Lemme de Morse

Référence(s):

- François Rouvière - Petit guide de calcul différentiel à l'usage de la licence et de l'agrégation, page(s)

Théorème 1

Soit $f:U\to\mathbb{R}$ une fonction de classe \mathcal{C}^3 , où U est un ouvert de \mathbb{R}^n contenant 0. On suppose que Df(0)=0 et $D^2f(0)$ est non-dégénérée de signature (p,n-p). Alors :

Il existe un C^1 difféomorphisme φ entre deux voisinages de $0 \in \mathbb{R}^n$ tel que :

$$\varphi(0)=0\ et\ f(x)-f(0)=u_1^2+\cdots+u_p^2-u_{p+1}^2-\cdots-u_n^2\ \text{où }u:=\varphi(x)$$

Étape 1

Soit $A_0 \in GL_n(\mathbb{R}) \cap \mathcal{S}_n(\mathbb{R})$. Alors, il existe un voisinage V de A_0 dans $\mathcal{S}_n(\mathbb{R})$, et une fonction $\rho: V \to GL_n(\mathbb{R})$, de classe \mathcal{C}^1 , telle que :

$$\forall A \in V, {}^t \rho(A) A_0 \rho(A) = A$$

Soit $\hat{\varphi}: M_n(\mathbb{R}) \longrightarrow \mathcal{S}_n(\mathbb{R})$. La fonction $\hat{\varphi}$ est polynômiale donc de classe \mathcal{C}^1 sur $\mathcal{M}_n(\mathbb{R})$.

Soit $H \in \mathcal{M}_n(\mathbb{R})$, on a :

$$\hat{\varphi}(I+H) - \hat{\varphi}(I) = {}^{t}(I+H)A_{0}(I+H) - A_{0} = {}^{t}HA_{0}H + A_{0}H + {}^{t}H1_{0}H$$
$$= {}^{t}(A_{0}H) + A_{0}H + {}^{t}HA_{0}H = {}^{t}(A_{0}H) + A_{0}H + O(\|H\|^{2})$$

Ainsi,
$$D\hat{\varphi}(I_n)(H) = {}^t(A_0H) + A_0H$$
 et

$$H \in \ker \hat{\varphi}(I) \Leftrightarrow A_0 H \in \mathcal{A}_n(\mathbb{R})$$

On remarque que $\mathcal{M}_n(\mathbb{R}) = \mathcal{S}_n(\mathbb{R}) \oplus \mathcal{A}_n(\mathbb{R})$, et on pose $F := \{ H \in \mathcal{M}_n(\mathbb{R}), A_0 H \in \mathcal{S}_n(\mathbb{R}) \}$. Soit $\psi = \hat{\varphi}_{|F} : F \to \mathcal{S}_n(\mathbb{R})$, on a :

 $I_n \in F$

$$\ker \psi(I) = \ker(F\hat{\varphi}(I)) \cap \mathcal{S}_n(\mathbb{R}) = \{0\}$$

$$dim \mathcal{S}_n(\mathbb{R}) = \dim F$$

Ainsi : $D\psi(I)$ est inversible et ψ est de classe \mathcal{C}^1 ; donc on peut applique le théorème d'inversion locale : Il existe un voisinage ouvert U de I dans F (et on peut supposer que $U \subset \mathrm{GL}_n(\mathbb{R})$, par continuité du déterminant), tel que :

$$\psi: U \to V = \psi(U)$$

soit un \mathcal{C}^1 -difféomorphisme. Ainsi, V est un voisinage ouvert de $A_0 = \psi(I)$ dans $\mathcal{S}_n(\mathbb{R})$ et

$$\forall A \in V, A = {}^t\psi^{-1}(A)A_0\psi^{-1}(A)$$

Il suffit de poser :

$$\rho = \psi^{-1}$$

Étape 2

On applique Taylor avec reste intégral à l'ordre 1

On a:

$$f(x) - f(0) - Df(0)\dot{x} = \int_0^1 (1 - t)D^2 f(tx)\dot{x}(x, t)dt$$

C'est-à-dire : $f(x) - f(0) = {}^t x Q x$ où $Q : \int_0^1 (1-t) D^2 f(tx) dt$ est de classe \mathcal{C}^1 .

Étape 3

Preuve du théorème

Ici, pour tout x, Q(x) est symétrique et $Q(0)=\frac{1}{2}D^2f(0)$ est inversible. D'après le lemme, il existe un voisinage V de Q(0) dans $\mathcal{S}_n(\mathbb{R})$ et une fonction $\rho:V\to \mathrm{GL}_n(\mathbb{R})$ tels que :

$$\forall A \in V, {}^{t}\rho(A)Q(0)\rho(A) = A$$

Comme Q est continue, il existe un voisinage W de 0 dans \mathbb{R}^n tel que : pour tout $x \in W$, $Q(x) \in V$ et alors :

$$Q(x) = {}^{t}\rho(Q(x))Q(0)\rho(Q(x))$$

Soit $x \in W$. On pose : $M(x) = \rho(Q(x))$ et $y = M(x)\dot{x}$. Alors :

$$f(x) - f(0) = {}^t yQ(0)y$$

Or, $Q(0) = \frac{1}{2}D^2f(0)$ est de signature (p, n-p). D'après le théorème d'inertie de Sylvester, il existe une matrice $A \in GL_n(\mathbb{R})$ telle que

$${}^{t}AQ(0)A = \begin{pmatrix} I_{p} & 0\\ 0 & I_{n-p} \end{pmatrix}$$

En posant $y = Au \ (u = A^{-1}y)$, on obtient :

$$^{t}yQ(0)y = {^{t}u}^{t}AQ(0)Au = u_{1}^{2} + \dots + u_{p}^{2} - u_{p+1}^{2} - \dots - u_{n}^{2}$$

On pose donc:

$$\varphi: \left| \begin{array}{ccc} W & \longrightarrow & \mathbb{R}^n \\ x & \longmapsto & A^{-1}M(x)x \end{array} \right|$$

On a bien : $\varphi(0) = 0$, φ de classe \mathcal{C}^1 sur W; et f a l'expression souhaitée.

Enfin, pour tout $h \in W$, on a:

$$\begin{split} \varphi(h) - \varphi(0) &= A^{-1}M(h)h - A^{-1}M(0)(0) \\ &= A^{-1}(M(0) + o(1))h = A^{-1}M(0)h + o(\|(\|h)) \end{split}$$

Ainsi, $D\varphi(0) = A^{-1}M(0)$ qui est inversible. On applique le théorème d'inversion locale à φ , qui est donc un \mathcal{C}^1 difféomorphisme entre deux voisinages de 0.