Arrêt optimal de type Wald pour le mouvement brownien

Florian Lemonnier

Séminaire

Encadré par Mihai Gradinaru

14 janvier 2016

On fixe
$$c > 0$$
 et $G : \mathbb{R}^+ \to \mathbb{R}$ est une fonction vérifiant : $\exists \gamma > 0, \exists \delta \in \mathbb{R}, \forall x \in \mathbb{R}, G(|x|) \leq \gamma x^2 + \delta$.

On se place dans un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$, muni d'un mouvement brownien $B = (B_t)_{t \in \mathbb{R}^+}$, de filtration canonique $\mathcal{F}_t = \sigma\left(B_s, s \leq t\right)$, vérifiant les conditions habituelles.

Objectif : maximiser la quantité $\mathbb{E}\left[G\left(|B_{\tau}|\right)-c\tau\right]$, où τ parcourt l'ensemble des (\mathcal{F}_t) -temps d'arrêt intégrables.

Lemme

Le processus $(B_t^2 - t)_{t \in \mathbb{R}^+}$ est une martingale.

Lemme

Le processus $(B_t^2 - t)_{t \in \mathbb{R}^+}$ est une martingale.

Lemme

Pour tout temps d'arrêt intégrable τ , on a $\mathbb{E}\left[B_{\tau}^2\right] = \mathbb{E}[\tau]$.

On souhaite maximiser $\mathbb{E}\left[B_{\tau}^2-c\tau\right]=(1-c)\mathbb{E}[\tau].$

- Si $c \in]0,1[$, alors le supremum vaut $+\infty$ en considérant les temps d'arrêt constants $\tau \equiv n$ et en faisant tendre n vers l'infini.
- ullet Si c=1, alors le maximum vaut 0 et tous les temps d'arrêt sont optimaux.
- Si $c \in]1, +\infty[$, alors le maximum vaut 0 et est atteint pour le temps d'arrêt identiquement nul.

On souhaite maximiser $\mathbb{E}\left[|B_{\tau}|^{p}-c\tau\right]$, où $p\in]0,2[$ et c>0.

Théorème (Arrêt optimal de Wald)

Le temps d'arrêt optimal pour notre problème est défini par

$$au_{p,c}^* = \inf\left\{t \geq 0 \left| |B_t| = \left(rac{p}{2c}
ight)^{rac{1}{2-p}}
ight\}.$$

De plus, on a la borne suivante :

$$\sup_{\tau} \mathbb{E}\left[|B_{\tau}|^{p} - c\tau\right] = \frac{2-p}{2} \left(\frac{p}{2c}\right)^{\frac{p}{2-p}},$$

le supremum étant pris sur l'ensemble des temps d'arrêt intégrables.

Cas
$$G(|x|) = x^2$$

Cas $G(|x|) = |x|^p$, $p \in]0,2[$
Cas général

$$V_{\tau}(G,c) := \mathbb{E}\left[G\left(|B_{\tau}|\right) - c\tau\right] = \int_{\mathbb{R}} \left(G(|x|) - cx^{2}\right) dF_{B_{\tau}}(x)$$

On maximise $D_{G,c}: x \mapsto G(|x|) - cx^2$.

Cas
$$G(|x|) = x^2$$

Cas $G(|x|) = |x|^p$, $p \in]0,2[$
Cas général

$$V_{\tau}(G,c) := \mathbb{E}\left[G\left(|B_{\tau}|\right) - c\tau\right] = \int_{\mathbb{R}} \left(G(|x|) - cx^2\right) \, \mathrm{d}F_{B_{\tau}}(x)$$

On maximise $D_{G,c}: x \mapsto G(|x|) - cx^2$.

ullet Si $D_{G,c}$ atteint son maximum sur ${\mathbb R}$, en $x_{\sf max}$, alors

$$V_{\tau}(G,c) \leq D_{G,c}(x_{\max}),$$

avec égalité pour $au_{G,c}^* = \inf\{t \geq 0 | |B_t| \geq x_{\mathsf{max}}\} = T_{x_{\mathsf{max}}}.$

Cas
$$G(|x|) = x^2$$

Cas $G(|x|) = |x|^p$, $p \in]0,2[$
Cas général

$$V_{\tau}(G,c) := \mathbb{E}\left[G\left(|B_{\tau}|\right) - c\tau\right] = \int_{\mathbb{R}} \left(G(|x|) - cx^2\right) \, \mathrm{d}F_{B_{\tau}}(x)$$

On maximise $D_{G,c}: x \mapsto G(|x|) - cx^2$.

ullet Si $D_{G,c}$ atteint son maximum sur ${\mathbb R}$, en $x_{\sf max}$, alors

$$V_{\tau}(G,c) \leq D_{G,c}\left(x_{\mathsf{max}}\right),$$

avec égalité pour $au_{G,c}^* = \inf\{t \geq 0 | |B_t| \geq x_{\max}\} = T_{x_{\max}}$.

• Sinon, $D_{G,c}$ atteint son maximum en $+\infty$, d'où :

$$V_{\tau}(G,c) \leq \lim_{x \to +\infty} D_{G,c}(x).$$

Mais en considérant les temps d'arrêts intégrables $T_r\ (r>0)$:

$$\forall r > 0$$
, $\sup_{\tau} \mathbb{E}\left[G\left(|B_{\tau}|\right) - c\tau\right] \geq D_{G,c}(r)$.

Puis, par un passage à la limite,

$$\sup_{\tau} \mathbb{E}\left[G\left(|B_{\tau}|\right) - c\tau\right] = \lim_{x \to +\infty} D_{G,c}(x).$$

Soit $G: \mathbb{R} \to \mathbb{R}$ une fonction mesurable, et soit τ un temps d'arrêt intégrable. Pour tout c > 0,

$$\mathbb{E}\left[G\left(|B_{\tau}|\right) - c\tau\right] \leq \sup_{x \in \mathbb{R}} \left(G(|x|) - cx^{2}\right)$$

$$\mathbb{E}\left[G\left(|B_{\tau}|\right)\right] \leq c\mathbb{E}[\tau] + \sup_{x \in \mathbb{R}}\left(G(|x|) - cx^{2}\right)$$

Soit $G: \mathbb{R} \to \mathbb{R}$ une fonction mesurable, et soit τ un temps d'arrêt intégrable. Pour tout c>0,

$$\mathbb{E}\left[G\left(|B_{\tau}|\right) - c\tau\right] \leq \sup_{x \in \mathbb{R}} \left(G(|x|) - cx^{2}\right)$$

$$\mathbb{E}\left[G\left(|B_{\tau}|\right)\right] \leq c\mathbb{E}[\tau] + \sup_{x \in \mathbb{R}}\left(G(|x|) - cx^{2}\right)$$

Proposition

On a:

$$\mathbb{E}\left[G\left(|B_{\tau}|\right)\right] \leq \inf_{c>0} \left(c\mathbb{E}[\tau] + \sup_{x \in \mathbb{R}} \left(G(|x|) - cx^2\right)\right),$$

en d'autres termes,

$$\sup_{\tau} \left(\mathbb{E}\left[G\left(|B_{\tau}|\right) \right] - \inf_{c>0} \left(c \mathbb{E}[\tau] + \sup_{x \in \mathbb{R}} \left(G(|x|) - c x^2 \right) \right) \right) \leq 0.$$

On a:

$$\mathbb{E}\left[G\left(|B_{\tau}|\right)\right] \leq \inf_{c>0} \left(c\mathbb{E}[\tau] + \sup_{x \in \mathbb{R}} \left(G(|x|) - cx^2\right)\right),$$

en d'autres termes,

$$\sup_{\tau} \left(\mathbb{E}\left[G\left(|B_{\tau}| \right) \right] - \inf_{c>0} \left(c \mathbb{E}[\tau] + \sup_{x \in \mathbb{R}} \left(G(|x|) - c x^2 \right) \right) \right) \leq 0.$$

S'il existe $\gamma>0$ tel que $x\mapsto G(|x|)-\gamma x^2$ atteint son maximum (disons en x_{\max}), alors

$$\mathbb{E}\left[G\left(\left| B_{T_{\mathsf{x_{max}}}} \right| \right) \right] = \gamma \mathbb{E}\left[T_{\mathsf{x_{max}}} \right] + \sup_{x \in \mathbb{R}} \left(G(|x|) - \gamma x^2 \right).$$

S'il existe $\gamma>0$ tel que $x\mapsto G(|x|)-\gamma x^2$ atteint son maximum (disons en x_{\max}), alors

$$\mathbb{E}\left[G\left(\left| B_{T_{\mathsf{x_{max}}}} \right| \right) \right] = \gamma \mathbb{E}\left[T_{\mathsf{x_{max}}} \right] + \sup_{x \in \mathbb{R}} \left(G(|x|) - \gamma x^2 \right).$$

Ainsi

$$\begin{split} \sup_{\tau} \left(\mathbb{E}\left[G\left(|B_{\tau}|\right)\right] - \inf_{c>0} \left(c\mathbb{E}[\tau] + \sup_{x \in \mathbb{R}} \left(G(|x|) - cx^2\right)\right) \right) \\ &= \sup_{\tau} \sup_{c>0} \left(\mathbb{E}\left[G\left(|B_{\tau}|\right)\right] - c\mathbb{E}[\tau] - \sup_{x \in \mathbb{R}} \left(G(|x|) - cx^2\right) \right) \\ &\geq \mathbb{E}\left[G\left(\left|B_{T_{\mathsf{x_{max}}}}\right|\right)\right] - \gamma \mathbb{E}\left[T_{\mathsf{x_{max}}}\right] - \sup_{x \in \mathbb{R}} \left(G(|x|) - \gamma x^2\right) = 0. \end{split}$$

S'il existe $\gamma>0$ tel que $x\mapsto G(|x|)-\gamma x^2$ atteint son maximum (disons en x_{\max}), alors

$$\mathbb{E}\left[G\left(\left| B_{T_{\mathbf{x}_{\max}}} \right| \right) \right] = \gamma \mathbb{E}\left[T_{\mathbf{x}_{\max}} \right] + \sup_{\mathbf{x} \in \mathbb{R}} \left(G(|\mathbf{x}|) - \gamma \mathbf{x}^2 \right).$$

Ainsi

$$\begin{split} \sup_{\tau} \left(\mathbb{E}\left[G\left(|B_{\tau}| \right) \right] - \inf_{c > 0} \left(c \mathbb{E}[\tau] + \sup_{\mathbf{x} \in \mathbb{R}} \left(G(|\mathbf{x}|) - c \mathbf{x}^2 \right) \right) \right) \\ = \sup_{\tau} \sup_{c > 0} \left(\mathbb{E}\left[G\left(|B_{\tau}| \right) \right] - c \mathbb{E}[\tau] - \sup_{\mathbf{x} \in \mathbb{R}} \left(G(|\mathbf{x}|) - c \mathbf{x}^2 \right) \right) \\ \geq \mathbb{E}\left[G\left(\left| B_{T_{\mathbf{x}_{\max}}} \right| \right) \right] - \gamma \mathbb{E}\left[T_{\mathbf{x}_{\max}} \right] - \sup_{\mathbf{x} \in \mathbb{R}} \left(G(|\mathbf{x}|) - \gamma \mathbf{x}^2 \right) = 0. \end{split}$$

On a donc optimalité dans ce cas :

$$\sup_{\tau} \left(\mathbb{E}\left[G\left(|B_{\tau}| \right) \right] - \inf_{c>0} \left(c \mathbb{E}[\tau] + \sup_{x \in \mathbb{R}} \left(G(|x|) - c x^2 \right) \right) \right) = 0.$$

Similairement,

$$\sup_{c>0}\left(c\mathbb{E}[\tau]+\inf_{x\in\mathbb{R}}\left(G(|x|)-cx^2\right)\right)\leq\mathbb{E}\left[G\left(|B_{\tau}|\right)\right],$$

avec optimalité quand il existe $\gamma > 0$ tel que $x \mapsto G(|x|) - \gamma x^2$ atteigne son minimum.

On a vu que

$$\sup_{\tau} \left(\mathbb{E}\left[G\left(|B_{\tau}| \right) \right] - \inf_{c>0} \left(c \mathbb{E}[\tau] + \sup_{x \in \mathbb{R}} \left(G(|x|) - c x^2 \right) \right) \right) = 0,$$

quand il existe $\gamma>0$ tel que $x\mapsto G(|x|)-\gamma x^2$ atteigne son maximum.

Corollaire

Si $p \in]0,2[$, alors on a:

$$\sup_{\tau} \left(\mathbb{E}\left[\left|B_{\tau}\right|^{p}\right] - \mathbb{E}[\tau]^{\frac{p}{2}} \right) = 0,$$

le supremum étant pris sur l'ensemble des temps d'arrêt intégrables.

On a vu que

$$\inf_{\tau} \left(\mathbb{E}\left[G\left(|B_{\tau}| \right) \right] - \sup_{c>0} \left(c \mathbb{E}[\tau] + \inf_{x \in \mathbb{R}} \left(G(|x|) - c x^2 \right) \right) \right) = 0,$$

quand il existe $\gamma>0$ tel que $x\mapsto G(|x|)-\gamma x^2$ atteigne son minimum.

Corollaire

Si $p \in]2, +\infty[$, alors on a:

$$\inf_{\tau} \left(\mathbb{E}\left[|B_{\tau}|^{p} \right] - \mathbb{E}[\tau]^{\frac{p}{2}} \right) = 0,$$

l'infimum étant pris sur l'ensemble des temps d'arrêt intégrables.

Comme $\sup_{0 \le s \le t} B_s$ a même loi que $|B_t|$:

Proposition

Pour tout temps d'arrêt intégrable τ , on a :

$$\mathbb{E}\left[\sup_{0\leq s\leq \tau}B_{s}\right]=\mathbb{E}\left[|B_{\tau}|\right]\leq \sqrt{\mathbb{E}[\tau]}.$$

De plus, le temps d'arrêt $T_a = \inf\{t \ge 0 | |B_t| \ge a\}$ réalise

$$\mathbb{E}\left[\sup_{0\leq s\leq T_{a}}B_{s}\right]=\sqrt{\mathbb{E}\left[T_{a}\right]},$$

pour tout a > 0.

Pour tout temps d'arrêt intégrable τ , on a :

$$\mathbb{E}\left[\sup_{0<\varsigma<\tau}|B_{\varsigma}|\right]\leq\sqrt{2\mathbb{E}[\tau]}.$$

Pour tout temps d'arrêt intégrable τ , on a :

$$\mathbb{E}\left[\sup_{0<\varsigma<\tau}|B_{\varsigma}|\right]\leq\sqrt{2\mathbb{E}[\tau]}.$$

Le temps d'arrêt
$$\tau^* = \inf\left\{t \geq 0 \left| \sup_{0 \leq s \leq t} |B_s| - |B_t| \geq a \right\} \right.$$
 réalise $\mathbb{E}\left[\sup_{0 \leq s \leq \tau^*} |B_s| \right] = \sqrt{2\mathbb{E}\left[\tau^*\right]}.$