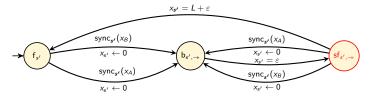


• Intersection automaton

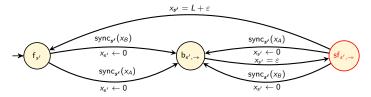


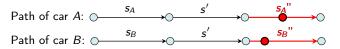


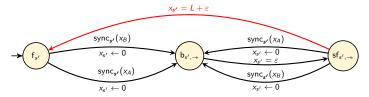
• Intersection automaton

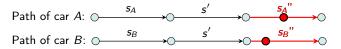


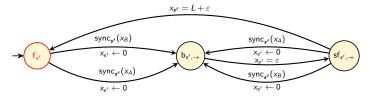
Emily Clement

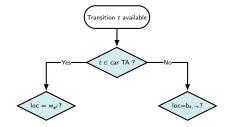


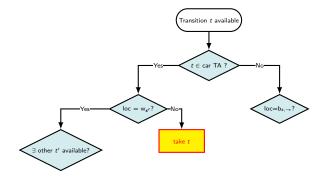


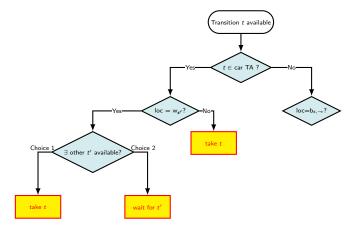


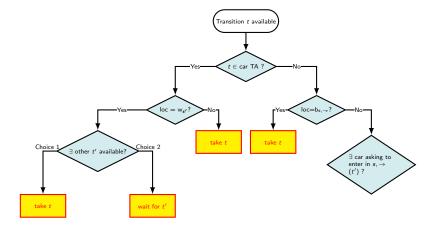


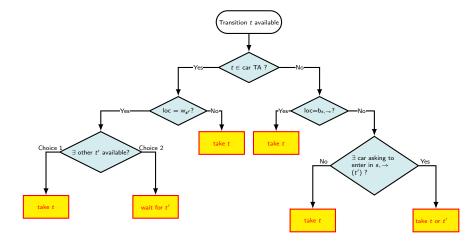




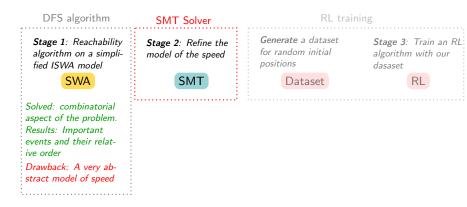

• Intersection automaton




Emi



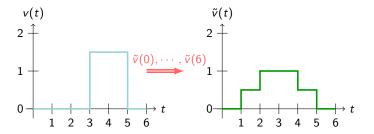
Emily Clement


SWA-SMT solver

SMT solver

Drawback: A very abstract model of speed

DFS algorithm	SMT Solver	RL training	
Stage 1 : Reachability algorithm on a simpli- fied ISWA model	Stage 2 : Refine the model of the speed	<i>Generate</i> a dataset for random initial positions	Stage 3 : Train an RL algorithm with our dasaset
SWA	SMT	Dataset	RL
Solved: combinatorial aspect of the problem. Results: Important events and their relat- ive order		·	:


• SMT solver

- ▷ The continuous aspect of the problem
- Introduce a more realistic model of speed

• A constant piecewise affine function

- \triangleright A more realistic model that takes into account the dynamic of the system
- Different car speeds
- Bounds on deceleration and acceleration

$$egin{array}{rll} v_i(t) &\Rightarrow& ilde v_i(0),\cdots, ilde v_i(k-1)\ x(t) &\Rightarrow& ilde x_i(k) = \sum_{l=0}^{k-1} ilde v_l(l) \end{array}$$

Emily Clement

- New positions/speeds
 - $\begin{array}{l} \triangleright \hspace{0.1cm} \tilde{x}_i(k) = \sum_{l=0}^{k-1} \tilde{v}_i(l) \\ \triangleright \hspace{0.1cm} \tilde{v}_i(0), \cdots, \tilde{v}_i(k-1) \end{array}$

• New positions/speeds

 $\begin{array}{l} \triangleright \hspace{0.1cm} \tilde{x}_i(k) = \sum_{l=0}^{k-1} \tilde{v}_i(l) \\ \triangleright \hspace{0.1cm} \tilde{v}_i(0), \cdots, \tilde{v}_i(k-1) \end{array}$

• Example of SMT solver's inequalities

For each step k:

$$\triangleright ~ ilde{v}_i(k) - d_{\max} \leq ilde{v}_i(k+1) \leq ilde{v}_i(k) + a_{\max}$$

• New positions/speeds

 $\begin{array}{l} \triangleright \hspace{0.1cm} \tilde{x}_i(k) = \sum_{l=0}^{k-1} \tilde{v}_i(l) \\ \triangleright \hspace{0.1cm} \tilde{v}_i(0), \cdots, \tilde{v}_i(k-1) \end{array}$

• Example of SMT solver's inequalities

For each step k:

$$\triangleright ~~ ilde{
u}_i(k) - d_{ extsf{max}} \leq ilde{
u}_i(k+1) \leq ilde{
u}_i(k) + a_{ extsf{max}}$$

 \triangleright $0 \leq \tilde{v}_i(k) \leq v_{\max}$

RL training

Generate a dataset for random initial positions

Dataset

Stage 3: Train an RL algorithm with our dasaset

Emily Clement Layered controller synthesis for dynamic multi-agent systems

DFS algorithm

Stage 1: Reachability algorithm on a simplified ISWA model

SWA

Solved: combinatorial aspect of the problem. Results: Important events and their relative order Drawback: A very ab-

stract model of speed

SMT Solver

Stage 2: Refine the model of the speed

SMT

A more realistic model of speed Results: traces that takes into account the dynamical aspect of the problem Drawback: runtime execution

SWA-SMT solver

RL training

Generate a dataset for random initial positions

Stage 3: Train an RL algorithm with our dasaset

RL

Dataset

Drawback: our problem has both combinatorial and continuous aspects Goal: get an intuition from dataset to avoid unsuccessful choices

DFS algorithm	SMT Solver	RL training	
Stage 1 : Reachability algorithm on a simpli- fied ISWA model	Stage 2 : Refine the model of the speed	<i>Generate</i> a dataset for random initial positions	Stage 3 : Train an RL algorithm with our dasaset
SWA	SMT	Dataset	RL
Solved: combinatorial aspect of the problem. Results: Important events and their relat- ive order Drawback: A very ab- stract model of speed	A more realistic model of speed Results: traces that takes into account the dynamical aspect of the problem Drawback: runtime execution	Drawback: our problem has both combinat- orial and continuous aspects Goal: get an intuition from dataset to avoid unsuccessful choices	

SWA-SMT solver

• RL training dataset

- Create random initial positions/speeds for cars
- Generate traces with the SWA-SMT solver

Emily Clement

Layered controller synthesis for dynamic multi-agent systems

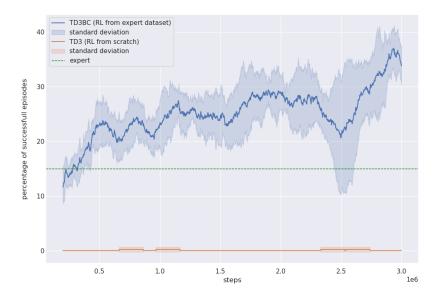
• Markov Decision Process

> Deterministic running example: deterministic transition function.

• Markov Decision Process

- > Deterministic running example: deterministic transition function.
- ▷ State s_i . For each section s_i , if a car c is in s: $v_{i,c}$, $pos_{i,c}$, id_c , 1

- Markov Decision Process
 - > Deterministic running example: deterministic transition function.
 - ▷ State s_i. For each section s, if a car c is in s: $v_{i,c}$, $pos_{i,c}$, id_c , 1


 $\triangleright \text{ Action } \operatorname{act}_{i}: \underbrace{(\operatorname{acc}_{i,c})_{c \in \operatorname{Cars}}}_{i} \underbrace{(\operatorname{pos}_{i,c}, v_{i,c})}_{i} \xrightarrow{-----} \underbrace{(\operatorname{pos}_{i,c} + v_i, v_{i,c} + \operatorname{acc}_{i,c})}_{i+1}$

- Markov Decision Process
 - > Deterministic running example: deterministic transition function.
 - ▷ State s_i. For each section s, if a car c is in s: $v_{i,c}$, $pos_{i,c}$, id_c , 1

Trajectories si, Obsi, acti

- Markov Decision Process
 - > Deterministic running example: deterministic transition function.
 - ▷ State s_i. For each section s, if a car c is in s: $v_{i,c}$, $pos_{i,c}$, id_c , 1
 - $\triangleright \text{ Action act}_i: (\operatorname{acc}_{i,c})_{c \in \operatorname{Cars}} \\ (\operatorname{pos}_{i,c}, v_{i,c}) \xrightarrow{- - \rightarrow} (\operatorname{pos}_{i,c} + v_i, v_{i,c} + \operatorname{acc}_{i,c}) \\ i \xrightarrow{i + 1}$
 - Trajectories si, Obsi, acti
 - Reward:
 - \circ +2000 if goals are achieved
 - $\circ~-100$ if distance rules are not respected
 - \circ \nearrow with speed
 - $\circ \ \nearrow$ with the increase of distance between cars

Results with SWA-SMT solver, post SWA-SMT solver RL and single RL training

22 / 24

Emily Clement

Layered controller synthesis for dynamic multi-agent systems

DFS algorithm

Stage 1: Reachability algorithm on a simplified ISWA model

SWA

Solved: combinatorial aspect of them problem. Results: Important events and their relative order Drawback: A very abstract model of speed

SMT Solver

Stage 2: Refine the model of the speed

SMT

A more realistic model of speed Results: traces that takes into account the dynamical aspect of the problem Drawback: runtime execution

RL training

Generate a dataset for random initial positions

Stage 3: Train an Ri algorithm with our dasaset

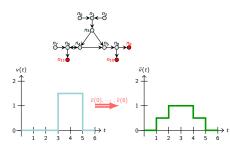
Dataset

RL

Drawback: our problem has both combinatorial and continuous aspects Method: get an intuition from dataset to avoid unsuccessful choices MDP model to reward short-time episode and distance between cars

SWA-SMT solver

Conclusion


• SWA-SMT Solver

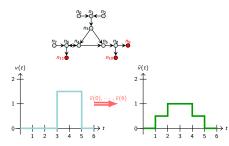
Automata-based model

Efficient algorithm Abstract model with unrealistic speed model

Piecewise-affine speed graph

Bounded accelleration and deceleration Different speed SMT solver to model and solve the distance constraints

Conclusion


• SWA-SMT Solver

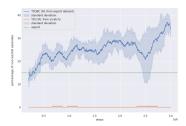
Automata-based model

Efficient algorithm Abstract model with unrealistic speed model

Piecewise-affine speed graph

Bounded accelleration and deceleration Different speed SMT solver to model and solve the distance constraints

• RL training


Dataset

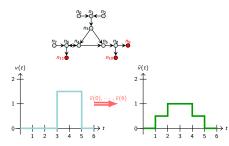
Trace generated with SWA-SMT solver Random positions & speeds

Emily Clement

Performance of RL (helped with SWA-SMT solver)

Better than single RL Better than SWA-SMT solver Runtime: ~ 2 days

Conclusion


• SWA-SMT Solver

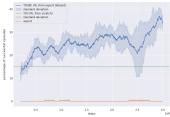
Automata-based model

Efficient algorithm Abstract model with unrealistic speed model

Piecewise-affine speed graph

Bounded accelleration and deceleration Different speed SMT solver to model and solve the distance constraints

• RL training


Dataset

Trace generated with SWA-SMT solver Random positions & speeds

Performance of RL (helped with SWA-SMT solver)

Better than single RL Better than SWA-SMT solver Runtime: ~ 2 days

• Future work: Decentralized multi-agent systems

24 / 24

Emily Clement

Layered controller synthesis for dynamic multi-agent systems