TD 8: ESPACES DE HILBERT

Exercice 1. Dualité dans les espaces de Hilbert

Soit H un espace de Hilbert.

- 1. Montrer que pour tout $x \in H$, l'application $\langle x, \cdot \rangle$ est dans H' (i.e. une forme linéaire continue sur H) et calculer sa norme d'opérateur.
- 2. Que permet d'affirmer le théorème de Riesz?
- 3. Montrer que pour tout $x \in H$:

$$||x|| = \max\{|f(x)| : f \in H', ||f||_{H'} \le 1\}.$$

Exercice 2. Projection sur la boule unité fermée

On considère \mathbb{R}^n muni de sa structure euclidienne usuelle et on note B la boule unité fermée. Donner l'expression du projecteur orthogonal sur B. Et que se passe-t-il si on remplace \mathbb{R}^n par un espace de Hilbert quelconque?

Exercice 3. Deux calculs de projection

Calculer:

1.
$$I = \inf_{a,b,c \in \mathbf{R}} \int_0^{+\infty} (x^3 + ax^2 + bx + c)^2 e^{-x} dx$$
.

2.
$$I = \inf_{a,b \in \mathbf{R}} \int_0^{\pi} (\sin x + ax^2 + bx)^2 dx$$
.

Exercice 4. Supplémentaire orthogonal et distance

On note $H=l^2({\bf N,C})$ muni de sa structure hilbertienne usuelle et on fixe $n\geq 0.$ Soit

$$V = \left\{ u = (u_n)_n \in H, \sum_{k=0}^n u_k = 0 \right\}.$$

- 1. Montrer que V est un sev fermé de H.
- 2. Donner son supplémentaire orthogonal.
- 3. Calculer la distance de la suite $e_0 := (1, 0, 0, \dots)$ à V.

Exercice 5. Projection sur un hyperplan fermé de L^2

Soit $H = L^2(0,1)$ muni du produit scalaire usuel :

$$\langle f, g \rangle_{L^2} = \int_0^1 fg \, dx.$$

On note $F = \{\mathbf{1}_{[0,1/2]}\}^{\perp}$. Expliquer pourquoi F est un hyperplan fermé et donner l'expression de la projection orthogonale sur F.

Exercice 6. Projection sur un convexe fermé de l^2

Soit $H = l^2(\mathbf{N}, \mathbf{R})$ muni du produit scalaire usuel. On note $C := \{u = (u_n)_n, u_n \ge 0, \forall n \ge 0\}$. Montrer que C est un convexe fermé de H et donner l'expression de la projection orthogonale sur C.

Exercice 7. Contre-exemple au théorème de projection quand l'espace n'est pas complet On note $H = \mathcal{C}^0([0,1])$ muni du produit scalaire $\langle \cdot, \cdot \rangle_{L^2}$. On pose $F = \{\mathbf{1}_{[0,1/2]}\}^{\perp}$, où l'orthogonal est pris dans $L^2(0,1)$. On pose enfin $F_1 = F \cap H$.

- 1. Montrer que F_1 est un sev fermé de H.
- 2. Montrer que pour tout $f \in H$, on a $d(f, F) = d(f, F_1)$.
- 3. En déduire que le théorème de projection n'est pas vérifié.

Exercice 8. Contre-exemple au critère de densité quand l'espace n'est pas complet Soit $H = \mathcal{C}^0([0,1], \mathbf{R})$ muni du produit scalaire L^2 . On pose $F = \mathbf{1}_{[0,1/2]}^{\perp_{L^2}}$ et $F_1 = F \cap H$. Montrer que $F_1^{\perp_H} = \{0\}$ mais que F_1 n'est pas dense dans H.

Exercice 9. Le théorème du supplémentaire orthogonal et de Riesz sont-ils vérifiés? On note $c_c(\mathbf{N}; \mathbf{C})$ l'espace des suites de $\mathbf{C}^{\mathbf{N}}$ nulles à partir d'un certain rang muni du produit scalaire usuel :

$$\forall u, v \in c_c(\mathbf{N}; \mathbf{C}), \langle u, v \rangle = \sum_{n=0}^{+\infty} u_n \overline{v_n}.$$

On définit la forme linéaire f par :

$$f(u) = \sum_{n=0}^{+\infty} \frac{u_n}{n+1},$$

et on note F = Ker(f).

- 1. A-t-on $c_c(\mathbf{N}; \mathbf{C}) = F \oplus F^{\perp}$? Commenter.
- 2. Le théorème de Riesz s'applique-t-il à f?

Exercice 10. Opérateurs diagonaux

Soient $(\lambda_n)_n$ une suite bornée de réels et H un espace de Hilbert séparable dont on note $(e_n)_n$ une base hilbertienne.

1. Montrer qu'il existe un unique $T \in \mathcal{L}_c(H)$ tel que pour tout n:

$$Te_n = \lambda_n e_n$$
.

- 2. Calculer sa norme d'opérateur.
- 3. Donner une CNS pour que T admette un inverse continu et calculer sa norme d'opérateur.

Exercice 11. Commuter avec les translations

Soit $T: L^2(\mathbf{R}) \to (\mathcal{C}_b(\mathbf{R}), \|\cdot\|_{\infty})$ un opérateur linéaire continu tel que pour tout $a \in \mathbf{R}$, $T \circ \tau_a = \tau_a \circ T$, où τ_a est l'opérateur de translation défini par :

$$\forall f \in L^2(\mathbf{R}), \, \tau_a(f) = f(\cdot - a).$$

Montrer qu'il existe un unique $g \in L^2(\mathbf{R})$ tel que T(f) = f * g pour tout $f \in L^2(\mathbf{R})$, où * désigne le produit de convolution.

Exercice 12. Version faible du théorème de Radon-Nikodym

Soit (E, A) un espace mesurable muni de deux mesures finies positives μ et ν . On suppose que :

$$\forall A \in \mathcal{A}, \ \nu(A) \leq \mu(A).$$

Montrer qu'il existe $f \in L^1(\mu)$ positive telle que :

$$\forall A \in \mathcal{A}, \ \nu(A) = \int_A f \, d\mu.$$

Exercice 13. Inégalité de Poincaré-Wirtinger

Soit $f: \mathbf{R} \to \mathbf{C}$ une fonction 2π -périodique de classe \mathcal{C}^1 et de moyenne nulle i.e. $c_0(f) = 0$. Montrer que :

$$\int_0^{2\pi} |f(t)|^2 dt \le \int_0^{2\pi} |f'(t)|^2 dt,$$

et caractériser le cas d'égalité.

Exercice 14. Densité des translatés d'une fonction 1-périodique

On note $L^2_{\rm per}({f R};{f C})$ l'espace vectoriel des fonctions 1-périodiques et L^2 sur [0,1] muni du produit scalaire hermitien :

$$\forall f, g \in L^2_{\text{per}}(\mathbf{R}; \mathbf{C}), \langle f, g \rangle = \int_0^1 \overline{f} g \, dx.$$

Pour $n \in \mathbf{Z}$, on note le coefficient de Fourier d'indice n :

$$c_n(f) = \int_0^1 f(t)e^{-2i\pi nt} dt.$$

Soit $f \in L^2_{per}(\mathbf{R}; \mathbf{C})$. Donner une CNS pour que $\text{Vect}\{f(\cdot - a), a \in \mathbf{R}\}$ soit dense dans $L^2_{per}(\mathbf{R}; \mathbf{C})$.

Exercice 15. Polynôme orthogonaux : existence et unicité

Soient I un intervalle de \mathbf{R} et $\rho: I \to \mathbf{R}$ une fonction poids, i.e. ρ est mesurable, strictement positive et vérifie :

$$\forall n \in \mathbf{N}, \quad \int_{I} |x|^{n} \rho(x) \, dx < +\infty.$$

On note $L^2(I,\rho)$ l'espace des fonctions de carré intégrable pour la mesure à densité ρ par rapport à la mesure de Lebesgue.

- 1. Montrer qu'il existe une unique suite $(P_n)_{n\geq 0}$ de polynômes unitaires, deux à deux orthogonaux et tels que deg $P_n = n$.
- 2. Expliciter P_1 , P_2 et P_3 pour $I = \mathbf{R}$ et pour $\rho(x) = e^{-x^2}$.
- 3. Montrer que pour tout n, les zéros de P_n sont réels, distincts, et tous dans l'intervalle I.

Exercice 16. Densité des polynômes orthogonaux

Remarque : Nécessite le théorème d'holomorphie sous l'intégrale, le principe des zéros isolés (cf HOLO) et les bases sur la transformée de Fourier.

Soient I un intervalle de \mathbf{R} et ρ une fonction poids. On suppose qu'il existe a>0 tel que

$$\int_{I} e^{a|x|} \rho(x) \, \mathrm{d}x < +\infty.$$

On cherche à montrer que l'ensemble des polynômes orthogonaux associés à ρ forme une base hilbertienne de $L^2(I,\rho)$.

1. Soit $f \in L^2(I, \rho)$. Montrer que la fonction φ définie par

$$\varphi(x) = \begin{cases} f(x)\rho(x) & \text{si } x \in I, \\ 0 & \text{sinon,} \end{cases}$$

est une fonction de $L^1(\mathbf{R})$. Montrer que sa transformée de Fourier $\widehat{\varphi}$ se prolonge en une fonction holomorphe F sur

$$B_a = \{ z \in \mathbf{C} : |\text{Im}(z)| < a/2 \}.$$

2. On suppose que $f \in L^2(I, \rho)$ est orthogonale aux monômes. En utilisant φ , montrer que f est nulle et conclure.

Exercice 17. Base de Haar

On définit les fonctions de Haar $(H_n)_{\geq 0}$ définies sur [0,1] en posant $H_0=1$ et pour $n\in \mathbb{N}$ et $k\in\{1,\ldots,2^n\}$:

$$H_{2^n+k-1} = \begin{cases} \sqrt{2^n} & \text{si } x \in](2k-2)2^{-n-1}, (2k-1)2^{-n-1}[\\ -\sqrt{2^n} & \text{si } x \in](2k-1)2^{-n-1}, (2k)2^{-n-1}[\\ 0 & \text{sinon} \end{cases}$$

- 1. Montrer que $(H_n)_n$ est orthonormée dans $L^2(0,1)$.
- 2. Montrer qu'il s'agit d'une base hilbertienne de $L^2(0,1)$.

Indication: On pourra considérer $f \in \{H_n, n \geq 0\}^{\perp}$ et montrer que $x \mapsto \int_0^x f(t) dt$ est nulle. Remarque culturelle: On peut utiliser cette base hilbertienne pour construire le fameux mouvement brownien!

Exercice 18. Adjoint d'un opérateur linéaire

Soit H un espace de Hilbert et $T \in \mathcal{L}_c(H)$.

1. Montrer qu'il existe un unique $T^* \in \mathcal{L}_c(H)$ telle que

$$\forall x, y \in \mathcal{H}, \quad \langle Tx, y \rangle = \langle x, T^*y \rangle.$$

- 2. Démontrer que $T^{**}=T$, que si $S\in\mathcal{L}_c(H)$, alors $(TS)^*=S^*T^*$.
- 3. Démontrer que $||T|| = ||T^*||$ et que $||TT^*|| = ||T^*T|| = ||T||^2$.

Exercice 19. Adjoint d'un opérateur à noyau

Soient $H=L^2([0,1];\mathbf{C})$ muni de $\langle\cdot,\cdot\rangle_{L^2}$ et $K\in L^2([0,1]^2;\mathbf{C})$. On définit l'opérateur à noyau K par :

$$\forall f \in H, \forall t \in [0,1], \quad T_K f(t) = \int_0^1 K(t,s) f(s) \, ds.$$

4

Montrer que T est bien défini comme endomorphisme continu de H, majorer sa norme d'opérateur et calculer son adjoint.