Théorème des deux carrés

Lemme 1. L'anneau $\mathbb{Z}[i] = \{a + ib, \ a, b \in \mathbb{Z}\}$ est euclidien, de stathme multiplicatif $N : a + ib \mapsto a^2 + b^2$.

Démonstration. Soient $z \in \mathbb{Z}[i]$ et $t \in \mathbb{Z}[i] \setminus \{0\}$. Notons $z/t = x + iy \in \mathbb{C}$. En choisissant a et b les entiers les plus proches de x et y respectivement et en notant q = a + ib, il vient :

$$\left|\frac{z}{t} - q\right| \le \frac{\sqrt{2}}{2} < 1.$$

Ainsi, en posant r = z - qt = t(z/t - q), on conclut en observant que N(r) < N(t) puisque |r| < |t|.

Lemme 2. Les inversibles de $\mathbb{Z}[i]$ sont donnés par $\mathbb{Z}[i]^{\times} = \{\pm 1, \pm i\}$.

Démonstration. On a clairement l'inclusion $\{\pm 1, \pm i\} \subset \mathbb{Z}[i]^{\times}$. D'autre part, tout inversible de $\mathbb{Z}[i]$ est de norme 1 (car de norme inversible dans \mathbb{N}), ce qui donne l'inclusion réciproque.

Lemme 3. Notons $\Sigma = \{n \in \mathbb{N} \mid \exists a, b \in \mathbb{N}, n = a^2 + b^2\}$. Un nombre premier impair p appartient à Σ si et seulement si p est réductible dans $\mathbb{Z}[i]$.

Démonstration. Si $p=a^2+b^2=(a+\mathrm{i}b)(a-\mathrm{i}b)$, alors p est réductible dans $\mathbb{Z}[\mathrm{i}]$, en distinguant les cas où a=0 ou b=0. Réciproquement, si p=zz' est une réduction non triviale de p, alors $N(p)=N(z)N(z')=p^2$, ce qui entraı̂ne nécessairement que $p=N(z)\in\Sigma$.

Lemme 4. Un élément $x \in \mathbb{F}_p$ est un carré de \mathbb{F}_p si et seulement si $x^{\frac{p-1}{2}} = 1$.

Démonstration. Notons $X = \{x \in \mathbb{F}_p, \ x^{\frac{p-1}{2}} = 1\}$. Tout d'abord, $|X| \leq \frac{p-1}{2}$. Si x est un carré dans \mathbb{F}_p^{\times} , alors $x \in X$. De plus, l'application $x \in \mathbb{F}_p^{\times} \mapsto x^2 \in \mathbb{F}_p^2 \setminus \{0\} \subset X$ a pour noyau $\{\pm 1\}$, donc $|\mathbb{F}_p^2 \setminus \{0\}| = \frac{p-1}{2}$. Ainsi, par cardinalité, X est l'ensemble des carrés non nuls de \mathbb{F}_p .

Théorème 5. Soit p premier impair. Avec les notations précédentes, $p \in \Sigma \iff p \equiv 1$ [4].

Démonstration. En reprenant le résultat d'un lemme précédent, $p \in \Sigma$ si et seulement si $\mathbb{Z}[i]/(p)$ est non intègre. Or, $\mathbb{Z}[i] \simeq \mathbb{Z}[X]/(X^2+1)$, donc $\mathbb{Z}[i]/(p) \simeq \mathbb{F}_p[X]/(X^2+1)$ donc $p \in \Sigma$ si et seulement si X^2+1 est réductible dans $\mathbb{F}_p[X]$, i.e. si X^2+1 admet une racine dans \mathbb{F}_p . Ainsi, $p \in \Sigma$ si et seulement si -1 est un carré dans \mathbb{F}_p . D'apès un lemme précédent, -1 est un carré dans \mathbb{F}_p si et seulement si $(-1)^{\frac{p-1}{2}}=1$, i.e. si et seulement si $p \equiv 1$ [4].

Corollaire 6. En notant $n = \prod_{p \in \mathcal{P}} p^{\nu_p(n)}$, on a la caractérisation suivante :

$$n \in \Sigma \iff (\forall p \in \mathcal{P}, \ p \equiv 3 \ [4] \implies \nu_p(n) \equiv 0 \ [2]).$$

Démonstration. Commençons par remaruqer que Σ est stable par multiplication, par propriété de N. Traitons d'abord le sens direct. Supposons $n=a^2+b^2\in\Sigma$. Soit $p\in\mathcal{P}$ tel que $p\equiv 3$ [4]. Le théorème précédent assure que p est irréductible dans $\mathbb{Z}[\mathrm{i}]$. Si $\nu_p(n)=0$, alors il n'y a rien à montrer. Sinon, puisque $p|n=a^2+b^2=(a+\mathrm{i}b)(a-\mathrm{i}b)$, par irréductibilité, $p|a+\mathrm{i}b$ ou $p|a-\mathrm{i}b$, ce qui entraı̂ne (par conjugaison), que p|a et p|b, donc $p^2|n$. De là :

$$\nu_p\left(\frac{n}{p^2}\right) = \nu_p(n) - 2 \text{ et } \frac{n}{p^2} = \left(\frac{a}{p}\right)^2 + \left(\frac{b}{p}\right)^2 \in \Sigma.$$

Par récurrence, on montre alors que $\nu_p(n)$ est pair. Pour la réciproque, il suffit d'écrire :

$$n = \prod_{p \in \mathcal{P}} p^{\nu_p(n)} = \left(\prod_{p \equiv 3 \ [4]} p^{\nu_p(n)/2}\right)^2 \left(\prod_{p \not\equiv 3 \ [4]} p^{\nu_p(n)}\right)$$

qui est un produit d'un carré et d'une somme de deux carrés, ce qui suffit pour conclure $n \in \Sigma$.