Théorème de Frobenius-Zolotarev¹

Leçons: 103, 106, 123, 152, 105

[OA], exercice 5.4

Théorème

Soient p premier impair, $n \ge 1$ un entier.

Alors on a:

$$\forall u \in \operatorname{GL}_n\left(\mathbb{F}_p\right)$$
 , $\varepsilon(u) = \left(\frac{\det u}{p}\right)$

On rappelle que:

- $-\hat{\varepsilon}(u)$ est la signature de u, vu comme permutation de \mathbb{F}_p^n ;
- le symbole de Legendre est désigné par : $\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{si } a \equiv 0 \ [p] \\ 1 & \text{si } a \text{ est un carré dans } \mathbb{F}_p \\ -1 & \text{sinon} \end{cases}$

Démonstration:

On va montrer que $\varepsilon = \left(\frac{\cdot}{p}\right) \circ$ det est une factorisation de la signature.

Lemme 1

Soit *K* un corps et *M* un groupe abélien. On suppose $K \neq \mathbb{F}_2$ ou $n \neq 2$.

Alors tout morphisme de groupes $\varphi: GL_n(K) \to M$ se factorise par le déterminant, c'est-à-dire : il existe un unique morphisme de groupes $\delta: K^\times \to M$ tel que $\varphi = \delta \circ \det$.

Démonstration du lemme 1:

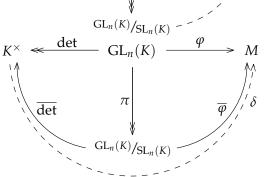
Comme $K \neq \mathbb{F}_2$ ou $n \neq 2$, on a : $\mathcal{D}(GL_n(K)) = SL_n(K)$.

Pour $x, y \in GL_n(K)$, $\varphi([x,y]) = [\varphi(x), \varphi(y)] = e$ car M est abélien. Or, $\mathcal{D}(GL_n(K))$ est engendré par les commutateurs; on en déduit : $\mathcal{D}(GL_n(K)) \subset \text{Ker}\varphi$.

On a donc la factorisation suivante, où $\overline{\varphi}$ est l'unique morphisme tel que $\varphi = \overline{\varphi} \circ \pi$:

Et comme det : $GL_n(K) \to K^{\times}$ est un morphisme surjectif de noyau $SL_n(K)$, on peut compléter ce diagramme commutatif pour le suivant, où $\overline{\det}$ est un isomorphisme (d'après le 1^{er} théorème d'isomorphisme).

On a : $\varphi = \delta \circ \det$, où $\delta = \overline{\varphi} \circ \left(\overline{\det}\right)^{-1}$, et δ est l'unique morphisme de groupes de K^{\times} vers M, car det est surjectif.



1. Donnons de ce résultat une application : le calcul du symbole de Legendre $\left(\frac{2}{p}\right)$. Posons $u: \left| \begin{array}{ccc} \mathbb{F}_p & \to & \mathbb{F}_p \\ x & \mapsto & 2x \end{array} \right|$. On a det a=2, calculons désormais la signature de la permutation a=2. On construit le tableau suivant :

х	0	1	2	 $\frac{p-1}{2}$	$\frac{p+1}{2}$	 p-2	p - 1
u(x)	0	2	4	 p-1	1	 p-4	p-2

Il s'agit de calculer le nombre d'inversions engendrées par cette permutation ; soit $k \geqslant \frac{p+1}{2}$, l'élément k voit sa position relative à p-k éléments inversée par u. Le nombre total d'inversions est alors : $\sum_{k=\frac{p+1}{2}}^{p-1} p-k = \sum_{j=1}^{\frac{p-1}{2}} j = \frac{\frac{p-1}{2}\frac{p+1}{2}}{2} = \frac{p^2-1}{8}$. Et donc, $\varepsilon(u) = (-1)^{\frac{p^2-1}{8}}$, d'où, par Frobenius-Zolotarev : $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$. La même méthode permettrait de calculer $\left(\frac{-1}{p}\right)$, mais dans ce cas, il y a plus efficace.

Dans le cadre de ce théorème, ce lemme dit que : il existe un unique morphisme de groupes $\delta: \mathbb{F}_p^{\times} \to \{\pm 1\}$, tel que $\varepsilon = \delta \circ \det$.

Lemme 2

Soit *p* premier impair.

Le symbole de Legendre est l'unique morphisme de groupes non-trivial de \mathbb{F}_{v}^{\times} dans $\{\pm 1\}$.

Comme p est premier impair $\left(\frac{a}{p}\right) = a^{\frac{p-1}{2}}$ dans \mathbb{F}_p , d'où $\left(\frac{\cdot}{p}\right)$ est un morphisme de groupes.

C'est un morphisme non-trivial car Φ : $\begin{vmatrix} \mathbb{F}_p^{\times} & \to & \mathbb{F}_p^{\times} \\ x & \mapsto & x^2 \end{vmatrix}$ est non-injective, car $1^2 = (-1)^2$ et $1 \neq -1$

(comme $p \ge 3$), donc non-surjective.

Soit $\alpha : \mathbb{F}_p^{\times} \to \{\pm 1\}$ un morphisme de groupes non-trivial.

Nécessairement, on a : $(\mathbb{F}_p^{\times} : \text{Ker } \alpha) = \#\text{Im } \alpha = 2 \text{ par le } 1^{\text{er}} \text{ théorème d'isomorphisme.}$

Or \mathbb{F}_p^{\times} est cyclique ² donc possède un unique sous-groupe d'indice 2 qu'on appelle H.

On a ainsi la partition $\mathbb{F}_p^{\times} = H \sqcup xH$, où $x \notin H$ et $\alpha(y) = \begin{cases} 1 & \text{si } y \in H \\ -1 & \text{sinon} \end{cases}$ donc α est entièrement

Donc il existe un unique morphisme de groupes non-trivial de \mathbb{F}_p^{\times} dans $\{\pm 1\}$: le symbole de Legendre.

Il reste alors à montrer que ε est non-trivial : $\varepsilon = \delta \circ \det \operatorname{impliquera} \operatorname{que} \delta$ est non-trivial, puis que $\delta = \left(\frac{\cdot}{n}\right)$.

Notons $q = p^n$. Comme \mathbb{F}_p -espaces vectoriels, \mathbb{F}_q et \mathbb{F}_p^n sont isomorphes. Il suffit donc d'exhiber une bijection \mathbb{F}_p -linéaire de \mathbb{F}_q de signature -1.

 \mathbb{F}_q^{\times} est cyclique, notons g un de ses générateurs. La bijection $x\mapsto gx$ de \mathbb{F}_q fixe 0 et donc agit sur \mathbb{F}_q^{\times} comme la permutation $(g \ g^2 \ \dots \ g^{q-1})$.

Sa signature est donc $(-1)^q = -1$, car q est impair. Et donc ε n'est pas trivial, d'où $\varepsilon = \left(\frac{\cdot}{n}\right) \circ \det$.

Références

[OA] V. BECK, J. MALICK et G. PEYRÉ – Objectif Agrégation, 2e éd., H&K, 2005.

^{2.} Pour la cyclicité de \mathbb{F}_q^{\times} , on renvoie à la page ??.