Higher Dimensional Timed Automata

Amazigh Amrane ² Hugo Bazille ² Emily Clement ¹ Uli Fahrbenberg ²

¹Université Paris Cité, CNRS, IRIF, F-75013, Paris, France ²EPITA Research Laboratory (LRE), Paris, France

14th of December 2023

EN INFORMATIQUE FONDAMENTALE

Motivation

Models and applications

• Timed Automata

▶ **Alur** & **al**: 1994

Application: synchronous real-time systems

Decidable Problems: Reachability, Emptriness, LTL MC PSPACE-Complete...

▶ Undecidable Problem: Universality.

Models and applications

Timed Automata

▶ Alur & al: 1994

▶ Application: synchronous real-time systems

Decidable Problems: Reachability, Emptriness, LTL MC PSPACE-Complete...

Undecidable Problem: Universality.

- Petri Nets
 - ▶ **Petri**: 1962
 - > **Applications**: Discrete events, concurrency.

Our goal/motivation

- Concurrency in Automata and their variants
 - **▶ Timed Automata**/Automata: b.a + a.b.
 - ightharpoonup Higher dimensional Automata: a||b.

• Goal: model Time duration of events & concurrency

Our goal/motivation

- Concurrency in Automata and their variants
 - **▶ Timed Automata**/Automata: b.a + a.b.
 - ightharpoonup Higher dimensional Automata: a||b.

- Goal: model Time duration of events & concurrency
- Application: Real-time concurrent systems

Ex: distributed cyber-physical systems

Our goal/motivation

- Concurrency in Automata and their variants
 - **▶ Timed Automata**/Automata: b.a + a.b.
 - \triangleright Higher dimensional Automata: a||b.

- Goal: model Time duration of events & concurrency
- Application: Real-time concurrent systems

Ex: distributed cyber-physical systems

• Method: Higher Dimensional Timed Automata

Augment Higher Dimensional Automata with time duration of events.

Higher Dimensional Automata: Intuition

- Examples with two events
 - \triangleright a.b + b.a:

▷ a||b:

- Examples with three events
 - $\triangleright a||b+b||c+a||c$:

> All events independent:

Events representation: pomset with interface

- Two partial order events
 - \triangleright < : precedence order (rep with \longrightarrow)
- Interfaces

Source/Target interfaces: S/T: < -minimal/maximal.

Representation of events as interval

Example of operations on ipomsets

• Gluing composition:

• Parallel composition

Definition of Higher Dimensional Automata

- An Higher Dimensional Automata A:
 - ▶ A tuple (X, X_{\perp}, X_{\top}) where X is a finite precubical set, X_{\perp} (resp. X_{\top}) ⊆ X a start (resp. accept) cell and λ a labelling function.
- List of events
 - \triangleright a conclist (concurrent list): a finite, totally ordered (---) Σ -labelled set.
- Precubical set X:
 - ▶ a set of cells X, each $x \in X$ associated with a conclist ev(x) (a list of active events in cell x)
 - $\triangleright X[U] = \{x \in X | ev(x) = U\}$ represents the cell of type U, for a conclist U.
 - \triangleright For each conclist U and $A \subseteq U$, we can define: lower\upper face map $(\delta_A^0 \setminus \delta_A^1)$: that represents unstarting\terminating events A:

$$\delta_A^0: X[U] \to X[U-A], \delta_A^1: X[U] \to X[U-A]$$

Respects the identity:

$$\delta_A^\mu \delta_B^\nu = \delta_B^
u \delta_A^\mu : \forall A, B \text{ s.t. } A \cap B = \varnothing, \forall \mu, \nu \in \{0, 1\}$$

What about time?

Timed Automata: example of scheduling

- Example of Scheduling of events a, b, c
 - ▶ Time constraints impose that between event a and b, at least (resp. at most) 2 (resp. 3) time units elapses
 - \triangleright Resets (x := 0) of clocks

• Timed automaton A:

Events: semantics of transitions

• Delay-based transitions

$$(\ell, v) \stackrel{\delta}{\longrightarrow} (\ell, v + \delta)$$

Action-based transitions

$$(\ell,v) \stackrel{a_1}{\longrightarrow} (\ell_1,v[y:=0])$$

• Ex: Region of the constraint $0 \le x, y \le 2$

Region Automaton: example for one-clock TA

• A timed Automaton and its region automaton

• Reachability problem for TA

PSPACE (Alur et al, 1994): correspondance between runs of TA and the one of the corresponding region automata.

Motivation

- Higher Dimensional Automata:
 - ▶ Events can happen in parallel, but...
 - No timing duration information nor timing constraints
- Timed Automata
 - ▶ Timing constraints, but...
 - Instantaneous events
 - ▶ interleaving concurrency

Motivation

• Higher Dimensional Automata:

- ▶ Events can happen in parallel, but...
- No timing duration information nor timing constraints

• Timed Automata

- ▶ Timing constraints, but...
- Instantaneous events
- interleaving concurrency

- Our goal: study of Higher Dimensional *Timed* Automata
 - Represent timing constraints
 - ▶ Consider timing duration of events

Represent ipomset with timing information

- Timed ipomsets is composed of:
 - ▶ An ipomset
 - A duration
 - ▶ A map labelling all events to time intervals
- Ipomsets in HDA:
- Timed ipomsets:

- Example of Timed Ipomset:
 - \triangleright ipomset: $(\{x_1, x_2, x_3\}, <, x_1 \longrightarrow x_2 \longrightarrow x_3, \{x_1, x_3\}, \{x_2\}, \lambda_1)$
 - $\lambda(x_1) = a, \lambda(x_2) = d, \lambda(x_3) = c$
 - $\triangleright d = 3$
 - $\sigma(a) = (0,3), \sigma(c) = (0,1.5), \sigma(d) = (1.5,3)$

Operation on Timed Ipomsets

• Timed ipomsets T_1, T_2 :

• Gluing of T_1 and T_2

Higher Dimensional Timed Automata: definition

• Definition:

A HDTA is a tuple $(X, X_{\perp}, X_{\top}, \lambda, C, \text{inv}, \text{exit})$ where:

- \triangleright $(X, X_{\perp}, X_{\top}, \lambda)$ is an HDA
- ▷ C: set of clocks
- ▷ inv : $X \to \phi(\mathcal{C})$ (resp. exit : $X \to 2^{\mathcal{C}}$) assign invariant (resp. exit) conditions to cells.
- Example with events a and b: HDA (left) of the HDTA (right)

Examples of HDTA

First example: adding timing duration to events

Timing duration of events:

- \triangleright a: [2,4] time units
- \triangleright b: [1, 3] time units

Example of HDTA

Second example: adding timing constraints between events...

Timing duration of events:

- \triangleright b: [1, 3] time units

Constraints between starting/ending dates

- ▶ 1 time unit should elapse between b's starting date and a's starting date
- ▶ 1 time unit should elapse between b's ending date and a's ending date

Current work: Extending properties from other models

- Language generated by HDTA
 - **TA**: timed words ((a, 0.7), (b, 1.5), (c, 2.0))...
 - ▶ HDA: labeled interval orders
- Region HDTA
 - ▶ TA: Region Automata
- Timed bisimulation
- Future work: Robustness?

• Timed automaton A:

Future work: robustness on HDTA

• No timing perturbation: c and d are not in concurrency

• timing perturbation. Let us introduce a 0.1 delay on the end date of *c*:

