
Lesson 162 : systems of linear equations, elementary operations, algorithmic aspects and theoretical consequences.

I Generalities about systems of linear equations
I.1 Definitions
Definition 1. — We place ourselves in a commutative body K. We call linear system with p
equations and n unknowns a system :

a1,1x1 + · · · + a1,nxn = b1
...

...
...

...
ap,1x1 + · · · + ap,nxn = bp

where X = (x1, ...xn)T is a solution if and only if the xi check the equations of S.

Definition 2. — It is said that a system S is consistent if and only if there exists a solution.

Example 3. —
{

x + y + z = 0
2x − y + z = 3 is consistent,

{
x + y = 0

2x + 2y = 4 is not.

Remark 4. — A system can be written in :
— matrix form : AX = B where A = (ai,j)(i,j)∈J1;pK×J1;nK and B = (bi)i∈J1;pK

— vector form : x1C1 + · · ·+ xnCn = B where Ci = (a1,i, ...ap,i)
T .

I.2 Cramer system
Definition 5. — It is said that S is a Cramer system if it is written AX = B in its matrix form, with
A a square invertible matrix.

Theorem 6. — A Cramer system always admits one solution
X = A−1B = ( 1

det(A)
det([C1; ...Ci−1; B; Ci+1; ...Cn]))n

i=1. The complexity of this method depends on
the determinant calculus method.

Example 7. —{
x + y = 2
x− y = 0 if and only if

(
1 1
1 −1

)(
x
y

)
=

(
2
0

)
if and only if X =

(
1
1

)
Theorem 8. — More generally, S is consistent if and only if B is in the vector space generated by
C1, ...Cn.

Theorem 9 (Rouché-Fontené). — If the rank of A is r, and

a1,1 · · · a1,r
...

. . .
...

ar,1 · · · ar,r

 is invertible,

then S is consistent if and only if for all k in Jr + 1; nK,

∣∣∣∣∣∣∣∣∣
a1,1 · · · a1,r b1

...
. . .

...
...

ar,1 · · · ar,r br
ak,1 · · · ak,r bk

∣∣∣∣∣∣∣∣∣.
Remark 10. — In this case, we say that x1, ...xr are principal variables, and xr+1, ...xn are free
variables.

Corollary 11. — The set of solutions of S (solution set) form an affine space of dimension n− r.

I.3 Homogenous case AX = 0
Definition 12. — A system S is said to be homogenous if B = 0.

Remark 13. — By theorem 7, 0 is the only solution to S when A is invertible.

Theorem 14. — Under the same conditions as theorem 9, the solution set is a (n− r)-dimensional
space.

Corollary 15. — If n > p, then S admits a non-zero solution.

Application 16. — If A entries are integers, then there exists a solution X ∈Nn to AX = 0 if and
only if 0Rp is in the R-convex hull of (C1; ...Cp).

II Gaussian elimination
II.1 Elementary operations and Gaussian elimination
Proposition 17. — The solution set of S is stable under the following elementary operations :

— equations permutations (denoted Li ↔ Lj),
— multiplication by a non-zero scalar (denoted Li ← λLi)
— adding one equation to another (denoted Li ← Li + Lj, i 6= j).

Remark 18. — These basic operations apply to both first and second members.

Proposition 19. — — Li ↔ Lj is equivalent to multiplying (A | B) on the left by the
permutation matrix Pϕ with ϕ = (ij).

— Li ← λLj is equivalent to multiplying (A | B) on the left by



1
. . .

λ
. . .

1

 with

the λ at coordinates (i, i).

— Li ← Li + Lj is equivalent to multiplying (A | B) on the left by



1
. . . 1

1
. . .

1


with the additional 1 at coordinates (i, j). We note Mi,j,λ the matrix equivalent to
Li ← Li + λLj.

Remark 20. — The same matrices can be used on the right to perform these operations on the
columns.

Definition 21. — A system S is said to be in echelon form if each line of A contains more zeros to
the left than the previous one.



Example 22. —

1 4 π

0 0
√

2
0 0 0

 is in echelon form, and

3 5 1
0 8 2
0 4 7

 is not.

Definition 23 (Gaussian elimination algorithm). — Here we present the Gauss pivot algorithm,
which to a system S returns an equivalent system in echelon form.

— If needed, we swap two lines so that a1,1 6= 0,
— Apply Li ← Li −

ai,1
a1,i

Lj for i in J2; nK,
— Then the system contains zeros on the first row (except a11). Iterate the same algorithm ona2,2 · · · a2,n

...
. . .

...
ap,2 · · · ap,n

 = A′

Remark 24. — If C1 = 0Rp , then iterate on A′ =

a1,2 · · · a1,n
...

. . .
...

ap,2 · · · ap,n


II.2 Applications
Application 25 (Immediate applications). — — Finding the solution set of AX = B,

— Determining if a family is linearly independent, spans the whole space or is a basis of Rp,
— Determining if a vector is in the span of a given family,
— Determining the intersection of two vector subspaces,
— Determining the rank, the image of A.

Application 26. — The transvections generate the group SL(E). The directionnal scalings and the
transvections generate the group GL(E).

Remark 27. — The Gaussian elimination is used in real life to compute the solution set of
AX = B, when we don’t have further information about A (for example, a dense matrix).

III Matrix decomposition
Remark 28. — The aim is to factorize A into the product of matrices with good properties
(diagonal, triangular, easy to invert...). We suppose n = p.

III.1 LU decomposition
Remark 29. — If we never use permutations in the Gauss elimination, we get : ∏(i,j,λ Mi,j,λ A = U
upper triangular, so A = LU with L lower triangular.

Theorem 30. — If for all k in J1; nK,

∣∣∣∣∣∣∣
a1,1 · · · a1,k

...
. . .

...
ak,1 · · · ak,k

∣∣∣∣∣∣∣ 6= 0, then there exists a unique decomposition

A = LU such that L is lower triangular with ones on the diagonal and U is upper triangular.

Example 31. — (
1 2
3 4

)
=

(
1 0
3 1

)(
1 2
0 −2

)
Corollary 32. — Under the condition A invertible, there exists a decomposition A = PLU with P a
permutation matrix.

Remark 33. — If A = LU, then AX = B if and only if UX = L−1B which is easy to compute and
solve.

III.2 QR decomposition

Theorem 34. — If A is a complex matrix, there exists a unitary matrix Q and an upper triangular
matrix R. If we suppose that the diagonal entries are positive reals, then this decomposition is
unique.

Proposition 35. —
f : Un(C) × T+

n (C) → GLn(C)
(Q , R) 7→ QR

is a homeomorphism.

Application 36 (Development). — If A is an invertible matrix such that A = P−1DP,

D =

λ1
. . .

λn

 |λ1| > ... > |λn| > 0 and P−1 admits a LU decomposition, then the

diagonal of the sequence defined by :{
A1 = A

Ak+1 = RkQk where QkRk is the QR decomposition of Ak

converges to (λ1, ...λn).

IV Approximation methods to solve AX = B

Remark 37. — The methods we saw to compute a solution of AX = B (Cramer method and
Gaussian elimination method) have a big time complexity. We will now see approximation
methods.

IV.1 Iterative methods

Remark 38. — In iterative methods, we decompose A = M− N with M easy to invert. Then, we
have AX = B if and only if MX = NX + B if and only if X = M−1NX + M−1B.

Theorem 39. — We associate to a M− N decomposition an iterative method, where we define the

sequence :
{

X0 arbitrary choosed
Xk+1 = M−1NXk + M−1B

, which converges when the spectral radius of M−1N

is strictly less than 1.

Definition 40 (two methods). — — The Jacobi method is defined by M = Diag(A), and
converges when A is a strictly diagonally dominant matrix.

— The Gauss-Seidel method is defined by M being A with zeros strictly above the diagonal.
It converges when A is a positive definite symmetric matrix, or when it is strictly
diagonally dominant.



IV.2 Gradient descent method
Remark 41. — Gradient descent is an iterative optimization algorithm for finding the local
minimum of a differentiable function. It consists of descending the slope of f graph by the
steepest direction. We can use it on the function

f : Rn → R

X 7→ 1
2 〈AX, X〉 − 〈B, X〉

where we suppose that A is a positive definite symmetric matrix.

Lemma 42 (Kantorovich inequality). — If µ1 and µn are the lowest and biggest eigenvalues of A,
then we have :

‖X‖4

‖X‖2
A‖X‖

2
A−1
≥ 4

µ1µn

(µ1 + µn)2

Theorem 43. — The gradient descent algorithm defines three sequences :

X0 ∈ Rn arbitrary,
R0 = AX0 − B

αk+1 = ‖Rk‖2

〈ARk ,Rk〉
Xk+1 = AXk − αk+1Rk
Rk+1 = AXk+1 − B

, Xk converges to X the solution of AX = B, and :

‖Xk − X‖2 ≤
√

Cond2(A)
Cond2(A)− 1
Cond2(A) + 1

k
‖X0 − X‖2

.
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