Lesson 162 : systems of linear equations, elementary operations, algorithmic aspects and theoretical consequences.

I Generalities about systems of linear equations 1.3 Homogenous case AX =0
I.1 Definitions Definition 12. — A system S is said to be homogenous if B = 0.

Definition 1. — We place ourselves in a commutative body K. We call linear system with p

equations and n unknowns a system : Remark 13. — By theorem 7, 0 is the only solution to S when A is invertible.

aj1xy + o+ aigXxn = b Theorem 14. — Under the same conditions as theorem 9, the solution set is a (n — r)-dimensional
. space.
apax1 + o+ apaxn = by Corollary 15. — If n > p, then S admits a non-zero solution.

. T . . . . . .
where X = (x1, ..xq)" is a solution if and only if the x; check the equations of 5. Application 16. — If A entries are integers, then there exists a solution X € IN" to AX = 0 if and

Definition 2. — It is said that a system S is consistent if and only if there exists a solution. only if Ogy is in the R-convex hull of (Cy;...Cp).
x + y + z = 0 . . x + y = 0. II G : limi :
.— . aussian elimination
Example 3 { % — Yy + oz = 3 is consistent, { 2% 4+ 2y = 4 is not

II.1 Elementary operations and Gaussian elimination
Remark 4. — A system can be written in :

— matrix form : AX = B where A = ( ‘Zi,j)(i,j)e[[l;p]] <[ a0d B = (b)c 1] Proposition 17. — The solution set of S is stable under the following elementary operations :

— equations permutations (denoted L; <> L;),
— multiplication by a non-zero scalar (denoted L; <— AL;)
— adding one equation to another (denoted L; <— L; + Lj,i # j).

— vector form : x1C; + - - - + x,C;y = B where C; = (ay4, ...ap/i)T.

I.2 Cramer system

Definition 5. — It is said that S is a Cramer system if it is written AX = B in its matrix form, with

- ; . Remark 18. — These basic operations apply to both first and second members.
A asquare invertible matrix.

Theorem 6. — A Cramer system always admits one solution Proposition 19. — - Li < L jis equi\fglent to multiplying (A | B) on the left by the
X=A"B= (#(A)det([Cl; ..Ci_1;B;Ci11;..Cn]))_,. The complexity of this method depends on permutation matrix Py with ¢ = (ij). .
the determinant calculus method.
Example 7. — . . S ' .
— L; + AL; is equivalent to multiplying (A | B) on the left by A with
x+y = 2 . L (11 x\ _ (2). v (1 .
{ -y = 0 if and only if (1 1) \y) = o if and only if X = 1 . )
Theorem 8. — More generally, S is consistent if and only if B is in the vector space generated by the A at coordinates (i, 7).
Cq,...Ch. 1
a1 Ay 1
Theorem 9 (Rouché-Fontené). — If the rank of Aisr,and | : .| isinvertible, — Lj < L+ Ljis equivalent to multiplying (A | B) on the left by 1
ar1 T Arr
a1y Ay by 1
with the additional 1 at coordinates (i, j). We note M; ;  the matrix equivalent to
then S is consistent if and only if for all kin [r + 1; 1], : R L+ Li+AL;.
ar,1 e ary by !
k1 o Uy b Remark 20. — The same matrices can be used on the right to perform these operations on the
columns.

Remark 10. — In this case, we say that xq, ...x, are principal variables, and x,1, ...x; are free

variables.
Definition 21. — A system S is said to be in echelon form if each line of A contains more zeros to

Corollary 11. — The set of solutions of S (solution set) form an affine space of dimension n — r. the left than the previous one.



1 4 3 51
Example22.— |0 0 /2 | isin echelon form,and [0 8 2| isnot.
0 0 O 0 4 7

Definition 23 (Gaussian elimination algorithm). — Here we present the Gauss pivot algorithm,
which to a system S returns an equivalent system in echelon form.
— Ifneeded, we swap two lines so thata; 1 # 0,
aj i3 .
— ApplyL; < L; — ﬁ,lef foriin [2;n],
— Then the system contains zeros on the first row (except a11). Iterate the same algorithm on

azp a2,
. — A/
ﬁp,2 ap,n
a1 a1,
Remark 24. — If C; = ORp, then iterate on A’ =
{Zp,z th,n

II.2 Applications

Application 25 (Immediate applications). — — Finding the solution set of AX = B,
— Determining if a family is linearly independent, spans the whole space or is a basis of R?,
— Determining if a vector is in the span of a given family,
— Determining the intersection of two vector subspaces,
— Determining the rank, the image of A.

Application 26. — The transvections generate the group SL(E). The directionnal scalings and the
transvections generate the group GL(E).

Remark 27. — The Gaussian elimination is used in real life to compute the solution set of
AX = B, when we don’t have further information about A (for example, a dense matrix).

III Matrix decomposition

Remark 28. — The aim is to factorize A into the product of matrices with good properties
(diagonal, triangular, easy to invert...). We suppose n = p.

III.1 LU decomposition
Remark 29. — If we never use permutations in the Gauss elimination, we get : H(,-, A M A=U
upper triangular, so A = LU with L lower triangular.

a1
Theorem 30. — If for all kin [[1; ],

a1k
# 0, then there exists a unique decomposition

k.1 Ak
A = LU such that L is lower triangular with ones on the diagonal and U is upper triangular.

G9-G6 3

Corollary 32. — Under the condition A invertible, there exists a decomposition A = PLU with P a
permutation matrix.

Remark 33. —If A = LU, then AX = B if and only if UX = L~ B which is easy to compute and
solve.

Example 31. —

III.2 QR decomposition

Theorem 34. —If A is a complex matrix, there exists a unitary matrix Q and an upper triangular
matrix R. If we suppose that the diagonal entries are positive reals, then this decomposition is
unique.

Proposition 35. —
T, (C)
Q@ . R =

—  GLy(C)
OR

is a homeomorphism.

Application 36 (Development). —If A is an invertible matrix such that A = P~1DP,
M
D= |A1] > ... > |A4| > 0and P! admits a LU decomposition, then the

An
diagonal of the sequence defined by :

Ay = A
{ A1 =  RiQy where QR is the QR decomposition of A

converges to (A1, ...An).

IV Approximation methods to solve AX = B

Remark 37. — The methods we saw to compute a solution of AX = B (Cramer method and
Gaussian elimination method) have a big time complexity. We will now see approximation
methods.

IV.1 Iterative methods

Remark 38. — In iterative methods, we decompose A = M — N with M easy to invert. Then, we
have AX = Bif and only if MX = NX 4 Bif and only if X = M-INX + M~1B.

Theorem 39. — We associate to a M — N decomposition an iterative method, where we define the

Xp arbitrary choosed
Xip1 = MTINX +M~'B
is strictly less than 1.

sequence : { , which converges when the spectral radius of M~'N

Definition 40 (two methods). — — The Jacobi method is defined by M = Diag(A), and
converges when A is a strictly diagonally dominant matrix.
— The Gauss-Seidel method is defined by M being A with zeros strictly above the diagonal.
It converges when A is a positive definite symmetric matrix, or when it is strictly
diagonally dominant.



IV.2 Gradient descent method

Remark 41. — Gradient descent is an iterative optimization algorithm for finding the local
minimum of a differentiable function. It consists of descending the slope of f graph by the
steepest direction. We can use it on the function

f : R* — R
X = 1AX,X)-(B,X)
where we suppose that A is a positive definite symmetric matrix.

Lemma 42 (Kantorovich inequality). — If j1; and y;, are the lowest and biggest eigenvalues of A,
then we have :

XI5 o,
XI5 0X15-, = (u1+pn)?
XTI lIXT1A #1 Tt pn

Theorem 43. — The gradient descent algorithm defines three sequences :
Xo € IR"arbitrary,

Ry = AX,—B

Qg1 = <J§kk"£k> , Xy converges to X the solution of AX = B, and :
X1 = AXp— a1 Re

Rk+1 = AXkH - B

- Condy(A) —1F -
_ < UL T 2 _
1Xx — X|2 < \/Condz(A)Condz(A) 1 1% = Xll2
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