TD 10: Tempered distribution

Exercise 1.

1. Let $A \subset \mathbb{R}^{d}$ be a Borel of finite measure. Show that $\mathcal{F}\left(\mathbb{1}_{A}\right)$ belongs to $L^{2}\left(\mathbb{R}^{d}\right)$ but not to $L^{1}\left(\mathbb{R}^{d}\right)$.
2. Does it exist two functions $f, g \in \mathcal{S}(\mathbb{R})$ such that $f * g=0$? What happens if in addition f and g have compact supports ?

Exercise 2. Prove that the following distributions are tempered and compute their Fourier transform:

1. δ_{0} in \mathbb{R}^{d},
2. 1 ,
3. p. v. $(1 / x)$,
4. $e^{-\frac{|x|^{2}}{2 \sigma}}$ in \mathbb{R} with $\sigma>0$,
5. H (Heaviside),
6. $|x|$ in \mathbb{R}.

Exercise 3.

1. If $d \geq 3$, show that $u_{0}(x)=\left(-d(d-2) \operatorname{Vol}(B(0,1))\|x\|^{d-2}\right)^{-1}$ is a fundamental solution for the Laplacian, i.e. $\Delta u_{0}=\delta_{0}$ in the sense of distributions.
2. Give a solution of $\Delta u=f$ in the sense of distributions for f in $\mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ with compact support.
3. What can you say about the regularity of u if f is a function in $\mathcal{S}\left(\mathbb{R}^{d}\right)$?
4. Consider the linear PDE $u-\Delta u=f$ for $f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$. Express a solution in $\mathcal{S}\left(\mathbb{R}^{d}\right)$ in terms of the Bessel kernel $B=\mathcal{F}^{-1}\left(\left(1+|\xi|^{2}\right)^{-1}\right)$.

Exercise 4. Let $k>0$ and $T \in \mathcal{S}^{\prime}(\mathbb{R})$ such that $T^{[4]}+k T \in L^{2}(\mathbb{R})$. Show that for every $j \in\{0, \cdots, 4\}, T^{[j]} \in L^{2}(\mathbb{R})$.

Exercise 5. We investigate the solutions $T \in \mathcal{S}^{\prime}\left(\mathbb{R}^{4}\right)$ with support in $\mathbb{R}_{+} \times \mathbb{R}^{3}$ of the wave equation

$$
\partial_{t t} T-\Delta T=\delta_{(t, x)=(0,0)}, \quad(t, x) \in \mathbb{R} \times \mathbb{R}^{3}
$$

1. Let \mathcal{F} be the partial Fourrier transform with respect to x and $\tilde{T}=\mathcal{F} T$. Find an ODE of which \tilde{T} is solution. We denote in the following (E) this equation.
2. Solve this equation with the ansatz

$$
\tilde{T}(t, \xi)=H(t) U(t, \xi)
$$

where U is solution of the homogenous equation associated with (E).
3 . We denote by $\mathrm{d} \sigma_{R}$ the measure on the sphere of radius R and center 0 :

$$
\left\langle\sigma_{R}, \varphi\right\rangle=\int_{\mathbb{S}(0, R)} \varphi(x) \mathrm{d} \sigma_{R}(x)
$$

Show that:

$$
\forall \xi \in \mathbb{R}^{d}, \quad \mathcal{F}\left(\frac{\mathrm{~d} \sigma_{R}}{4 \pi R^{2}}\right)(\xi)=\frac{\sin (R|\xi|)}{R|\xi|} .
$$

4. Deduce that for $\varphi \in \mathcal{S}\left(\mathbb{R}^{4}\right)$,

$$
\langle T, \varphi\rangle=\int_{0}^{\infty} \frac{1}{4 \pi t} \int_{\mathbb{S}(0,|t|)} \varphi(t, x) \mathrm{d} \sigma_{t}(x) \mathrm{d} t .
$$

5. What is the support of T ?

Exercise 6. We consider the Schrödinger equation on $\mathbb{R}_{t} \times \mathbb{R}^{d}$

$$
\left\{\begin{array}{l}
i \partial_{t} u+\Delta u=0 \tag{1}\\
u_{t=0}=u_{0}
\end{array}\right.
$$

1. For $u_{0} \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, solve the equation (1) in $C^{0}\left(\mathbb{R}, \mathcal{S}\left(\mathbb{R}^{d}\right)\right)$.
2. Justify that the Fourier transform of the function $e^{i t|\xi|^{2}}$ is well defined.
3. Show that for $\alpha \in \mathbb{C}$ with positive real part,

$$
\mathcal{F}^{-1}\left(e^{\alpha|\xi|^{2}}\right)=\frac{1}{(-4 \alpha \pi)^{d / 2}} e^{\frac{|x|^{2}}{4 \alpha}}
$$

4. Check that also holds in $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ when $\alpha \in i \mathbb{R}$.
5. Deduce that there exists a constant $C>0$ such that for all $t>0$,

$$
\|u(t, \cdot)\|_{L^{1}\left(\mathbb{R}^{d}\right)} \leq \frac{C}{t^{d / 2}}\left\|u_{0}\right\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} .
$$

