TD 9: CONVOLUTION OF DISTRIBUTIONS

EXERCISE 1 (Examples of convolutions). Compute the following convolutions:

1. $\delta_a * \delta_b$ in \mathbb{R}^d ,	3.	$(x^p \delta_0^{(q)}) * (x^m \delta_0^{(n)}),$	5.	$\mathbbm{1}_{[a,b]}*\mathbbm{1}_{[c,d]},$
2. $T * \delta_a$, with $T \in \mathcal{D}'(\mathbb{R}^d)$,	4.	$\delta_0^{(k)} * (x^m H),$	6.	$\mathbb{1}_{[0,1]} * (xH).$

EXERCISE 2 (Associativity and convolution). Show that the convolution product is not associative without assumptions on the supports by considering the distributions 1, δ'_0 and H in $\mathcal{D}'(\mathbb{R})$, where H is the Heaviside function.

EXERCISE 3. We will study the behavior of the convergence of distributions with respect to the convolution product.

- 1. Let $T \in \mathcal{D}'(\mathbb{R}^d)$ be compactly supported, $V \in \mathcal{D}'(\mathbb{R}^d)$ and $(V_n)_n$ be a sequence of distributions in $\mathcal{D}'(\mathbb{R}^d)$. Prove that if $V_n \to V$ in $\mathcal{D}'(\mathbb{R}^d)$, then $V_n * T \to V * T$ in $\mathcal{D}'(\mathbb{R}^d)$.
- 2. Show that there exist two sequences of distributions T_n and V_n tending to 0 in $\mathcal{D}'(\mathbb{R})$ and such that $T_n * V_n \to \delta_0$.

EXERCISE 4 (Regularization by polynomials). For $n \in \mathbb{N}^*$, we define the polynomial P_n on \mathbb{R}^d by

$$P_n(x) = \frac{n^d}{\pi^{d/2}} \left(1 - \frac{|x|^2}{n}\right)^{n^3}$$

- 1. What is the limit in $\mathcal{D}'(\mathbb{R}^d)$ of the sequence $(P_n)_n$?
- 2. Deduce that any compactly supported distribution is the limit in $\mathcal{D}'(\mathbb{R}^d)$ of a sequence of polynomials.

EXERCISE 5 (Convolution and translations). Let $F : \mathcal{D}(\mathbb{R}^d) \to C^{\infty}(\mathbb{R}^d)$ be a continuous linear map. We say that F commutes with translations when $\tau_x \circ F = F \circ \tau_x$ for all $x \in \mathbb{R}^d$.

- 1. Check that if there exists $T \in \mathcal{D}'(\mathbb{R}^d)$ such that, for all $\varphi \in \mathcal{D}(\mathbb{R}^d)$, $F(\varphi) = T * \varphi$, then F commutes with translations.
- 2. Show that for all $T \in \mathcal{D}'(\mathbb{R}^d)$, and all $\varphi \in \mathcal{D}(\mathbb{R}^d)$, we have $\langle T, \varphi \rangle = T * \check{\varphi}(0)$, where $\check{\varphi}(x) = \varphi(-x)$.
- 3. Prove that if F commutes with translations, then there exists $T \in \mathcal{D}'(\mathbb{R}^d)$ such that, for all $\varphi \in \mathcal{D}(\mathbb{R}^d)$, $F(\varphi) = T * \varphi$.

EXERCISE 6 (The extension of the convolution).

1. Let $\varphi \in C^{\infty}(\mathbb{R}^d)$ and $T \in \mathcal{D}'(\mathbb{R}^d)$ such that $\operatorname{supp}(T) \cap \operatorname{supp}(\varphi)$ is compact. Show that $\langle T, \varphi \rangle$ can be defined in a meaningful way.

2. Let $T, S \in \mathcal{D}'(\mathbb{R}^d)$ satisfying the following property: for every compact K in \mathbb{R}^d ,

$$D_K = \left\{ (x, y) \in \mathbb{R}^d \times \mathbb{R}^d : x \in \operatorname{supp} T, \ y \in \operatorname{supp} S, \ x + y \in K \right\}$$

is compact. Show that in this case, T * S and S * T are well-defined and are equal.

3. Compute the distribution $(x^p H) * (x^q H)$ for all $p, q \in \mathbb{N}$, where H is the Heaviside function.

EXERCISE 7 (Linear differential equations). Define $\mathcal{D}'_+(\mathbb{R}) = \{T \in \mathcal{D}'(\mathbb{R}) : \operatorname{supp} T \subset \mathbb{R}_+\}.$

- 1. By using Exercice 6, show that the convolution of two elements of $\mathcal{D}'_{+}(\mathbb{R})$ is well-defined and gives an element of $\mathcal{D}'_{+}(\mathbb{R})$. In the following, we admit that $\mathcal{D}'(\mathbb{R}_{+})$ is a commutative algebra for the convolution. What is the identity element for the convolution in $\mathcal{D}'_{+}(\mathbb{R})$?
- 2. Show that for all $a \in \mathbb{R}$ and $T, S \in \mathcal{D}'_+(\mathbb{R})$, we have $(e^{ax}T) * (e^{ax}S) = e^{ax}(T * S)$.
- 3. For any $T \in \mathcal{D}'_{+}(\mathbb{R})$, let T^{-1} denote the inverse of T in $\mathcal{D}'_{+}(\mathbb{R})$ for the convolution whenever it exists. Check that T^{-1} is unique when it exists.
- 4. Compute H^{-1} and $(\delta'_0 \lambda \delta_0)^{-1}$ for all $\lambda \in \mathbb{R}$ whenever they exist.
- 5. Let P be a polynomial that splits in \mathbb{R} , compute $[P(D)\delta_0]^{-1}$.
- 6. Solve the following system in $\mathcal{D}'_+(\mathbb{R}) \times \mathcal{D}'_+(\mathbb{R})$

$$\begin{cases} \delta_0'' * X + \delta_0' * Y = \delta_0, \\ \delta_0' * X + \delta_0'' * Y = 0. \end{cases}$$