TD 2: L^p compactness and Banach spaces

EXERCISE 1 (F. Riesz's theorem). Let E be a normed vector space.

- 1. Prove that if M is a closed subspace of E, with $M \neq E$, then for all $\varepsilon > 0$, there exists $u \in E$ of norm ||u|| = 1 such that $d(u, M) \ge 1 \varepsilon$.
- 2. Deduce that if E is infinite-dimensional, then its unit ball \mathcal{B} is not compact, with

$$\mathcal{B} = \big\{ x \in E : \|x\| \le 1 \big\}.$$

EXERCISE 2 (Norm on the quotient space). Let E be a Banach space and M be a closed vector subspace of E. Let us consider $N : E/M \to \mathbb{R}$ defined by

$$N(\xi) = \inf_{\xi = \overline{x}} \|x\|.$$

Prove that N defines a norm on E/M, and that E/M is a Banach space. Hint: Prove that if $(u_n)_n$ is a Cauchy sequence, then one can extract a subsequence $(n_k)_k$ such that

$$\forall k \ge 0, \quad \|u_{n_{k+1}} - u_{n_k}\| \le \frac{1}{2^k}.$$

EXERCISE 3 (Characterization of equi-integrability). Let (X, μ) be a measured space and $\mathcal{F} \subset L^1(X, \mu)$ being bounded. Prove that the following assertions are equivalent:

- 1. \mathcal{F} is equi-integrable,
- 2. For all $\varepsilon > 0$, there exists some $\eta > 0$ such that for any measurable set A,

$$\mu(A) < \eta \Rightarrow \sup_{u \in \mathcal{F}} \int_A |u| \, \mathrm{d}\mu < \varepsilon.$$

3. There exists an increasing function $\Phi: \mathbb{R}_+ \to \mathbb{R}_+$ such that $\lim_{x\to\infty} \Phi(x)/x = \infty$ and

$$\sup_{u\in\mathcal{F}}\int_X \Phi(|u|) \, \mathrm{d}\mu < \infty.$$

Hint: to show 2. \Rightarrow 3., consider the sequence $(M_n)_n$ such that

$$\sup_{u\in\mathcal{F}}\int_X |u|\mathbb{1}_{|u|>M_n}\,\mathrm{d}\mu < 2^{-n}.$$

EXERCISE 4 (Vitali's convergence theorem). We consider (X, \mathcal{A}, μ) a σ -finite measured space. Let $1 \leq p < +\infty$ and $(u_n)_n$ be a sequence in $L^p(X)$. Assume that

1. $(u_n)_n$ is a Cauchy sequence in measure, meaning that for all $\varepsilon > 0$, there exists $n_0 \ge 0$ such that

$$\forall m, n \ge n_0, \quad \mu(|u_n - u_m| \ge \varepsilon) < \varepsilon.$$

- 2. $(u_n)_n$ is equi-integrable in $L^p(X)$,
- 3. for all $\varepsilon > 0$, there exists a measurable set Γ of finite measure such that

$$\forall n \ge 0, \quad \|u_n \mathbb{1}_{X \setminus \Gamma}\|_{L^p(X)} \le \varepsilon.$$

Prove that $(u_n)_n$ is a Cauchy sequence in $L^p(X)$ (and therefore converges in this space).

EXERCISE 5 (Obstructions to strong convergence). The purpose of this exercise is to present three obstructions to strong convergence in $L^2(\mathbb{R}^d)$ and $L^2(\mathbb{T}^d)$. In the following, $\varphi \in C_c^{\infty}(\mathbb{R}^d)$ denotes a compactly supported smooth function being not identically equal to zero.

- 1. (Loss of mass) Let ν be a vector of norm 1. Prove that the sequence $(\varphi(\cdot n\nu))_n$ does not converge in $L^2(\mathbb{R}^d)$.
- 2. (Concentration) Prove that the sequence $(n^{d/2}\varphi(n \cdot))_n$ does not converge in $L^2(\mathbb{R}^d)$.
- 3. (Oscillations) We now consider $w \in L^2(\mathbb{T}^d)$ a non-constant function. Prove that the sequence $(w(n \cdot))_n$ does not converge in $L^2(\mathbb{T}^d)$.

EXERCISE 6 (Averaging lemma). Let $u \in \mathscr{S}(\mathbb{R}^d_x \times \mathbb{R}^d_v)$ be a Schwartz function. For any function $\phi \in C^{\infty}_c(\mathbb{R}^d)$, we consider the moment

$$\rho_{\phi}(x) := \int_{\mathbb{R}^d} \phi(v) u(x, v) \, \mathrm{d}v.$$

1. Let us define $\hat{u}(\xi, v)$ as the Fourier transform of the function u with respect to the space variable $x \in \mathbb{R}^d$. Considering the function $w := (1 + v \cdot \nabla_x)u$, show that for all $\xi \in \mathbb{R}^d$,

$$|\hat{\rho}_{\phi}(\xi)|^{2} \leq \left(\int_{\mathbb{R}^{d}} |\hat{w}|^{2}(\xi, v) \,\mathrm{d}v\right) \left(\int_{\mathbb{R}^{d}} \frac{\phi^{2}(v) \,\mathrm{d}v}{1 + |v \cdot \xi|^{2}}\right).$$

2. Deduce that

$$\|\rho_{\phi}\|_{H^{1/2}(\mathbb{R}^{d})}^{2} := \int_{\mathbb{R}^{d}} (1+|\xi|^{2})^{1/2} |\hat{\rho}_{\phi}|^{2}(\xi) \,\mathrm{d}\xi \le C_{\phi} \big(\|u\|_{L^{2}(\mathbb{R}^{2d})}^{2} + \|v\cdot\nabla_{x}u\|_{L^{2}(\mathbb{R}^{2d})}^{2} \big),$$

where the constant $C_{\phi} > 0$ only depends on the function ϕ .