TD 10: TEMPERED DISTRIBUTION

EXERCISE 1.

- 1. Let $A \subset \mathbb{R}^d$ be a Borel of finite measure. Show that $\mathcal{F}(\mathbb{1}_A)$ belongs to $L^2(\mathbb{R}^d)$ but not to $L^1(\mathbb{R}^d)$.
- 2. Does it exist two functions $f, g \in \mathcal{S}(\mathbb{R})$ such that f * g = 0? What happens if in addition f and g have compact supports ?

EXERCISE 2. Prove that the following distributions are tempered and compute their Fourier transform:

1. $\delta_0 \text{ in } \mathbb{R}^d$, 3. 1, 5. p.v.(1/x), 2. $e^{-\frac{|x|^2}{2\sigma}}$ in \mathbb{R} with $\sigma > 0$, 4. H (Heaviside), 6. |x| in \mathbb{R} .

EXERCISE 3.

- 1. If $d \ge 3$, show that $u_0(x) = (-d(d-2)\operatorname{Vol}(B(0,1))||x||^{d-2})^{-1}$ is a fundamental solution for the Laplacian, *i.e.* $\Delta u_0 = \delta_0$ in the sense of distributions.
- 2. Give a solution of $\Delta u = f$ in the sense of distributions for f in $\mathcal{D}'(\mathbb{R}^d)$ with compact support.
- 3. What can you say about the regularity of u if f is a function in $\mathcal{S}(\mathbb{R}^d)$?
- 4. Consider the linear PDE $u \Delta u = f$ for $f \in \mathcal{S}(\mathbb{R}^d)$. Express a solution in $\mathcal{S}(\mathbb{R}^d)$ in terms of the Bessel kernel $B = \mathcal{F}^{-1}((1 + |\xi|^2)^{-1})$.

EXERCISE 4. Let k > 0 and $T \in \mathcal{S}'(\mathbb{R})$ such that $T^{[4]} + kT \in L^2(\mathbb{R})$. Show that for every $j \in \{0, \dots, 4\}, T^{[j]} \in L^2(\mathbb{R})$.

EXERCISE 5. We investigate the solutions $T \in \mathcal{S}'(\mathbb{R}^4)$ with support in $\mathbb{R}_+ \times \mathbb{R}^3$ of the wave equation

$$\partial_{tt}T - \Delta T = \delta_{(t,x)=(0,0)}, \quad (t,x) \in \mathbb{R} \times \mathbb{R}^3.$$

- 1. Let \mathcal{F} be the partial Fourrier transform with respect to x and $\tilde{T} = \mathcal{F}T$. Find an ODE of which \tilde{T} is solution. We denote in the following (E) this equation.
- 2. Solve this equation with the ansatz

$$\tilde{T}(t,\xi) = H(t)U(t,\xi),$$

where U is solution of the homogenous equation associated with (E).

3. We denote by $d\sigma_R$ the measure on the sphere of radius R and center 0:

$$\langle \sigma_R, \varphi \rangle = \int_{\mathbb{S}(0,R)} \varphi(x) \, \mathrm{d}\sigma_R(x)$$

Show that:

$$\forall \xi \in \mathbb{R}^d, \quad \mathcal{F}\left(\frac{\mathrm{d}\sigma_R}{4\pi R^2}\right)(\xi) = \frac{\sin(R|\xi|)}{R|\xi|}.$$

4. Deduce that for $\varphi \in \mathcal{S}(\mathbb{R}^4)$,

$$\langle T, \varphi \rangle = \int_0^\infty \frac{1}{4\pi t} \int_{\mathbb{S}(0,|t|)} \varphi(t,x) \,\mathrm{d}\sigma_t(x) \,\mathrm{d}t.$$

5. What is the support of T?

EXERCISE 6. We consider the Schrödinger equation on $\mathbb{R}_t \times \mathbb{R}^d$

(1)
$$\begin{cases} i\partial_t u + \Delta u = 0, \\ u_{t=0} = u_0. \end{cases}$$

- 1. For $u_0 \in \mathcal{S}(\mathbb{R}^d)$, solve the equation (1) in $C^0(\mathbb{R}, \mathcal{S}(\mathbb{R}^d))$.
- 2. Justify that the Fourier transform of the function $e^{it|\xi|^2}$ is well defined.
- 3. Show that for $\alpha \in \mathbb{C}$ with positive real part,

$$\mathcal{F}^{-1}(e^{\alpha|\xi|^2}) = \frac{1}{(-4\alpha\pi)^{d/2}} e^{\frac{|x|^2}{4\alpha}}.$$

- 4. Check that also holds in $\mathcal{S}'(\mathbb{R}^d)$ when $\alpha \in i\mathbb{R}$.
- 5. Deduce that there exists a constant C > 0 such that for all t > 0,

$$||u(t,\cdot)||_{L^1(\mathbb{R}^d)} \le \frac{C}{t^{d/2}} ||u_0||_{L^\infty(\mathbb{R}^d)}.$$