Théorèmes de Prokhorov et Lévy

Références: O.Garet et A.Kurtzmann, De l'intégration aux probabilités. 1

Leçons: 203, 229, 241, 262, 261, 250.

Définition 1

Soient $(\mu_n)_n$ une suite de probabilités sur \mathbb{R}^n et μ une probabilité sur \mathbb{R}^n . On dit que cette suite converge étroitement vers μ si :

$$\forall \phi \in \mathcal{C}_b^0(\mathbb{R}^n, \mathbb{R}) \int_{\mathbb{R}^n} \phi(x) \, d\mu_n(x) \to \int_{\mathbb{R}^n} \phi(x) \, d\mu(x).$$

Définition 2 (Tension)

Soit $(\mu_n)_n$ une suite de probabilités sur \mathbb{R}^n . On dit que cette suite est tendue si pour tout $\epsilon > 0$, il existe un compact K tel que :

$$\forall n \in \mathbb{N}, \, \mu_n(K) \ge 1 - \epsilon.$$

Cela signifie que la masse de toutes les probabilités de la suite reste localisée dans un compact à ϵ près.

Le théorème suivant est un critère de compacité pour la convergence étroite de probabilités. Nous en aurons besoin pour démontrer le théorème de Lévy.

Théorème 3 (Théorème de Prokhorov)

Soit $(\mu_n)_n$ une suite tendue de probabilités sur \mathbb{R} . Alors il existe une extraction de cette suite qui converge étroitement.

Avant de démontrer ce théorème on aura besoin du lemme suviant.

Théorème 4 (Théorème de Helly)

Soit $(F_n)_n$ une suite de fonctions de répartition. Alors il existe une extraction $(\alpha_n)_n$ et une fonction $F: \mathbb{R} \to [0,1]$ croissante et continue à droite telle qu'en tout point de continuité x de F, on a:

$$F_{\alpha_n}(x) \underset{n \to \infty}{\longrightarrow} F(x).$$

Démonstration : Soit $q \in \mathbb{Q}$, la suite $(F_n(q))_n$ est une suite de [0,1], on peut donc extraire une sous-suite qui converge vers un réel qu'on note $\tilde{F}(q) \in [0,1]$. Par extraction diagonale, il existe une extraction $(\alpha_n)_n$ telle que :

$$\forall q \in \mathbb{Q}, F_{\alpha_n}(q) \underset{n \to \infty}{\to} \tilde{F}(q).$$

^{1.} Merci à Alain pour les nombreuses discussions sur ce développement!

On peut alors définir, si $x \in \mathbb{R}$:

$$F(x) = \inf_{q \in \mathbb{Q}, \, x < q} \{ \tilde{F}(q) \}.$$

F est croissante par construction. Montrons qu'elle est continue à droite. Soit $x \in \mathbb{R}$ et $\epsilon > 0$. Il existe q > x tel que $\tilde{F}(q) \leq F(x) + \epsilon$. Ainsi, si $y \in [x, q]$, on a :

$$F(x) \le F(y) \le \tilde{F}(q) \le F(x) + \epsilon.$$

Soit maintenant x un point de continuité de F et $\epsilon > 0$. Par continuité, il existe y < x tel que :

$$F(x) - \epsilon \le F(y)$$
.

Soient $r, s \in \mathbb{Q}$ tels que : y < r < x < s et $\tilde{F}(s) \leq F(x) + \epsilon$. On a alors :

$$F(x) - \epsilon \le F(y) \le \tilde{F}(r) \le \tilde{F}(s) \le F(x) + \epsilon.$$

Or par définition, on a :

$$F(x) - \epsilon \le \tilde{F}(r) = \lim_{n} F_{\alpha_n}(r) \le \underline{\lim} F_{\alpha_n}(x) \le \overline{\lim} F_{\alpha_n}(x) \le \overline{\lim} F_{\alpha_n}(x) \le \overline{\lim} F_{\alpha_n}(x) \le F(x) + \epsilon.$$

En laissant tendre ϵ vers 0, on obtient $F_{\alpha_n}(x) \xrightarrow{r \to \infty} F(x)$.

Démonstration : (Théorème de Prokhorov).

On note F_n la fonction de répartition de μ_n . Il suffit de montrer que la fonction F obtenue est une fonction de répartition. Par caractérisation de la convergence étroite avec les fonctions de répartition, on aura le résultat ². Si on montre que F tend vers 0 en $-\infty$ et vers 1 en $+\infty$, F sera une fonction de répartition grâce à l'inverse généralisé ³. Fixons $\epsilon > 0$, Par hypothèse il existe M > 0, qu'on peut supposer point de continuité de F puisque les discontinuités d'une fonction monotone forment un ensemble au plus dénombrable, tel que :

$$\forall n, \, \mu_n([-M, M]) \ge 1 - \epsilon.$$

En passant à la limite suivant l'extraction du lemme de Helly, on obtient :

$$F(M) - F(-M) > 1 - \epsilon$$
.

Compte tenu de la monotonie de F, cela assure que F est une fonction de répartition.

Le corollaire suivant est un critère de convergence étroite (analogue au critère pour les suites réelles bornées).

Corollaire 5

Si $(\mu_n)_n$ est tendue et admet une unique valeur d'adhérence pour la convergence étroite, alors $(\mu_n)_n$ converge étroitement vers μ .

^{2.} Voir la fin du développement pour la preuve du critère de convergence étroite avec les fonctions de répartition

^{3.} Voir la fin pour la proposition concernant l'inverse généralisé

Démonstration : Soit f continue bornée. La suite $\left(\int f d\mu_n\right)_n$ converge vers $\int f d\mu$ puisque de toute extraction de cette suite, on peut extraire une sous-suite qui converge vers $\int f d\mu$ grâce au théorème de Prokhorov et car il y a une unique valeur d'adhérence.

Théorème 6 ($Th\acute{e}or\`{e}me$ de $L\acute{e}vy$)

Soit $(\mu_n)_n$ une suite de probabilités sur \mathbb{R} . On note ϕ_n la fonction caractéristique de μ_n . On suppose qu'il existe une fonction ϕ continue en 0 telle que $(\phi_n)_n$ converge simplement vers ϕ . Alors ϕ est la fonction caractéristique d'une probabilité μ et on a convergence étroite de $(\mu_n)_n$ vers μ .

Démonstration : Il s'agit de montrer que la suite $(\mu_n)_n$ est tendue. En effet, cette suite admet une unique valeur d'adhérence puisqu'une telle valeur d'adhérence admet nécessairement ϕ comme fonction caractéristique et que celle-ci caractérise la loi ⁴. Le corollaire précédent permet de conclure. Commençons par un calcul. Soit u > 0, :

$$\frac{1}{2u} \int_{-u}^{u} 1 - \phi_n(t) dt = \int_{\mathbb{R}} 1 - \frac{\sin(ux)}{ux} d\mu_n(x) \quad \text{(Fubini)}$$

$$\geq \left(1 - \frac{2}{\pi}\right) \mu_n\left(\left[-\frac{\pi}{2u}, \frac{\pi}{2u}\right]^{\varsigma}\right),$$

en utilisant l'inégalité :

$$\forall |y| \ge \frac{\pi}{2}, \quad \sin(y) \le \frac{2y}{\pi}.$$

Le théorème de convergence dominée et l'hypothèse de continuité en 0 assurent que :

$$\frac{1}{2u} \int_{-u}^{u} 1 - \phi(t) dt \underset{u \to 0}{\to} 0.$$

De plus si on fixe u, on a:

$$\frac{1}{2u} \int_{-u}^{u} 1 - \phi_n(t) dt \underset{u \to 0}{\rightarrow} \frac{1}{2u} \int_{-u}^{u} 1 - \phi(t) dt.$$

On déduit que si $\epsilon>0,$ il existe u>0 et N (qui dépend de u mais ce n'est pas important) tels que :

$$\forall n > N, \quad \mu_n([-\frac{\pi}{2u}, \frac{\pi}{2u}]^{\complement}) \le \epsilon.$$

Puisqu'un ensemble fini de probabilités est tendu, on a démontré la tension de la suite $(\mu_n)_n$ ce qui achève la preuve.

Remarque 7. - Pour que ça tienne en 15 minutes, on peut seulement démontrer le lemme de Helly, et le théorème de Lévy, si on a du temps on détaille plus ou moins le théorème de Prokhorov.

^{4.} Un argument rapide étant l'inversion de Fourier dans les distributions tempérées

- Le critère de Prokhorov est vrai sur \mathbb{R}^n voire dans un cadre plus général mais la preuve est plus compliquée puisqu'on ne dispose pas d'une fonction de répartition comme sur \mathbb{R} .
- La continuité en 0 est cruciale dans le théorème de Lévy. La tension correspond au fait que la masse de la famille de probabilités reste localisée dans un même compact à ε près, ce qui évite la perte de masse à l'infinie (on voit bien dans la preuve que c'est la tension de la suite de probabilités qui assure que la fonction F du lemme de Helly est bien une fonction de répartition, c'est-à-dire qu'il n'y a pas eu perte de masse en passant à la limite). Comme la masse totale d'une mesure finie est égale à l'évaluation en 0 de sa fonction caractéristique, il est naturel qu'il y ait une hypothèse sur ce point dans le théorème de Lévy.
- On peut utiliser le théorème de Lévy pour démontrer le théorème central limite sur $\mathbb R.$
- La convergence étroite est métrisable.

Annexe

Je démontre ici le critère de convergence en loi avec les fonctions de répartition, ainsi que la propriété utilisée sur l'inverse généralisé.

Théorème 8

Soit $(X_n)_n$ une suite de variables aléatoires et X une variable aléatoire. On note F_n la fonction de répartition de X_n et F celle de X. Alors $(X_n)_n$ converge en loi vers X si et seulement si $(F_n)_n$ converge simplement vers F en chaque point de continuité de F.

Démonstration:

- (\Rightarrow) Supposons qu'on ait la convergence en loi. Soit x un point de continuité de F. Soit $\epsilon > 0$, on dispose, par continuité à droite de F en x de $x_1 > x$ tel que : $F(x) \le F(x_1) \le F(x) + \epsilon$. Soit f_1 la fonction continue affine par morceaux égale à 1 sur $]-\infty,x]$ et à 0 sur $[x_1,+\infty[$. On a ainsi en intégrant :

$$\forall n, F_n(x) \leq \mathbb{E}(f_1(X_n)) \leq F_n(x_1)$$
 et $F(x) \leq \mathbb{E}(f_1(X)) \leq F(x_1)$.

Puisque f_1 est continue bornée, on en déduit qu'il existe $n_1 > 0$ tel que :

$$\forall n \geq n_1, \mathbb{E}(f_1(X_n)) \leq \mathbb{E}(f_1(X)) + \epsilon.$$

En combinant les deux inégalités précédentes, on obtient que pour tout $n \geq n_1$, on a :

$$F_n(x) < F(x) + 2\epsilon$$
.

Un raisonnement analogue utilisant la continuité à gauche de F montre qu'il $n_0 > 0$ tel que :

$$\forall n > n_0, F_n(x) > F(x) - 2\epsilon.$$

Cela assure la convergence simple.

- (⇐) Supposons qu'on a le résultat de convergence simple. On veut montrer la convergence en loi. Pour cela on commence par montrer que

$$\mathbb{E}(f(X_n)) \to \mathbb{E}(f(X)),$$

pour une fonction C^1 à support compact.

(a) Soit f une fonction de $C_c^1(\mathbb{R})$. D'après le théorème de Fubini :

$$\mathbb{E}(f(X_n)) = \int_{\mathbb{R}} \left(\int_{-\infty}^x f'(y) \, dy \right) d\mathbb{P}_{X_n}(x)$$
$$= \int_{\mathbb{R}} (1 - F_n(y)) f'(y) \, dy.$$

La fonction F ayant une ensemble de points de discontinuités au plus dénombrable, on peut appliquer le théorème de convergence dominée, ce qui donne que : $\mathbb{E}(f(X_n)) \to \mathbb{E}(f(X))$.

5

(b) Soit maintenant f une fonction de $C_c^0(\mathbb{R})$. Soit $\epsilon > 0$, on dispose de $g \in C_c^1(\mathbb{R})$ telle que :

$$||f - g||_{\infty} \le \epsilon.$$

D'après la première étape, on dispose de $n_0 > 0$ tel que :

$$|\mathbb{E}(g(X_n)) - \mathbb{E}(g(X))| \le \epsilon.$$

On a alors:

$$|\mathbb{E}(f(X_n)) - \mathbb{E}(f(X))|$$

$$\leq |\mathbb{E}(f(X_n)) - \mathbb{E}(g(X_n))| + |\mathbb{E}(g(X_n)) - \mathbb{E}(g(X))| + |\mathbb{E}(g(X)) - \mathbb{E}(f(X))|$$

$$\leq 3\epsilon.$$

(c) Pour finir, soit $f \in C_b^0$. Soit $\epsilon > 0$, on dispose d'une fonction $h \in C_c^0(\mathbb{R})$ à valeurs dans [0,1] telle que :

$$\mathbb{E}(h(X)) \ge 1 - \epsilon,$$

par exemple en prenant une fonction plateau continue à support compact valant 1 sur un intervalle du type [-M, M] et en utilisant le théorème de convergence monotone. Par convergence en loi, on dispose de $n_0 > 0$ tel que :

$$\forall n \geq n_0, \mathbb{E}(h(X_n)) \geq 1 - 2\epsilon.$$

La fonction fh étant continue à support compact, on a $n_1 > 0$ tel que :

$$\forall n \ge n_1, |\mathbb{E}(fh(X_n)) - \mathbb{E}(fh(X))| \le \epsilon.$$

Ainsi pour tout $n \ge \max(n_0, n_1)$, on a :

$$\begin{split} & |\mathbb{E}(f(X_n)) - \mathbb{E}(f(X))| \\ & \leq |\mathbb{E}(fh(X_n)) - \mathbb{E}(fh(X))| + |\mathbb{E}(f(X_n)(1 - h(X_n)))| + |\mathbb{E}(f(X)(1 - h(X)))| \\ & \leq \epsilon + ||f||_{\infty} (\mathbb{E}((1 - h(X_n))) + \mathbb{E}((1 - h(X)))) \\ & \leq \epsilon + 3\epsilon ||f||_{\infty}. \end{split}$$

Cela montre bien la convergence en loi.

Proposition 9

Soit F une fonction croissante, continue à droite, qui tend vers 0 en $-\infty$ et vers 1 en $+\infty$. Alors F est une fonction de répartition. Plus précisément : on définit pour tout $x \in]0,1[$:

$$F^*(x) = \inf\{s \in \mathbb{R}, F(s) \ge x\},\$$

alors si U suit une loi uniforme sur $]0,1[,F^*(U)]$ a pour fonction de répartition F.

Démonstration : Remarquons d'abord que l'hypothèse sur les limites de F assure que F^* est bien définie et à valeurs réelles. La proposition découle de l'équivalence suivante :

$$x \le F(s) \Leftrightarrow F^*(x) \le s$$
.

Le sens direct est immédiat par définition et pour le sens réciproque : si $F^*(x) \leq s$, on prend une suite $(s_n)_n$ de réels strictement plus grands que s qui tend vers s, par définition de F^* , on a :

$$\forall n, F(s_n) \geq x.$$

En laissant tendre n vers $+\infty$ et en utilisant la continuité à droite, on a le résultat.