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THE FRAMEWORK: MLTT2

FIBRANT FRAGMENT

Π, Σ,= (path equality)

Cylf (cylinders, a HIT)

UF0, UF1, . . . hierarchy of fibrant types

univalence not needed

STRICT FRAGMENT

Π, Σ,≡ (strict equality)

U s
0 , U s

1 , . . . hierarchy of pre-types

UIP and funext for ≡



THE FRAMEWORK: MLTT2

Differences with the previous talk:

Ui  UF i (fibrant types)
s
=  ≡ (strict equality)

≡  'βη (conversion)

A judgment for fibrancy:

Γ ` A Fib

For instance:
Γ ` A : U s

i Γ ` A Fib

Γ ` A : UF i
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A PRE-MODEL STRUCTURE ON UF i

In MLTT2, UF i and U s
i are categories (for ≡).

GOAL: Equip them with a pre-model structure.

DEFINITION

A pre-model structure is given by :

I 3 classes of arrows W , F and C

(AF := F ∩W and AC := C ∩W )

such that:

I an arrow can be factorized as
AC

∼
F

I an arrow can be factorized as
C AF

∼

I various lifting problems are satisfied . . .
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A PRE-MODEL STRUCTURE ON UF i

Weak equivalences are given by type equivalences:

f ∈ W iff IsEquiv f

A B A Bf

id
= (η) g

id

= (ε)

f

+ f (ηx ) = εf (x)



F-AC FACTORIZATION (2008)
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THE IDENTITY TYPE WEAK FACTORISATION SYSTEM

NICOLA GAMBINO AND RICHARD GARNER

Abstract. We show that the classifying category C(T) of a dependent type
theory T with axioms for identity types admits a non-trivial weak factori-
sation system. We provide an explicit characterisation of the elements of
both the left class and the right class of the weak factorisation system. This
characterisation is applied to relate identity types and the homotopy theory
of groupoids.

1. Introduction

From the point of view of mathematical logic and theoretical computer sci-
ence, Martin-Löf’s axioms for identity types [25] admit a conceptually clear
explanation in terms of the propositions-as-types correspondence [14, 22, 28].
The fundamental idea behind this explanation is that, for any two elements a, b
of a type A, we have a new type IdA(a, b), whose elements are to be thought of
as proofs that a and b are equal. Yet, identity types determine a highly complex
structure on each type, which is far from being fully understood. A glimpse
of this structure reveals itself as soon as we start applying the construction
of identity types iteratively: not only do we have proofs of equality between
two elements of a type, but also of proofs of equality between such proofs, and
so on. The difficulty of isolating the structure determined by identity types
is closely related to the problem of describing a satisfactory category-theoretic
semantics for them. For example, the semantics arising from locally cartesian
closed categories [9, 30] validates not only the axioms for identity types, but
also additional axioms, known as the reflection rules, which make identity types
essentially trivial. To improve on this unsatisfactory situation and obtain mod-
els that do not validate the reflection rules, Awodey and Warren have recently
introduced a semantics of identity types in categories equipped with a weak
factorisation system [2].

Our aim here is to advance our understanding of the categorical structure
implicit in the axioms for identity types. We do so by providing further evidence
of a close connection between the axioms for identity types and the notion of a
weak factorisation system. Our main result states that if T is a dependent type
theory with the axioms for identity types, then its classifying category C(T)
admits a non-trivial weak factorisation system, which we shall refer to as the
identity type weak factorisation system. This result should be regarded as anal-
ogous to the fundamental result exhibiting the structure of a cartesian closed
category on the classifying category of the simply-typed λ-calculus [19, 29]. As

Date: September 1, 2008.
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F-AC FACTORIZATION

A B

Σy :B fibf y

f

λx . (f (x), x , reflf (x))
∼

π1
where fibf y := Σx :A f x = y

FIBRATIONS

A Σz :B′P(z) A

B B ′ B

f

id

π1 f

id

with P : B ′ → UF i

ACYCLIC COFIBRATIONS
(INJECTIVE EQUIVALENCES)

A B A Bf

id
≡ r

id

= (ε)

f

+ εf (x) ≡ reflf (x)
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AF-C FACTORIZATION (2011)

MODEL STRUCTURES FROM HIGHER INDUCTIVE TYPES

PETER LEFANU LUMSDAINE

Abstract. We show that for any dependent type theory with Martin-Löf

identity types and mapping cylinders (defined as certain higher-dimensional

inductive types), the category of contexts carries a pre-model-structure, i.e.
a model structure minus the completeness conditions. The (trivial cofibra-

tions,fibrations) are the Gambino-Garner weak factorisation system of [GG08],

while the weak equivalences are equivalences in the sense of Voevodsky [Voe].
It follows that any categorical model of this type theory carries a pre-model-

structure, and so, if it is additionally complete and co-complete, is a model

category.

Contents

1. Type-theoretic background 1
2. Type-theoretic mapping cylinders 3
3. A pre-model-structure from mapping cylinders 4
4. Characterisations of fibrations and cofibrations 8
5. Model structures from mapping cylinders 9
References 10

This note isn’t intended for formal publication in its current form: I’d like to
wait until some more background is available (eg [LS11a], [LS11b]) to give better
context and motivation. However, at least from a purely formal point of view, this
proof stands on its own; and I’ve talked a bit about the result publicly, so it seems
right to make the proof available in some form.

Thanks as ever to Michael Warren, Mike Shulman, Chris Kapulkin, Steve Awodey,
and Nicola Gambino for helpful feedback and suggestions!

1. Type-theoretic background

We will need a few basic definitions and deductions in the type theory. We work,
for this section, in the setting of Martin-Löf Type Theory with at least identity
types; we do not assume Π-, Σ-, or any base types.

To emphasise the intended homotopy-theoretic interpretation, we will write the
identity types as PathsA(x, x′); and the syntax we use for their eliminator will be:

Γ, x, x′ :A, u :PathsA(x, x′), ~w :∆(x, x′, u) ` C(x, x′, u, ~w) type
Γ, x :A, ~w :∆(x, x, refl(x)) ` d(x, ~w) : C(x, x, refl(x), ~w)

Γ, x, x′ :A, u :PathsA(x, x′), ~w :∆(x, x′, u) `
path-elimx,x′,u,~w.C(x,x′,u,~w)(x, ~w.d(x, ~w); x, x′, u, ~w) : C(x, x′, u, ~w)

Id-elim

Date: 7 December, 2011.
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AF-C FACTORIZATION

Cyl {f : A → B} : B → Type :=

| top : ∀ x, Cyl (f x)

| base : ∀ y, Cyl y

| eq : ∀ x, base (f x) = top x.

For all y : B, Cylf y is contractible.

And thus Σy :B Cylf y ' B.
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AF-C FACTORIZATION

A B

Σy :B Cylf y

f

λx . (f (x), top(x)) π1
∼

COFIBRATIONS

A A′ A

B Σy :B′ Cylg y B
f

id

(g , top) f

id

ACYCLIC FIBRATIONS
(SURJECTIVE EQUIVALENCES)

B A B As

id
≡ f

id

= (η)

s

+ ap f ηx ≡ reflf (x)
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A PRE-MODEL STRUCTURE ON UF i

THEOREM

In MLTT2, the (F, AC) and (AF, C) factorization systems give rise to a

pre-model structure on UF i .

Formalized in Coq:
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IMPLEMENTATION IN COQ

Axiom Fibrant : Type → Type.

Existing Class Fibrant.

Private Inductive paths {A : Type} (x : A) : A → Type :=

| idpath : paths x x.

Definition paths_ind {A} (FibA: Fibrant A) (x : A)

(P : ∀ y : A, paths x y → Type) (FibP : ∀ y p, Fibrant (P y p))

(u : P x idpath) (y : A) (p : paths x y) : P y p

:= match p with idpath ⇒ u end.
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EXTENDING TO U S
i

We want to extend the result to U s
i .

But the lifting properties are not satisfied anymore.

In a model category, the factorization

A 1

A
AC

∼
F

gives rise to a fibrant replacement.
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FIBRANT REPLACEMENT

What could be a fibrant replacement in MLTT2?

A modality A such that:

I Fib A

I η : A→ A

I if Fib B:
A B

A

f

η rec(f )
(rec(f ) ◦ η ≡ f )
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FIBRANT REPLACEMENT

Unfortunately, such a fibrant replacement is inconsistent in MLTT2.

It was noticed by:

I Shulman et al. on the nLab

I also in Capriotti’s thesis

This relies on the fact that x = y → x ≡ y

⇒ we don’t want x ≡ y to be fibrant.

In the model: the fibrant replacement is not stable under substitution.
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A NEW TYPE THEORY: MLTTF2

Γ ; ∆ ` A Fib

In the context Γ, the type family ∆ ` A is regularly fibrant.

Γ, ∆ ; · ` A Fib

∆ ` A is degenerately fibrant (weaker).
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SOME FIBRANCY RULES OF MLTTF2

Γ ; ∆ ` A Fib Γ ; ∆, x : A ` B Fib

Γ ; ∆ ` Π x : A. B Fib

Γ ; ∆ ` A Fib Γ ` σ : ∆′ → ∆

Γ ; ∆′ ` Aσ Fib

E.g. if λ n. P(n) is regularly fibrant, so is λ n. P(n + 2).
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J-RULE

Γ ` A Fib Γ ` t, t ′ : A Γ ` p : t =A t ′

Γ ; y : A, q : t =A y ` P Fib Γ ` u : P {y := t, q := reflt}

Γ ` J=(A, y .q.P, t, t ′, p, u) : P
{

y := t ′, q := p
}

x = y 6→ x ≡ y because λ y . x ≡ y only degenerately fibrant



(DEGENERATE) FIBRANT REPLACEMENT

Γ ` A : U s
i

Γ ` A : U s
i

Γ ` A : U s
i

Γ ; · ` A Fib

Γ ` A : U s
i

Γ ` ηA : A→ A

Γ ; z : A ` P(z) Fib Γ ` t : Π x : A. P(ηA x)

Γ ` repl indP t : Π z : A. P(z)

repl indP t (ηA x) 'βη t x



(DEGENERATE) FIBRANT REPLACEMENT

We need a few more rules:

I Fibrant replacement of a function:

idA ≡ idA g ◦ f ≡ g ◦ f

where f : A→ B.

I Extension of P : A→ U s
i to A→ U s

i :

Γ ` P : A→ U s
i Γ ; x : A ` P x Fib

Γ ; z : A ` repl recA,U s
i

P z Fib

Consequence:

If Γ ; x : A ` P(x) Fib then η t = η t ′ → P(t)→ P(t ′).



(DEGENERATE) FIBRANT REPLACEMENT

We need a few more rules:

I Fibrant replacement of a function:

idA ≡ idA g ◦ f ≡ g ◦ f

where f : A→ B.

I Extension of P : A→ U s
i to A→ U s

i :

Γ ` P : A→ U s
i Γ ; x : A ` P x Fib

Γ ; z : A ` repl recA,U s
i

P z Fib

Consequence:

If Γ ; x : A ` P(x) Fib then η t = η t ′ → P(t)→ P(t ′).



PRE-MODEL STRUCTURE ON U S
i

I f : A→ B is a weak-equivalence iff f : A→ B is a type equivalence

I (AC,F) factorization:

A B

Σy :B fibf (η y)

f

λx . (f x , η x , refl)
∼

π1

I idem for the (C, AF) factorization



A PRE-MODEL STRUCTURE ON U S
i

THEOREM

In MLTTF2 , there is a pre-model structure on the category U s
i .

Formalized in Coq.
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MODEL OF MLTTF2

Interpretation of MLTTF2 in the Bezem-Coquand-Huber cubical model

(without connections).

Our trick could probably replayed in other cubical models.



INTERPRETATION OF TYPES (MLTT2 AND MLTTF2 )

Γ `

A cubical set is a presheaf on the cube category Γ : �op → Set

Γ ` A
A cubical family Γ ` A is given by:

I a set A(I, ρ) for each I ∈ � and ρ ∈ Γ(I)
I a restriction A(I, ρ)→ A(J , ρf ) for each f : J → I and ρ ∈ Γ(I)
I respecting identity and composition



INTERPRETATION OF FIBRANCY (MLTT2)

Γ ` A Fib is interpreted as:
I for all I ∈ �, S shape on I, ρ ∈ Γ(I)

degenerate along the direction

of S, δ ∈ ∆(ρ)

and ~u open-box of shape S in A(ρ

, δ

), a there is filler

fill S
A(ρ

, δ

) (~u) ∈ A(ρ

, δ

)

I such that . . .

y

x

u0y u1y

ux0

fill(~u)

fill(~u)(y = 1)
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INTERPRETATION OF REGULAR FIBRANCY (MLTTF2 )

. ; Γ, ∆ ` A Fib is interpreted as:
I for all I ∈ �, S shape on I, ρ ∈ Γ(I)

degenerate along the direction

of S,

δ ∈ ∆(ρ) and ~u open-box of shape S in A(ρ, δ), a there is filler

fill S
A(ρ, δ) (~u) ∈ A(ρ, δ)

I such that . . .

y

x

u0y u1y

ux0

fill(~u)

fill(~u)(y = 1)



INTERPRETATION OF DEGENERATE FIBRANCY

Γ ; ∆ ` A Fib is interpreted as:
I for all I ∈ �, S shape on I, ρ ∈ Γ(I) degenerate along the direction

of S, δ ∈ ∆(ρ) and ~u open-box of shape S in A(ρ, δ), a there is filler

fill S
A(ρ, δ) (~u) ∈ A(ρ, δ)

I such that . . .

y

x

u0y u1y

ux0

fill(~u)

fill(~u)(y = 1)



INTERPRETATION OF DEGENERATE FIBRANCY

Why does it works?

I Proofs of fibrancy rules lift.

I Sufficient to interpret transport.

From Huber thesis:

Simon




INTERPRETATION OF THE FIBRANT REPLACEMENT

The fibrant replacement is interpreted by an inductive-recursive set

(construction from Huber thesis).

PROPOSITION

The degenerate fibrant replacement commutes with substitutions. For all

σ : Γ′ → Γ, Aσ = Aσ.



CONCLUSION

1. In MLTT2: pre-model structure on UF i

2. MLTTF2 : a type theory with a fibrant replacement

3. In MLTTF2 : pre-model structure on U s
i

4. Interpretation of MLTTF2 in the cubical model

(Cylinders remain to be done)

5. Implementation in Coq of both systems,

1. and 3. are formalized.

Article: https://hal.archives-ouvertes.fr/hal-01579822

Formalization: https://github.com/CoqHott/model-structures-Coq

https://hal.archives-ouvertes.fr/hal-01579822
https://github.com/CoqHott/model-structures-Coq


CHARACTERIZATION OF CLASSES IN MLTT2
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