TD 12: Sobolev spaces and PDEs

Exercise 1 (Agmon's and Brezis-Gallouët's type inequalities).

1. Prove that there exists a positive constant $c>0$ such that for all $u \in \mathcal{S}\left(\mathbb{R}^{3}\right)$,

$$
\|u\|_{L^{\infty}\left(\mathbb{R}^{3}\right)} \leq c\|u\|_{H^{1}\left(\mathbb{R}^{3}\right)}^{1 / 2}\|u\|_{H^{2}\left(\mathbb{R}^{3}\right)}^{1 / 2} .
$$

Hint: Setting $\langle\xi\rangle=\left(1+|\xi|^{2}\right)^{1 / 2}$ and considering $R>0$, use the following decomposition

$$
\|\widehat{u}\|_{L^{1}\left(\mathbb{R}^{3}\right)}=\int_{|\xi| \leq R}\langle\xi\rangle|\widehat{u}(\xi)| \frac{\mathrm{d} \xi}{\langle\xi\rangle}+\int_{|\xi|>R}\langle\xi\rangle^{2}|\widehat{u}(\xi)| \frac{\mathrm{d} \xi}{\langle\xi\rangle^{2}} .
$$

2. Show similarly that there exists a positive constant $c>0$ such that for all $u \in \mathcal{S}\left(\mathbb{R}^{2}\right)$,

$$
\|u\|_{L^{\infty}\left(\mathbb{R}^{2}\right)} \leq c\left(1+\|u\|_{H^{1}\left(\mathbb{R}^{2}\right)} \sqrt{\log \left(1+\|u\|_{H^{2}\left(\mathbb{R}^{2}\right)}\right)}\right) .
$$

Exercise 2. Let $U=(0,1)$.

1. Prove that the following continuous embeddings hold

$$
W^{1,1}(U) \hookrightarrow C^{0}(\bar{U}) \quad \text { and } \quad W^{1, p}(U) \hookrightarrow C^{0,1-1 / p}(\bar{U}) \quad \text { when } p \in(1, \infty] \text {, }
$$

with the convention $1 / \infty=0$.
2. Prove that for all $1 \leq p<\infty$, the space $W_{0}^{1, p}(U)$ is given by

$$
W_{0}^{1, p}(U)=\left\{u \in W^{1, p}(U): u(0)=u(1)=0\right\} .
$$

Exercise 3 (Poincaré's inequality). Let $p \in[1,+\infty)$ and let U be an open subset of \mathbb{R}^{d}.

1. Assume that U is bounded in one direction, meaning that U is contained in the region between two parallel hyperplanes. Prove Poincaré's inequality: there exists $c>0$ such that for every $f \in W_{0}^{1, p}(U)$,

$$
\|f\|_{L^{p}(U)} \leq c\|\nabla f\|_{L^{p}(U)} .
$$

As a consequence, $\|\nabla \cdot\|_{L^{p}(U)}$ defines a norm on $W_{0}^{1, p}(U)$ which is equivalent to $\|\cdot\|_{W^{1, p}(U)}$. Hint: Consider first the case $U \subset \mathbb{R}^{d-1} \times[-M, M]$.
2. Assume that U is bounded. Prove Poincaré-Wirtinger's inequality: there exists a constant $c>0$ such that for any $f \in W^{1, p}(U)$ satisfying $\int_{U} f=0$,

$$
\|f\|_{L^{p}(U)} \leq c\|\nabla f\|_{L^{p}(U)} .
$$

ExErcise 4 (Duality). Let U be an open subset of \mathbb{R}^{d} and let $p \in(1,+\infty)$.

1. Prove that for all $F \in W_{0}^{1, p}(U)^{\prime}$, there exist $f_{0}, f_{1}, \ldots, f_{d} \in L^{q}(U)$ (with $\left.\frac{1}{p}+\frac{1}{q}=1\right)$ such that for all $g \in W_{0}^{1, p}(U)$,

$$
\langle F, g\rangle_{W_{0}^{1, p}(U)^{\prime}, W_{0}^{1, p}(U)}=\int_{U} f_{0} g \mathrm{~d} x+\sum_{i=1}^{d} \int_{U} f_{i} \partial_{i} g \mathrm{~d} x
$$

2. Prove that we also have

$$
\|F\|_{W_{0}^{1, p}(U)^{\prime}} \leq\left(\sum_{i=0}^{d}\left\|f_{i}\right\|_{L^{q}(U)}^{q}\right)^{\frac{1}{q}}
$$

3. Assuming that U is bounded, prove that we may take $f_{0}=0$.

EXERCISE 5 (A minimization problem). Let $U \subset \mathbb{R}^{3}$ be open, bounded with smooth boundary. The purpose is to prove that the following elliptic problem has a non-trivial weak solution

$$
\left\{\begin{aligned}
-\Delta u=u^{3} & \text { in } U \\
u=0 & \text { on } \partial U
\end{aligned}\right.
$$

1. Prove that there exists a solution to the following minimization problem

$$
\begin{equation*}
\inf \left\{\|\nabla v\|_{L^{2}(U)}: v \in H_{0}^{1}(U),\|v\|_{L^{4}(U)}=1\right\} \tag{1}
\end{equation*}
$$

Hint: Since $d=3$ here, the continuous embedding $H_{0}^{1}(U) \hookrightarrow L^{q}(U)$ holds for all $1 \leq q \leq 6$, and is moreover compact when $1 \leq q<6$. Moreover, $\|\nabla \cdot\|_{L^{2}(U)}$ defines a norm on $H_{0}^{1}(U)$ which is equivalent to $\|\cdot\|_{W^{1}(U)}$ as a consequence of Poincaré's inequality, which is proven in Exercise 3.
2. Check that if the function $v \in H_{0}^{1}(U)$ solves (1), there exists a positive constant $\lambda>0$ such that $-\Delta v=\lambda v^{3}$ in $\mathcal{D}^{\prime}(U)$.
3. Conclude.

