Méthode de Newton¹

Leçons: 226, 229, 232, 253, 206, 218, 219, 223, 224, 228

[Rou], exercice 49

Théorème

Soit $f:[c,d]\to\mathbb{R}$ une fonction de classe \mathcal{C}^2 .

On suppose f(c) < 0 < f(d) et f' > 0 sur [c, d]; f s'annule donc en un unique point de [c, d], noté a.

Pour $x_0 \in [c, d]$, on pose tant qu'on peut $x_{n+1} = F(x_n)$, où $F: x \mapsto x - \frac{f(x)}{f'(x)}$.

- 1. Il existe C > 0, tel que si $|x_0 a| < \frac{1}{C}$, alors $\forall n \in \mathbb{N}$, x_n est bien défini et $|x_n a| \le |x_0 a|$. Dans ce cas, (x_n) converge vers a à vitesse quadratique.
- 2. Si f'' > 0 sur [c, d] et $x_0 > a$, alors la suite (x_n) est bien définie, $\forall n \in \mathbb{N}, x_n > a$. Dans ce cas, on a l'équivalent : $x_{n+1} - a \sim \frac{f''(a)}{2f'(a)} (x_n - a)^2$.

Démonstration:

Étape 1 : Soit $x \in [c, d]$, comme f(a) = 0, on a :

$$F(x) - a = x - \frac{f(x)}{f'(x)} - a$$

$$= x - a - \frac{f(x) - f(a)}{f'(x)}$$

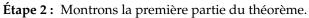
$$= \frac{f(a) - f(x) - (a - x)f'(x)}{f'(x)}$$

Et par l'égalité de Taylor-Lagrange, il existe z compris strictement entre a et x, tel que :

$$f(a) - f(x) - (a - x)f'(x) = \frac{(a - x)^2}{2}f''(z)$$

On en déduit donc :

$$F(x) - a = \frac{f''(z)}{2f'(x)}(x - a)^2$$

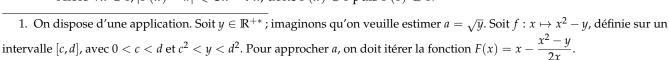


On pose $C = \frac{\max |f''|}{2\min |f'|}$; C est bien défini car f'' et f' sont continues sur le segment [c,d], intervalle

sur lequel f' > 0.

On a alors: $|F(x) - a| \le C|x - a|^2$. Soit $\alpha \in \left[0, \frac{1}{C}\right]$, tel que $I := [a - \alpha, a + \alpha] \subset [c, d]$;

Alors $\forall x \in I$, $|F(x) - a| \le C\alpha^2 < \alpha$, donc $F(x) \in I$ puis $F(I) \subset I$.



On a alors :
$$F(x) - a = \frac{(x-a)^2}{2x}$$
 et $F(x) + a = \frac{(x+a)^2}{2x}$.

Donc, en prenant $x_0 \in]a,d]$ et en posant $x_n = F^n(x_0)$, on obtient : $\frac{x_n + a}{x_n - a} = \left(\frac{x_0 + a}{x_0 - a}\right)^{2^n}$. Par conséquent : $1 + \frac{2a}{x_n - a} = \left(1 + \frac{2a}{x_0 - a}\right)^{2^n} \geqslant 1 + \left(\frac{2a}{x_0 - a}\right)^{2^n}$.

On obtient donc un encadrement de l'erreur : $0 < x_n - a \le 2a \left(\frac{x_0 - a}{2a}\right)^{2^n}$.

Par conséquent, si $x_0 \in I$, alors $\forall n \in \mathbb{N}, x_n \in I$ et $|x_{n+1} - a| = |F(x_n) - a| \leqslant C|x_n - a|^2$. Et par une récurrence immédiate, il vient :

$$|C||x_n - a| \le (C||x_{n-1} - a||)^2 \le \ldots \le (C||x_0 - a||)^{2^n} \le (C\alpha)^{2^n}$$

Ce qui prouve la convergence d'ordre 2 de (x_n) vers a car $C\alpha < 1$, dans le cas où $|x_0 - a| \le \alpha$.

Étape 3 : Utilisons désormais l'hypothèse supplémentaire : f'' > 0 sur le segment [c, d].

Pour $x \in]a,d]$, on $a: F(x) = x - \frac{f(x)}{f'(x)} < x \text{ car } f' > 0 \text{ et } f \text{ s'annule en } a.$ D'autre part : $\exists z \in]a, x[, F(x) - a = \frac{f''(z)}{2f'(x)}(x - a)^2 > 0 \text{ car } f'' \text{ et } f' \text{ sont strictement positives.}$

Ainsi, $\forall x \in]a, d], a < F(x) < x \leq d$, donc]a, d] est stable par F.

On a même : si $x_0 \in]a,d]$, alors $\forall n \in \mathbb{N}, x_n \in]a,d]$ et la suite (x_n) décroît.

Comme (x_n) est également minorée par a, la suite (x_n) converge; on note $l \in [a,d]$ sa limite.

l est un point fixe de F donc par conséquent f(l) = 0 et donc l = a.

Comme dans le cas précédent, $|x_{n+1} - a| \le C |x_n - a|^2$ et donc la convergence est quadratique.

Étape 4: Enfin, cette inégalité est essentiellement optimale.

Si
$$a < x_0 \le d$$
, alors $\forall n \in \mathbb{N}, x_n \in]a, d]$ et $\exists z_n \in]a, x_n[, \frac{x_{n+1} - a}{(x_n - a)^2} = \frac{1}{2} \frac{f''(z_n)}{f'(x_n)}.$

Par continuité de f' et f'', on déduit $\frac{f''(z_n)}{2f'(x_n)} \xrightarrow[n \to \infty]{} \frac{f''(a)}{2f'(a)}$, d'où finalement :

$$x_{n+1} - a \underset{n \to \infty}{\sim} \frac{f''(a)}{2f'(a)} (x_n - a)^2$$

Références

[Rou] F. ROUVIÈRE – Petit guide de calcul différentiel, 4e éd., Cassini, 2014.