Feuille d'exercices numéro 1, OM3, Suites et séries

Exercice 1

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$(\forall n \in \mathbb{N})(u_n = \frac{2n-7}{3n+2})$$

est majorée par 2/3 et minoré par -7/2.

Exercice 2

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie comme suit :

$$(\forall n \in \mathbb{N}^*)(u_n = \frac{1}{\sqrt{n}})$$

- 1) Trouver un entier n_0 à partir duquel la valeur absolue du terme général est inférieur à 10^{-2} .
- 2) Montrer en utilisant la définition de la convergence d'une suite que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers 0.

Exercice 3

Trouver la limite des suites numériques dont le terme général est défini comme suit :

$$u_n = \sqrt{n+1} - \sqrt{n}, \quad u_n = \frac{3n^2 - 2n + 1}{n^2 + 1}, \quad u_n = \frac{n^2 + (-1)^n}{n^2 - 1}.$$

Démontrer la réponse en n'utilisant que la définition de la convergence.

Exercice 4

Étudier la convergence des suites $(u_n)_{n\in\mathbb{N}}$ de terme général donné par :

$$u_n = (-1)^n \frac{n^2 + 1}{n^2 - 1}, \quad u_n = \frac{1 - (-1)^n}{n^2}, \quad u_n = \frac{\cos n}{n}, \quad u_n = \frac{n^2 - n + 1}{n^3 + 2n^2 + 7}.$$

$$u_n = \frac{(-1)^n}{2 + 4 + 6 + \dots + 2(n+1)}.$$

Ces suites sont-elles définies sur tout \mathbb{N} ?

Exercice 5

On veut étudier la convergence de la suite $(u_n)_{n\in\mathbb{N}}$ de terme général : $u_n = \cos n$.

1) Exprimer $\cos(n+1)$ et vérifier la relation :

$$\cos(n+1) - \cos(n-1) = -2\sin n \sin 1.$$

- 2) Déduire de la question précédente que la suite $v_n = \sin n$ est convergente de limite 0.
- 3) Si la suite $(u_n)_{n\in\mathbb{N}}$ est convergente de limite l alors cette limite est nulle.
- 4) Montrer que l'on arrive alors à une contradiction.

Exercice 6

Décider dans chacun des énoncés s'il est vrai ou faux. Justifier votre réponse;

- 1) Soient deux suites convergents $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ telles que $(\forall n\in\mathbb{N})(u_n< v_n)$, alors $\lim_{n\to\infty}u_n<\lim_{n\to\infty}v_n$.
- 2) Soit une suite $(u_n)_{n\in\mathbb{N}}$ qui converge vers 0 alors $u_n<1$ pour n assez grand.
- 3) Une suite à termes strictement négatifs ne peut converger vers 0.
- 4) Soient une suite $(u_n)_{n\in\mathbb{N}}$ qui converge vers 0 et une suite $(v_n)_{n\in\mathbb{N}}$ quelconque, alors la suite de terme général u_nv_n converge vers 0.
- 5) Une suite est convergente si et seulement si toute sous suite est convergente.
- 6) Soit une suite $(u_n)_{n\in\mathbb{N}}$ convergente, alors la suite $(v_n)_{n\in\mathbb{N}}$ de terme général $v_n=u_{2n}-u_n$ est convergente de limite nulle.
- 7) Soit une suite $(u_n)_{n\in\mathbb{N}}$ telle que la suite $(|u_n|)_{n\in\mathbb{N}}$ est convergente, alors la suite $(u_n)_{n\in\mathbb{N}}$ est convergente.
- 8) Une suite croissante majorée par un réel α converge vers ce dernier.
- 9) Une suite à termes strictement positifs convergeant vers 0 est décroissante à partir d'un certain rang.

Exercice 7

Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ de terme général :

$$u_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}$$

est croissante majorée. À l'aide d'un encadrement par une intégrale, déterminer sa limite.

Exercice 8

Soient les deux suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ de terme général :

$$u_n = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \dots + \frac{1}{n^3}, \quad v_n = u_n + \frac{1}{n^2}.$$

Montrer que ceux sont des suites adjacentes.

Exercice 9

Même question que l'exercice précédent avec les deux suites :

$$u_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}, \quad v_n = u_n + \frac{1}{n!}.$$

Exercice 10

Montrer en utilisant le définition d'une suite tendant vers $+\infty$ que la suite $(u_n)_{n\in\mathbb{N}}$ de terme général $u_n = \sqrt{n}$ tend vers $+\infty$.

Exercice 11

Montrer à l'aide d'une minoration par une intégrale que la suite $(u_n)_{n\in\mathbb{N}^*}$ de terme général :

$$u_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

tend vers $+\infty$.

Exercice 12

Construire deux suites $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ telles que le produit $(v_nw_n)_{n\in\mathbb{N}}$ soit une suite convergente mais dont l'une ne converge pas.

Exercice 13

Étudier la convergence de la suite $(u_n)_{n\in\mathbb{N}^*}$ de terme général :

$$u_n = \frac{n^3 + 2^n}{3^n}, \quad u_n = \frac{n^n}{n!}, \quad u_n = \frac{10^n}{n^n}, \quad u_n = (2^n + 3^n)^{\frac{1}{n}}.$$

Exercice 14

On considère la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par :

$$u_1 = \frac{1}{4}, \quad u_2 = \frac{1 \cdot 3}{4^2 \cdot 2!}, \dots, u_n = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{4^n \cdot n!}.$$

Montrer que $u_{n+1} < u_n/2$ et en déduire la limite de $(u_n)_{n \in \mathbb{N}}$.

Exercice 15

Décider pour chaque énoncé s'il est vrai ou faux. Justifier votre réponse.

- 1) Si la suite $(u_n)_{n\in\mathbb{N}}$ converge alors la suite $(u_{n+1}-u_n)_{n\in\mathbb{N}}$ tend vers 0.
- 2) Si la suite $(u_{n+1} u_n)_{n \in \mathbb{N}}$ tend vers 0, alors la suite $(u_n)_{n \in \mathbb{N}}$ est convergente.
- 3) Si la suite $((u_n)^2)_{n\in\mathbb{N}}$ converge alors $(u_n)_{n\in\mathbb{N}}$ aussi.
- 4) Une suite qui diverge ne peut pas être bornée.
- 5) Une suite monotone qui diverge ne peut pas être bornée.
- 6) Une suite strictement négative qui n'est pas bornée tend vers $-\infty$.
- 7) Une suite non majorée tend vers $+\infty$.
- 8) Soit une suite $(u_n)_{n\in\mathbb{N}}$ décroissante pour laquelle il existe une sous suite qui tend vers $-\infty$, alors la suite $(u_n)_{n\in\mathbb{N}}$ tend vers $-\infty$.
- 9) Soient deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ dont l'une converge et l'autre diverge, que peut on dire de la suite produit $(u_nv_n)_{n\in\mathbb{N}}$?

Exercice 16

Montrer dans les deux cas suivants que la série $(u_n)_{n\in\mathbb{N}^*}$ de terme général diverge :

$$u_n = (-1)^n, \quad u_n = \cos\frac{1}{n^2}.$$

Exercice 17

On considère les séries $(u_n)_{n\in\mathbb{N}^*}$ de terme général suivant :

$$u_n = \frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \quad (n \ge 1) ; \quad u_n = \frac{1}{n^2 - 1} \quad (n \ge 2).$$

Montrer qu'elles sont convergentes et calculer leurs limites.

Exercice 18

Même question que l'exercice précédent avec :

$$u_n = \frac{(-1)^{n+1}}{5^n}, \quad u_n = \frac{2^n + 3^n}{5^n}.$$

Exercice 19

Décider pour chacun des énoncés s'il est vrai ou faux. Justifier votre réponse.

- 1) La série de terme général 1 est convergente de limite 1.
- 2) Si $\lim u_n = 0$ alors la série (u_n) est convergente.
- 3) Si la série (u_n) diverge alors la suite (u_n) ne tend pas vers 0.
- 4) Si la suite (u_n) ne tend pas vers 0, alors la série (u_n) diverge.

Exercice 20

Étudier la nature des séries dont le terme général est donné par :

$$u_n = \frac{(-1)^n}{n^2 - 1}$$
, $u_n = \frac{1}{(n+1)(n+2)(n+3)}$, $u_n = \ln \frac{n^2 + 2n + 2}{n^2 + 2n}$.

Exercice 21

Soit une suite (u_n) à termes positifs.

- 1) Montrer que si la série $(u_n)_{n\in\mathbb{N}}$ est convergente alors la série $(u_n^2)_{n\in\mathbb{N}}$ est aussi convergente.
- 2) Montrer que si la série $(u_n)_{n\in\mathbb{N}}$ est convergente alors la série $(u_{2n})_{n\in\mathbb{N}}$ est convergente.

Exercice 22

Soit une suite $(u_n)_{n\in\mathbb{N}}$ à termes positifs. Soit α un réel.

- 1) On suppose que la suite $(n^{\alpha}u_n)_{n\in\mathbb{N}}$ tend vers 1. Montrer que la série $(u_n)_{n\in\mathbb{N}}$ est convergente si $\alpha < 1$, divergente si $\alpha > 1$.
- 2) On suppose que la suite $(n^{\alpha}u_n)_{n\in\mathbb{N}}$ tend vers 0. Montrer que la série $(u_n)_{n\in\mathbb{N}}$ converge si $\alpha<1$.
- 3) On suppose que la suite $(n^{\alpha}u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$. Montrer que la série $(u_n)_{n\in\mathbb{N}}$ diverge si $\alpha \leq 1$.

Exercice 23

Étudier la nature des séries dont le terme général u_n est donné par :

$$u_n = \frac{n + \cos n}{n^3 + 1}$$
, $u_n = \ln(1 + \frac{1}{n^2})$, $u_n = \sqrt{\frac{\ln n}{n}}$, $u_n = \frac{1}{n^{1+1/n}}$.