TD 4: Geometric Hahn-Banach theorem and Fréchet spaces

EXERCISE 1 (Finite-dimensional case). Let $C \subset \mathbb{R}^d$ be a convex set such that $C \neq \mathbb{R}^d$, and $x_0 \notin C$. Prove that there exists an affine hyperplane that separates C and $\{x_0\}$.

EXERCISE 2 (Convex hull). Let *E* be a locally convex topological vector space (abbreviated l.c.t.v.s. in the following). One says that *H* is a closed half-space if there exists a $\varphi \in E^*$ and $a \in \mathbb{R}$ such that $H = \{u \in E \mid \varphi(u) \leq a\}$.

- 1. If C is a convex subset of E, show that its closure \overline{C} is also convex.
- 2. Let A be a closed convex subset of E. Show that A is the intersection of the closed half-spaces containing A.
- 3. Deduce that co(A) is the intersection of the closed half-spaces containing A for any subset A of E, where co(A) denotes the convex hull of the set A, that is, the smallest convex set that contains A.

EXERCISE 3 (Density criterion).

- 1. Let *E* be a real normed vector space and $F \subset E$ be a vector subset such that $\overline{F} \neq E$. Prove that there exists $\varphi \in E' \setminus \{0\}$ such that $\varphi(u) = 0$ for all $u \in F$.
- 2. Application: Let $(a_n)_n$ be a sequence in $]1, +\infty[$ that diverges to $+\infty$. Prove that the set

$$W = \operatorname{vect} \Big\{ x \in [0, 1] \mapsto \frac{1}{x - a_n} : n \ge 0 \Big\},$$

is dense in the space $\mathcal{C}^0([0,1])$ equipped with the norm $\|\cdot\|_{\infty}$.

Hint: While considering a continuous linear form that vanishes on W, introduce a generating function.

EXERCISE 4 (Extreme points). Let K be a subset of a vector space E. A point $a \in K$ is called an *extremal point* of K if, whenever $a = \theta b + (1 - \theta)c$ with $\theta \in (0, 1)$ and $b, c \in K$, one has b = c. A subset¹ S of K is called an *extremal subset* of K if, for all a in S such that $a = \theta b + (1 - \theta)c$ with $\theta \in (0, 1)$ and $b, c \in K$, one has $b \in S$ and $c \in S$.

- 1. In a Hilbert space, what are the extremal points of the unit closed ball ? What about the open ball ?
- 2. Let c_0 denote the space of real sequences $(a_n)_{n \in \mathbb{N}}$ converging to zero. We endow c_0 with the norm $\|\cdot\|_{\infty}$. Show that the closed unit ball of c_0 does not admit extremal points.
- 3. Let $I \subset \mathbb{R}$ be an interval. Show that the closed unit ball of $L^1(I)$ does not admit extremal points.

EXERCISE 5 (Krein-Milman theorem). The aim of this exercise is to prove the following statement.

Theorem 1 (Krein-Milman). Let E be a l.c.t.v.s. and K be a non-empty convex compact subset of E. Then K coincides with the closed convex envelop of its extremal points.

¹This notion is only used in Exercice 5

- The first step is to show the existence of an extremal point in K. Let P be the set of nonempty closed extremal subsets of K, endowed with the order "A ≺ B if and only if B ⊂ A". Show that P admits a maximal element which is reduced to a point. Hint: If a maximal element S is composed of more than one point, choose a continuous linear form separating points of S and consider the set of points reaching the maximum of this form
- 2. Define $\tilde{K} = \overline{co}(ext(K))$ the closed convex hull of the extremal points of K, and show that \tilde{K} and K coincide.
- 3. Application: An $n \times n$ matrix with real entries is bi-stochastic if its entries are non-negative, and the sum of the entries of either rows or columns equals 1. One denotes $SM_n(\mathbb{R})$ the set of bistochastic matrices. Show that every matrix in $SM_n(\mathbb{R})$ is actually a convex combination of permutation matrices.

EXERCISE 6. Let X and Y be l.c.t.v.s. We consider $(p_{\alpha})_{\alpha \in A}$ (resp. $(q_{\beta})_{\beta \in B}$) a countable family of continuous semi-norms which is separating and generates the topology of X (resp. of Y). Let $T: X \to Y$ be a linear map. Prove that T is continuous if and only if for all $\beta \in B$, there exists a finite set $I \subset A$ and a positive constant c > 0 such that for all $u \in X$,

$$q_{\beta}(Tu) \le c \sum_{\alpha \in I} p_{\alpha}(u).$$

EXERCISE 7 (Space of continuous functions). Let U be an open subset of \mathbb{R}^d and $(K_n)_n$ be an exhaustive sequence of compacts of U.

1. Prove that $C^0(U)$ is a Fréchet space for the distance

on S.

$$d(f,g) = \sum_{n=0}^{+\infty} \frac{1}{2^n} \min(1, p_n(f-g)),$$

defined by the semi norms $p_n(f) = \sup_{x \in K_n} |f(x)|$.

- 2. A subset $B \subset C^0(U)$ is said to be bounded if for any neighborhood V of 0, there exists $\lambda > 0$ such that $\lambda B \subset V$. Prove that if B is a subset of equibounded functions of $C^0(U)$, that is $\sup_{f \in B} ||f||_{\infty} < \infty$, then B is bounded.
- 3. Let us consider $(f_n)_n$ a sequence of continuous function on U such that $f_n : U \to [0, n]$ with $f_n = 0$ on K_n and $f_n = n$ on $U \setminus K_{n+1}$. Show that $\bigcup_n \{f_n\}$ is a bounded subset of $C^0(U)$.
- 4. Prove that the space $C^0(\mathbb{R})$ is not locally bounded, that is, the origin does not have a bounded neighborhood.

EXERCISE 8 (Space of C^{∞} functions). We consider the $E = C^{\infty}([0,1],\mathbb{R})$ equipped with the following metric

$$d(f,g) = \sum_{k \ge 0} \frac{1}{2^k} \min\left(1, \|f^{(k)} - g^{(k)}\|_{\infty}\right).$$

- 1. Check that E is a Fréchet space.
- 2. Prove that any closed and bounded (cf the previous exercise) subset of E is compact.
- 3. Can the topology of E be defined by a norm ?