TD 9: Convolution of distributions

Exercise 1 (Examples of convolutions). Compute the following convolutions:

1. $\delta_{a} * \delta_{b}$ in \mathbb{R}^{d},
2. $T * \delta_{a}$, with $T \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$,
3. $\left(x^{p} \delta_{0}^{(q)}\right) *\left(x^{m} \delta_{0}^{(n)}\right)$,
4. $\delta_{0}^{(k)} *\left(x^{m} H\right)$,
5. $\mathbb{1}_{[a, b]} * \mathbb{1}_{[c, d]}$,
6. $\mathbb{1}_{[0,1]} *(x H)$.

Exercise 2 (Associativity and convolution). Show that the convolution product is not associative without assumptions on the supports by considering the distributions $1, \delta_{0}^{\prime}$ and H in $\mathcal{D}^{\prime}(\mathbb{R})$, where H is the Heaviside function.

Exercise 3. We will study the behavior of the convergence of distributions with respect to the convolution product.

1. Let $T \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ be compactly supported, $V \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ and $\left(V_{n}\right)_{n}$ be a sequence of distributions in $\mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$. Prove that if $V_{n} \rightarrow V$ in $\mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$, then $V_{n} * T \rightarrow V * T$ in $\mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$.
2. Show that there exist two sequences of distributions T_{n} and V_{n} tending to 0 in $\mathcal{D}^{\prime}(\mathbb{R})$ and such that $T_{n} * V_{n} \rightarrow \delta_{0}$.

EXERCISE 4 (Regularization by polynomials). For $n \in \mathbb{N}^{*}$, we define the polynomial P_{n} on \mathbb{R}^{d} by

$$
P_{n}(x)=\frac{n^{d}}{\pi^{d / 2}}\left(1-\frac{|x|^{2}}{n}\right)^{n^{3}}
$$

1. What is the limit in $\mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ of the sequence $\left(P_{n}\right)_{n}$?
2. Deduce that any compactly supported distribution is the limit in $\mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ of a sequence of polynomials.

Exercise 5 (Convolution and translations). Let $F: \mathcal{D}\left(\mathbb{R}^{d}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{d}\right)$ be a continuous linear map. We say that F commutes with translations when $\tau_{x} \circ F=F \circ \tau_{x}$ for all $x \in \mathbb{R}^{d}$.

1. Check that if there exists $T \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ such that, for all $\varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right), F(\varphi)=T * \varphi$, then F commutes with translations.
2. Show that for all $T \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$, and all $\varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right)$, we have $\langle T, \varphi\rangle=T * \check{\varphi}(0)$, where $\check{\varphi}(x)=$ $\varphi(-x)$.
3. Prove that if F commutes with translations, then there exists $T \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ such that, for all $\varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right), F(\varphi)=T * \varphi$.

Exercise 6 (The extension of the convolution).

1. Let $\varphi \in C^{\infty}\left(\mathbb{R}^{d}\right)$ and $T \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ such that $\operatorname{supp}(T) \cap \operatorname{supp}(\varphi)$ is compact. Show that $\langle T, \varphi\rangle$ can be defined in a meaningful way.
2. Let $T, S \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ satisfying the following property: for every compact K in \mathbb{R}^{d},

$$
D_{K}=\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{d}: x \in \operatorname{supp} T, y \in \operatorname{supp} S, x+y \in K\right\}
$$

is compact. Show that in this case, $T * S$ and $S * T$ are well-defined and are equal.
3. Compute the distribution $\left(x^{p} H\right) *\left(x^{q} H\right)$ for all $p, q \in \mathbb{N}$, where H is the Heaviside function.

ExERCISE 7 (Linear differential equations). Define $\mathcal{D}_{+}^{\prime}(\mathbb{R})=\left\{T \in \mathcal{D}^{\prime}(\mathbb{R}): \operatorname{supp} T \subset \mathbb{R}_{+}\right\}$.

1. By using Exercice 6, show that the convolution of two elements of $\mathcal{D}_{+}^{\prime}(\mathbb{R})$ is well-defined and gives an element of $\mathcal{D}_{+}^{\prime}(\mathbb{R})$. In the following, we admit that $\mathcal{D}^{\prime}\left(\mathbb{R}_{+}\right)$is a commutative algebra for the convolution. What is the identity element for the convolution in $\mathcal{D}_{+}^{\prime}(\mathbb{R})$?
2. Show that for all $a \in \mathbb{R}$ and $T, S \in \mathcal{D}_{+}^{\prime}(\mathbb{R})$, we have $\left(e^{a x} T\right) *\left(e^{a x} S\right)=e^{a x}(T * S)$.
3. For any $T \in \mathcal{D}_{+}^{\prime}(\mathbb{R})$, let T^{-1} denote the inverse of T in $\mathcal{D}_{+}^{\prime}(\mathbb{R})$ for the convolution whenever it exists. Check that T^{-1} is unique when it exists.
4. Compute H^{-1} and $\left(\delta_{0}^{\prime}-\lambda \delta_{0}\right)^{-1}$ for all $\lambda \in \mathbb{R}$ whenever they exist.
5. Let P be a polynomial that splits in \mathbb{R}, compute $\left[P(D) \delta_{0}\right]^{-1}$.
6. Solve the following system in $\mathcal{D}_{+}^{\prime}(\mathbb{R}) \times \mathcal{D}_{+}^{\prime}(\mathbb{R})$

$$
\left\{\begin{array}{l}
\delta_{0}^{\prime \prime} * X+\delta_{0}^{\prime} * Y=\delta_{0} \\
\delta_{0}^{\prime} * X+\delta_{0}^{\prime \prime} * Y=0
\end{array}\right.
$$

