TD 1: TOPOLOGY ISSUES IN PRODUCT SPACES AND BANACH SPACES

EXERCISE 1 (General topology).

- 1. Let $f : E \to F$ be an application between topological spaces. The function f is said to be continuous at $x \in E$ if for all open set \mathcal{V} containing f(x), there exists an open set \mathcal{U} containing x and such that $f(\mathcal{U}) \subset \mathcal{V}$. Check that, in this definition, "open set" can be replaced by "neighbourhood".
- 2. Let X be a set, $(F_i)_{i \in I}$ be a family of topological spaces and $f_i : X \to F_i$ be some functions.
 - (a) Prove that the "coarsest topology that makes the functions f_i continuous" exists.
 - (b) Let $g: E \to X$ be a function defined on a topological space E. Check that g is continuous if and only if for all $i \in I$, $f_i \circ g$ is continuous.
 - (c) Let $(x_n)_n$ be a sequence in X. Prove that $(x_n)_n$ converges to x if and only if for all $i \in I$, $(f_i(x_n))_n$ converges to $f_i(x)$.
- 3. Let $(F_i)_{i \in I}$ be a family of topological spaces. We define the product topology on $\prod_{i \in I} F_i$ as the "coarsest topology" making the projections continuous. Show that this topology is generated by the cylinder sets, *i.e.* the sets of the form

$$C_J = \prod_{i \in I} U_i$$

where each U_i is open in F_i and $U_i = F_i$, except for a finite number of indexes $i \in J$.

EXERCISE 2 (A theorem of Hörmander). Let $1 \le p, q < \infty$ and

$$T: (L^p(\mathbb{R}^n), \|\cdot\|_p) \to (L^q(\mathbb{R}^n), \|\cdot\|_q),$$

be a continuous linear operator which commutes with the translations, that is, which satisfies $\tau_h T = T \tau_h$ for all $h \in \mathbb{R}^n$, where $\tau_h f = f(\cdot - h)$. The purpose of this exercice is to prove the following property: if q , then the operator T is trivial.

- 1. Let u be a function in $L^p(\mathbb{R}^n)$. Prove that $||u + \tau_h u||_p \to 2^{1/p} ||u||_p$ as $||h|| \to \infty$. Hint: you may decompose u as the sum of a compactly supported function and of a function with arbitrarily small L^p norm.
- 2. Check that if C stands for the norm of operator T, then we have that for all $u \in L^p(\mathbb{R}^n)$,

$$||Tu||_q \le 2^{1/p - 1/q} C ||u||_p,$$

and conclude.

3. Can you give the example of a non-trivial such operator T when $p \leq q$?

EXERCISE 3 (Fourier coefficients of L^1 functions). For any function f in $L^1(\mathbb{T})$, we define the function $\hat{f} : \mathbb{Z} \to \mathbb{C}$ by

$$\hat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-int} \, \mathrm{d}t, \quad n \in \mathbb{Z}.$$

We denote by c_0 the space of complex valued functions on \mathbb{Z} tending to 0 at $\pm \infty$.

- 1. Check that $(c_0, \|\cdot\|_{\infty})$ is a Banach space.
- 2. Prove that, for all $f \in L^1(\mathbb{T})$, $\hat{f} \in c_0$. Hint: Recall that the trigonometric polynomials $\sum_{k=-n}^n a_k e^{ikt}$ are dense in $L^1(\mathbb{T})$.

Now we study the converse question: is every element of c_0 the sequence of Fourier coefficients of a function in $L^1(\mathbb{T})$?

- 2. Prove that $\Lambda: f \to \hat{f}$ defines a bounded linear map from $L^1(\mathbb{T})$ to c_0 .
- 3. Prove that the function Λ is injective.
- 4. Show that the function Λ is not onto. *Hint:* You may use the Dirichlet kernel $D_n(t) = \sum_{k=-n}^n e^{ikt}$, whose $L^1(\mathbb{T})$ norm goes to $+\infty$ as $n \to +\infty$.

EXERCISE 4 (Equivalence of norms).

1. Let *E* be a vector space endowed with two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ such that both $(E, \|\cdot\|_1)$ and $(E, \|\cdot\|_2)$ are Banach spaces. Assume the existence of a finite constant C > 0 such that

$$\forall x \in E, \quad \|x\|_1 \leqslant C \|x\|_2.$$

Prove that the norms $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent.

2. Let K be a compact subset of \mathbb{R}^n . We consider a norm N on the space $\mathcal{C}^0(K,\mathbb{R})$ such that $(\mathcal{C}^0(K,\mathbb{R}), N)$ is a Banach space, and satisfying that any sequence of functions $(f_n)_n$ in $\mathcal{C}^0(K,\mathbb{R})$ that converges for the norm N also converges pointwise to the same limit. Prove that the norm N is then equivalent to the norm $\|\cdot\|_{\infty}$.

EXERCISE 5 (A Rellich-like theorem). Let us consider E the following subspace of $L^2(\mathbb{R})$

$$E = \left\{ u \in \mathcal{C}^{1}(\mathbb{R}) : \|u\|_{E} < +\infty \right\}, \quad \text{where} \quad \|u\|_{E} = \|(\sqrt{1+x^{2}})u\|_{L^{2}(\mathbb{R})} + \|u'\|_{L^{2}(\mathbb{R})}.$$

The aim of this exercice is to prove that the unit ball B_E of E is relatively compact in $L^2(\mathbb{R})$, with

$$B_E = \{ u \in \mathcal{C}^1(\mathbb{R}) : ||u||_E \le 1 \}.$$

In the following, we denote by ϕ a non-negative \mathcal{C}^{∞} function such that $\phi^{-1}(\{0\}) = \mathbb{R} \setminus [-2, 2]$ and $\phi^{-1}(\{1\}) = [-1, 1]$.

- 1. Considering the cut-off $\phi_R(x) = \phi(x/R)$, show that $\sup_{u \in B_E} ||(1 \phi_R)u||_{L^2(\mathbb{R})}$ converges to 0 as $R \to +\infty$.
- 2. We define $\psi_{\varepsilon}(x) = \frac{1}{\varepsilon}\phi(\frac{x}{\varepsilon})$ and τ_h the translation operator (see Exercice 2). Show that for all $R \ge 1$ and $\varepsilon > 0$, there exists $C_{\varepsilon,R} > 0$ such that for all $h \in \mathbb{R}$ and $u \in E$,

$$\|\tau_h((\phi_R u) * \psi_{\varepsilon}) - (\phi_R u) * \psi_{\varepsilon}\|_{L^{\infty}(\mathbb{R})} \le C_{\varepsilon,R} |h| \|u\|_E \quad \text{and} \quad \|(\phi_R u) * \psi_{\varepsilon}\|_{L^{\infty}(\mathbb{R})} \le C_{\varepsilon,R} \|u\|_E.$$

- 3. Show that for any sequence $(u_n)_n$ in B_E , there exists a subsequence $(u_{n'})_{n'}$ such that for any $R, \varepsilon^{-1} \in \mathbb{N}^*$, the sequence $((\phi_R u_{n'}) * \psi_{\varepsilon})_{n'}$ converges in $L^2(\mathbb{R})$ as $n' \to \infty$. Hint: Use Cantor's diagonal argument.
- 4. Conclude.
- 5. Let us now consider the set $B_{H^1} \subset L^2(\mathbb{R})$ defined by

$$B_{H^1} = \left\{ u \in \mathcal{C}^1(\mathbb{R}) : \|u\|_{L^2(\mathbb{R})} + \|u'\|_{L^2(\mathbb{R})} \le 1 \right\}.$$

Is B_{H^1} relatively compact in $L^2(\mathbb{R})$?