TD 11: Sobolev spaces

EXERCISE 1 (Warming).

- 1. Show that u(x) = |x| belongs to $W^{1,2}(-1,1)$ but not to $W^{2,2}(-1,1)$.
- 2. Check that $v(x) = \frac{\sin(x^2)}{\sqrt{1+x^2}}$ belongs to $L^2(\mathbb{R})$ but not to $W^{1,2}(\mathbb{R})$.
- 3. Show that $H^1(\mathbb{R}^2)$ is not included in $L^{\infty}(\mathbb{R}^2)$. Hint: Consider a function of the form $x \mapsto \chi(|x|) |\log |x||^{1/3}$.

EXERCISE 2 (Optimality in the Sobolev embeddings). Let $1 \leq p < d$ and $\alpha \in [1, \infty]$. By using a homogeneity argument, show that if there exists a continuous injection $W^{1,p}(\mathbb{R}^d) \hookrightarrow L^{\alpha}(\mathbb{R}^d)$, then necessarily $p \leq \alpha \leq \frac{dp}{d-p}$.

EXERCISE 3 (Some properties of $H^s(\mathbb{R}^d)$).

- 1. Show that $H^{s_1}(\mathbb{R}^d)$ embeds continuously into $H^{s_2}(\mathbb{R}^d)$ for $s_1 \geq s_2$.
- 2. Check that $\delta_0 \in H^s(\mathbb{R}^d)$ for s < -d/2.
- 3. (a) Prove that if s > d/2, the space $H^s(\mathbb{R}^d)$ embeds continuously to $C^0_{\to 0}(\mathbb{R}^d)$, the space of continuous functions u on \mathbb{R}^d satisfying $u(x) \to 0$ as $|x| \to +\infty$.
 - (b) State an analogous result in the case where s > d/2 + k for some $k \in \mathbb{N}$. Deduce that $\bigcap_{s \in \mathbb{R}} H^s(\mathbb{R}^d) \subset C^{\infty}(\mathbb{R}^d)$.
 - (c) Let $U \subset \mathbb{R}^d$ be open. Deduce from the above question that $\bigcap_{s \in \mathbb{R}} H^s_{loc}(U) = C^{\infty}(U)$, where we set

 $H^s_{loc}(U) = \left\{ u \in L^2(U) : \forall \varphi \in \mathcal{D}(U), \, \varphi u \in H^s(\mathbb{R}^d) \right\}.$

- 4. Let us now consider $s \in (d/2, d/2 + 1)$.
 - (a) Show that for all $\alpha \in [0, 1]$ and all $x, y, \xi \in \mathbb{R}^d$:

$$\left|e^{ix\cdot\xi} - e^{iy\cdot\xi}\right| \le 2^{1-\alpha}|x-y|^{\alpha}|\xi|^{\alpha}$$

(b) Deduce that for all $\alpha \in (0, s - d/2)$, there exists a constant $C(\alpha) > 0$ such that for all $u \in \mathcal{S}(\mathbb{R}^d)$ and $x, y \in \mathbb{R}^d$,

$$\frac{|u(x) - u(y)|}{|x - y|^{\alpha}} \le C(\alpha) ||u||_{H^s}.$$

(c) Conclude that $H^s(\mathbb{R}^d)$ embeds continuously to $C^{\alpha}(\mathbb{R}^d)$.

5. Assuming that s belongs to [0, d/2], the purpose is now to prove that $H^s(\mathbb{R}^d) \hookrightarrow L^p(\mathbb{R}^d)$, where p = 2d/(d-2s). To that end, let us recall that for all $u \in L^p(\mathbb{R}^n)$,

$$\|u\|_{L^p}^p = \int_0^\infty p\lambda^{p-1} \left| \{|u| > \lambda\} \right| \mathrm{d}\lambda.$$

Considering $u \in \mathcal{S}(\mathbb{R}^d)$ and $A_{\lambda} > 0$, we set $u_{1,\lambda} = \mathcal{F}^{-1}(\mathbb{1}_{|\xi| < A_{\lambda}}\hat{u})$ and $u_{2,\lambda} = \mathcal{F}^{-1}(\mathbb{1}_{|\xi| \ge A_{\lambda}}\hat{u})$.

(a) Prove that

$$\forall x \in \mathbb{R}^d, \quad |u_{1,\lambda}(x)| \le CA_{\lambda}^{(2d-s)/2} ||u||_{H^s}.$$

Deduce that there exists some A_{λ} such that $|\{|u_{1,\lambda}| > \lambda/2\}| = 0$.

(b) Show that for this choice of A_{λ} ,

$$||u||_{L^p}^p \le 4p \int_0^\infty \lambda^{p-3} ||u_{2,\lambda}||_{L^2}^2 \mathrm{d}\lambda.$$

(c) Conclude.

EXERCISE 4 (Trace on an hyperplane). Let us consider the function

$$\gamma_0: \varphi(x', x_d) \in C_0^{\infty}(\mathbb{R}^d) \mapsto \varphi(x', x_d = 0) \in C_0^{\infty}(\mathbb{R}^{d-1}).$$

Prove that for all s > 1/2, the function γ_0 can be uniquely extended as an application mapping $H^{s}(\mathbb{R}^{d})$ to $H^{s-1/2}(\mathbb{R}^{d-1})$.

Hint: For all $\varphi \in C_0^{\infty}(\mathbb{R}^d)$, begin by computing the Fourier transform of the function $\gamma_0 \phi$.

EXERCISE 5 (An estimate). Let $0 < \alpha < 1$ and p > 1 be positive real numbers. Show that there exists a positive constant $C_{\alpha,p} > 0$ such that for all $u \in C_0^{\infty}(\mathbb{R})$,

$$\left(\iint_{\mathbb{R}^d \times \mathbb{R}^d} \left(\frac{|u(x) - u(y)|}{|x - y|^{\alpha}}\right)^p \frac{\mathrm{d}x\mathrm{d}y}{|x - y|^d}\right)^{1/p} \le C_{\alpha, p} \|u\|_{L^p(\mathbb{R}^d)}^{1 - \alpha} \|\nabla u\|_{L^p(\mathbb{R}^d)}^{\alpha}$$

Hint: Consider the two regions $\{|x - y| > R\}$ and $\{|x - y| \le R\}$, where R > 0 is to be chosen.

EXERCISE 6 (Composition). Let U and U' be two open subset of \mathbb{R}^d .

1. Let $H: U' \to U$ be a C^1 -diffeomorphism such that the Jacobian Jac(H) and $Jac(H^{-1})$ belong to L^{∞} . Prove that for all $u \in W^{1,p}(\Omega)$, we have $u \circ H \in W^{1,p}(\Omega')$ and that for all $1 \leq i \leq d$,

$$\partial_{y_i}(u \circ H) = \sum_{j=1}^n (\partial_{x_j} u \circ H) \partial_{y_i} H_j.$$

2. Let us now consider a function $G \in C_b^1(\mathbb{R})$ satisfying G(0) = 0. Show that for all $u \in W^{1,p}(U)$, we have $G \circ u \in W^{1,p}(U)$ and that for all $1 \leq j \leq n$,

$$\partial_{x_j}(G \circ u) = (G' \circ u)\partial_{x_j}u.$$

3. Do we need to assume that G' is bounded when d = 1?