ALBI

L3, semestre 1 (2024-2025) - Groupe magistère Université de Rennes - ENS Rennes

TD 4 : Espaces hermitiens et euclidiens

Exercice 1

Soit E un espace hermitien. Soit $u \in \mathcal{L}(E)$ autoadjoint. On dit que u est positif (resp. défini positif) si la forme sesquilinéaire $(x, y) \mapsto \langle u(x), y \rangle$ est positive (resp. définie positive).

- 1. Démontrer que u est positif (resp. défini positif) si et seulement si ses valeurs propres sont toutes positives (resp. strictement positives).
- **2.** On suppose u défini positif, démontrer qu'il existe un unique s défini positif tel que $s^2 = u$.
- **3.** Que dire si u est seulement supposé positif?

Exercice 2

Soit E un espace hermitien, et $u \in GL(E)$. On veut démontrer qu'il existe un unique couple (s, u) tel que s soit autoadjoint défini positif, v unitaire, et sv = u.

- 1. Démontrer que si on a une telle décomposition, alors $s^2 = uu^*$.
- 2. Démontrer que uu^* est défini positif, et en déduire l'existence et l'unicité de s.
- 3. Conclure.

Exercice 3

Soient $A, B \in \mathcal{M}_n(\mathbb{R})$. On suppose que A et B sont unitairement semblables.

- 1. Montrer qu'il existe $P \in GL_n(\mathbb{R})$ telle que $A = PBP^{-1}$ et $A^T = PB^TP^{-1}$.
- 2. Soit P = OS la décomposition polaire de P. Montrer que B commute avec S.
- **3.** Montrer que A et B sont orthogonalement semblables.

Exercice 4

Soient E, F des espaces euclidiens (ou hermitiens) et soit $u: E \to F$ linéaire. On se donne $\mathcal{B}, \mathcal{B}'$ des bases orthonormées respectives de E et F.

- 1. Démontrer que $\operatorname{Mat}_{\mathcal{B}',\mathcal{B}}(u^*) = \overline{\operatorname{Mat}_{\mathcal{B}',\mathcal{B}}(u)}^T$.
- 2. On suppose que E = F est **euclidien** de dimension 2 et que u est normal et n'est pas diagonalisable. Démontrer que $\operatorname{Mat}_{\mathcal{B}}(u)$ est de la forme $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ avec $(a,b) \in \mathbf{R} \times \mathbf{R}^{\times}$.

Exercice 5

Soit $(E, (\cdot|\cdot))$ un espace euclidien. On munit $E_{\mathbb{C}} = \mathbb{C} \otimes_{\mathbb{R}} E$ de sa structure canonique de \mathbb{C} -espace vectoriel.

- 1. Démontrer qu'il existe une unique application $\langle \cdot, \cdot \rangle$ $E_{\mathbb{C}} \times E_{\mathbb{C}} \to \mathbb{C}$, \mathbb{R} -bilinéaire, telle que pour tous $\lambda, \mu \in \mathbb{C}$ et $x, y \in E$, $\langle \lambda \otimes x, \mu \otimes y \rangle = \lambda \bar{\mu}(x|y)$.
- **2.** Démontrer que cette application est l'unique produit hermitien sur $E_{\mathbb{C}}$ tel que pour tout $(x,y) \in E^2$, $\langle 1 \otimes x, 1 \otimes y \rangle = (x|y)$
- **3.** Soit (e_1, \ldots, e_n) une base orthonormée de E. Démontrer que $(1 \otimes e_1, \ldots, 1 \otimes e_n)$ est une base orthonormée de $E_{\mathbb{C}}$.

4. Soit $u \in \mathcal{L}(E)$, démontrer que $(id \otimes u)^* = id \otimes u^*$.

Exercice 6

Soit E un espace euclidien, et soit $u \in \mathcal{L}(E)$ normal. On suppose que π_u est de degré 2 et sans racines réelles.

- 1. Démontrer que uu^* possède une valeur propre réelle, que l'on notera λ .
- 2. Soit $x \in E$ un vecteur propre associé à λ , démontrer que la famille $\{x, u(x)\}$ est libre. On note V le \mathbb{R} -espace vectoriel de dimension 2 qu'elle engendre.
- 3. Démontrer que $V = \text{Vect}\{u(x), u^2(x)\}$, et en déduire que V est stable par u et par u^* .
- 4. Démontrer par récurrence sur dim E qu'il existe une base orthonormée de E dans laquelle la matrice de u est diagonale par blocs, les blocs diagonaux étant tous égaux à une même matrice de similitude.

Exercice 7

Soit E un espace euclidien.

1. Justifier l'identité du parallélogramme :

$$\forall x, y \in E, \ \frac{1}{2} (\|x\|^2 + \|y\|^2) = \left\| \frac{x+y}{2} \right\|^2 + \left\| \frac{x-y}{2} \right\|^2.$$

Soit $x \in E$ et r > 0, on note B(x, r) la boule de centre x et de rayon r.

- **2.** Justifier que pour tous $y, z \in B(x, r)$, on a $||y z||^2 \le 4r^2 4 ||x \frac{y+z}{2}||^2$. Soit $C \subset E$ une partie convexe et fermée et $\delta = \inf_{y \in C} ||y x||$. Pour $n \in \mathbb{N}^*$, on note $B_n = B(x, \delta + 1/n)$.
- **3.** Montrer que si $y, z \in B_n \cap C$, on a $||y z||^2 = \mathcal{O}(1/n)$.
- 4. En déduire qu'il existe un unique $y \in C$ tel que $||x y|| = \delta$.
- 5. Soit $z \in C$. En considérant l'élément z' = ty + (1-t)z C, montrer que

$$\langle x - y, z - y \rangle \le 0.$$

Exercice 8

Soit E un espace euclidien. On munit $\mathcal{L}(E)$ de la norme subordonnée à la norme euclidienne. On rappelle que l'enveloppe convexe d'une partie X de E est l'intersection de tous les convexes de E contenant X.

- 1. Montrer que pour tout $u \in O(E)$, ||u|| = 1.
- **2.** En déduire que l'enveloppe convexe de O(E) est contenue dans la boule unité de $\mathcal{L}(E)$. On munit $\mathcal{L}(E)$ du produit scalaire $(u|v) = \text{Tr}(u^*v)$. Notons C l'enveloppe convexe de O(E).
- 3. Soit $u \in \mathcal{L}(E)$, on suppose qu'il existe $\varphi \in \mathcal{L}(E)^*$ tel que pour tout $o \in P(E)$, $\varphi(u) > \varphi(o)$. Exhiber un convexe contenant O(E) mais pas u.
- **4.** Réciproquement, on suppose que $u \notin C$, montrer qu'il existe $\varphi \in \mathcal{L}(E)$ tel que pour tout $o \in O(E)$, $\varphi(u) > \varphi(o)$.

Indication. On pourra utiliser la projection sur un convexe fermé.

Le but de la fin de l'exercice est de montrer que C est la boule unité de $\mathcal{L}(E)$ (pour la norme subordonnée à la norme euclidienne).

Justifier le fait qu'il suffit de montrer que

$$\forall u \in \mathcal{L}(E), \ \|u\| \le 1 \Rightarrow \forall v \in \mathcal{L}(E), \ \operatorname{Tr}(vu) \le \sup_{o \in O(E)} \operatorname{Tr}(vo)$$

On fixe $u \in \mathcal{L}(E)$ tel que $||u|| \leq 1$.

Soit $v \in \mathcal{L}(E)$ dont on écrit une décomposition polaire $v = s\omega$. On fixe une base orthonormée (e_1, \ldots, e_n) de E formée de vecteurs propres de s.

- Montrer que pour $o \in O(E)$, on a $\operatorname{Tr}(vo) \geq \sum_{i=1}^{n} \|s(e_i)\|$. Montrer que $\operatorname{Tr}(vu) = \sum_{i=1}^{n} \langle v(e_i), u^*(e_i) \rangle$. En déduire que $\operatorname{Tr}(vu) \leq \sum_{i=1}^{n} \|v(e_i)\|$ et conclure.

Exercice 9

Soit $(E, \langle ., . \rangle)$ un espace euclidien et soit G un sous-groupe fini de GL(E).

Montrer que l'application

$$(x,y) \mapsto \frac{1}{|G|} \sum_{g \in G} \langle gx, gy \rangle$$

est un produit scalaire sur E.

- Montrer que le produit scalaire précédent, noté $\langle .,. \rangle_G$ est invariant par tous les éléments de G (c'est-à-dire que pour tous $x,y \in E$ et pour tout $g \in G$, on a $\langle x,y \rangle_G =$ $\langle gx, gy \rangle_G$).
- 3. En déduire que G est conjugué à un sous-groupe de O(E) (c'est-à-dire qu'il existe un sous-groupe H de O(E) et un élément $u \in GL(E)$ tel que $uGu^{-1} = H$). Remarque. On peut montrer (mais c'est plus difficile) que ce résultat reste vrai dans le cas

où G est seulement supposé compact.

Exercice 10

Soit $E = \mathbb{R}[X]$, et pour $n \geq 0$, $E_n = \mathbb{R}_n[X]$. On définit sur $E \times E$ l'application :

$$(P,Q) = \int_0^1 P(t)Q(t)dt.$$

On fixe un entier $n \geq 0$.

- Montrer que la restriction à $E_n \times E_n$ de l'application précédente fait de E_n un espace euclidien.
- Pour tout $0 \leq i \leq n,$ on note P_i le polynôme obtenu en appliquant le procédé d'orthonormalisation de Gram-Schmidt à la base $(1, X, \dots, X^n)$ de E_n . Montrer que P_n a nracines réelles distinctes dans l'intervalle [0,1[.
- 3. On note x_1, \ldots, x_n les racines de P_n . Montrer qu'il existe une unique famille de nombres réels $(\omega_1, \ldots, \omega_n)$ tels que pour tout $P \in E_{n-1}$, $\int_0^1 P(t)dt = \sum_{i=1}^n \omega_i P(x_i)$.
- En utilisant la division euclidienne par P_n , montrer que la formule précédente reste valable pour $P \in E_{2n-1}$. Montrer que la formule n'est pas valable pour $P \in E_{2n}$.
- 5. Montrer que s'il existe $x'_1, \ldots, x'_n \in \mathbb{R}$ et $\omega'_1, \ldots, \omega'_n$ tels que pour tout $P \in E_{2n-1}$ on ait $\int_0^1 P(t)dt = \sum_{i=1}^n \omega_i P(x_i)$, alors nécessairement les x'_i sont les x_i et les ω'_i sont les ω_i .

Exercice 11

Soit (E,q) un espace quadratique non dégénéré. On rappelle qu'un sous-espace totalement isotrope de E est un sous-espace vectoriel de E constitué de vecteurs isotropes.

- 1. Expliquer pourquoi tout sous-espace totalement isotrope est contenu dans un sousespace totalement isotrope maximal pour l'inclusion.
- **2.** Soient F, F' deux sous-espaces totalement isotropes de E. On suppose que dim $F \leq \dim F'$. Montrer qu'il existe une isométrie u de E telle que $u(F) \subset F'$.
- 3. En déduire que le groupe des isométries de E opère transitivement sur l'ensemble des sous-espaces totalement isotropes maximaux de E, et qu'ils ont donc tous la même dimension.

Exercice 12

Soit (E,q) un espace quadratique non dégénéré, que l'on suppose isométrique à la somme directe orthogonale :

$$\left(\bigoplus_{1\leq i\leq r}\mathbf{H}_i\right)\oplus F,$$

avec F anisotrope et les \mathbf{H}_i sont des plans hyperboliques.

- 1. Montrer que E a un sous-espace totalement isotrope maximal de dimension r.
- 2. En déduire que la dimension des sous-espaces totalement isotropes maximaux de E est égale à son indice d'isotropie.
- 3. On suppose que E est un espace quadratique réel (non dégénéré) de signature (s,t). Montrer que son indice d'isotropie est $\min\{s,t\}$.
- 4. On suppose que E est un espace quadratique complexe (non dégénéré) de dimension n. Déterminer son indice d'isotropie.

Exercice 13

D'après le théorème de Witt, étant donné (E,q) non dégénéré de dimension finie, il existe un espace quadratique anisotrope, unique à isométrie près, tel que $E=F\oplus H$ où H est un espace hyperbolique.

On appelle partie anisotrope de E la classe d'isométrie de sous-espace de E. Deux espaces quadratiques sont dit Witt-équivalents s'ils ont la même partie anisotrope.

- 1. Montrer que la Witt-équivalence est une relation d'équivalence, et que deux espaces quadratiques isométriques sont Witt-équivalents.
- 2. Montrer que l'ensemble des classes de Witt-équivalence d'espaces quadratiques non dégénérés de dimension finie sur un corps K fixé, muni de l'opération induite par la somme directe orthogonale, forme un groupe abélien.

Ce groupe s'appelle le groupe de Witt de K, on le note W(K).

- **3.** Montrer que $W(\mathbb{C}) \simeq \mathbb{Z}/2\mathbb{Z}$ et que $W(\mathbb{R}) \simeq \mathbb{Z}$.
- 4. Déterminer $W(\mathbb{F}_p)$ pour p premier impair (on pourra distinguer les cas selon que -1 est ou non un carré dans \mathbb{F}_p).