Yohann Uguen

Education

May 2019 ARCHI 2019, Summer school on embedded architectures and software, Lorient, France.

March 2017 ARCHI 2017, Summer school on embedded architectures and software, Nancy, France.

2014-2016 **MSc. Student in Computer Science**, École Normale Supérieure de Rennes / Université Rennes 1, Rennes, France, Highly selective training; Major of promotion.

2013-2014 **BSc. in Computer Science**, *Université Rennes 1*, Rennes, France.

Ranked: Third out of 83

2011-2013 **BSc. in Mathematics**, *Université Rennes 1*, Rennes, France, Discontinued, switched majors to Computer Science.

2009-2011 **Post-secondary preparatory school**, *Sainte-Anne*, Brest, France, Classes preparing for entrance examinations to the French Grandes Ecoles.

2009 **High School Diploma**, (Major: Mathematics), Lycée Brizeux, Quimper, France.

Experience

January 2020 - **FPGA software engineer**, *Intel*, London, United Kingdom.

Today Working on the Intel HLS/OpenCL/DSP Builder backend on arithmetic and compiler optimizations.

Septembre 2016 - **PhD student in computer science (graduated)**, CITI Lab - INSA Lyon, Villeurbanne, France.

December 2019 **Thesis topic**: Arithmetic optimizations for high-level synthesis. This thesis aims at improving the qua

Thesis topic: Arithmetic optimizations for high-level synthesis. This thesis aims at improving the quality of the electronic circuits generated by high-level synthesis tools by applying arithmetic optimizations. These optimizations are either:

- existing ones from classical conception flows. The goal is then to extend these optimizations using compiler knowledge given by high-level synthesis tools. Then, to generate corresponding compiler optimizations.
- o yet to be discovered using this new vison of a circuit (a program).

Septembre 2016 - **Teaching assistant**, *INSA Lyon*, Villeurbanne, France.

September 2019 Being integrated to the computer science teaching team at INSA Lyon, I have to create and/or give courses around the following subjects:

- o Introduction to Linux; Command line, file system, file system permissions, etc.
- o Digital circuits architecture; Boolean algebra, combinatory logic, Logisim
- o Computer architecture; Von Neumann architecture, automatons encoding, creation of a simplified processor
- o Operating systems; Threads, parallelism, synchronization
- o Compilation; Creation of a compiler for a subset of C in C, Yacc, Bison

May - August 2018 Invited researcher, Intel, Paris, France.

The goal of this collaboration was to run Python code on a Programmable Acceleration Card (PAC) with Arria 10 GX FPGA. As there was no High-Level Synthesis (HLS) tool from Python, we used the following methodology:

- o Retrieve LLVM IR from Python: Using Numba
- o Integrate this IR in OpenCL to FPGA HLS flow: Generate C code, Perl scripts, Python scripts
- Retrieve the computed result in Python

February - July 2016 Intern, CITI Lab - INSA Lyon, Villeurbanne, France.

Internship topic: Create plug-ins in a source-to-source tool (GeCoS) in order to apply code transformations for high-level synthesis tools (HLS). These transformations implement arithmetic optimizations over floating-point operators which are not supported by HLS tools. Such optimized operators are based on the ones from FloPoCo, a generator for optimized floating-point operators. Skills demonstrated:

- Compiler knowledge: Transformations on the GeCoS internal representation
- High-Level Synthesis tools : Programming for Vivado HLS
- Programming languages: C/C++, Java

May - August 2015 Short term scholar, Colorado State University, Fort Collins, Colorado, USA.

I was working within the High Performance Computing team, called MELANGE.

Internship topic: Develop a cycle-accurate simulator for a parallel programmable architecture called the Stencil Processing Unit (SPU). The SPU was proposed as an energy-efficient architecture to implement a richer class of programs that can be handled by GPUs (Graphics Processing Unit) Skills demonstrated:

- Ability to join an advanced project: Implementing the extensions in *gpgpu-sim*, a GPU simulator that provides precise information about architectural details and energy consumption
- Using the NVIDIA toolkit: Writing CUDA kernels and PTX assembly files
- Research thinking: Extending the *PTX ISA*, and the *gpgpu-sim* run time execution in order to overcome the theoretical problems faced
- Programming using different languages: C++, Bison, Flex, Bash scripting, CUDA, PTX

May - July 2014

Intern, INRIA, Rennes, France.

INRIA is a French national research institution focusing on Computer Science and Applied Mathematics. *Internship topic*: Build a VLIW processor based on the Vex/ST200 using High-Level Synthesis tools Skills demonstrated:

- \circ Programming in C language: Writing a VLIW simulator in C
- High Level Synthesis (HLS) Tools: Using HLS tools to create hardware from C
- o Programming in Java language: Writing an assembly in Java
- Usage of Computer Aided Design (CAD): Using CAD to run the VLIW on a Field Programmable Gate Array (FPGA)
- Team work: Working alongside a PhD. student that intends to use the VLIW
- O Documentation: Writing a manual to record and provide support for the above processes

July 2012 - January 2016 **Tutor in Mathematics and Computer Science**, for high school and college-level students, Rennes, France.

Skills demonstrated:

- Pedagogy: Students grades improved (e.g. student went from 8/20 to 14/20)
- Organisation: Effectively managing six students in addition to my workload
- o English: Teaching some courses, particularly in Computer Science, in English

Languages

French

Native

English

Good speaking and writing skills

Invited talks

October 2017

RAIM 2017, French institutional meeting about arithmetic, ENS Lyon, France.

June 2018

Computation day at LIP on FPGAs, *An introduction to FPGAs and how to program them*, LIP Lyon, France.

Reviews

As a sub-reviewer, *FCCM 2017-2019*; *FPT 2017*; *DATE 2018,2020-2021*. **As a reviewer**, *ICECS 2018*; *TCAS-II 2020*.

References

Yohann Uguen, Florent De Dinechin, Victor Lezaud, and Steven Derrien. "Application-specific arithmetic in high-level synthesis tools". In: *ACM Transactions on Architecture and Code Optimization* (Mar. 2020). DOI: 10.1145/3377403. URL: https://hal.archives-ouvertes.fr/hal-02423363.

Florent de Dinechin, Luc Forget, Jean-Michel Muller, and Yohann Uguen. "Posits: the good, the bad and the ugly". In: *CoNGA'19 - Conference for Next Generation Arithmetic*. Singapore, Singapore: ACM Press, Mar. 2019, pp. 1–10.

Luc Forget, Yohann Uguen, and Florent De Dinechin. "Hardware cost evaluation of the posit number system". In: *Compas'2019 - Conférence d'informatique en Parallélisme, Architecture et Système*. Anglet, France, June 2019, pp. 1–7.

Luc Forget, Yohann Uguen, Florent de Dinechin, and David Thomas. "A type-safe arbitrary precision arithmetic portability layer for HLS tools". In: *HEART 2019 - International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies*. Nagasaki, Japan, June 2019, pp. 1–6.

Yohann Uguen, Luc Forget, and Florent de Dinechin. "Evaluating the hardware cost of the posit number system". In: *29th International Conference on Field-Programmable Logic and Applications (FPL)*. IEEE. Barcelona, Spain, 2019, pp. 1–8.

Yohann Uguen and Eric Petit. "PyGA: a Python to FPGA compiler prototype". In: *Al-SEPS 2018 - 5th ACM SIGPLAN International Workshop on Artificial Intelligence and Empirical Methods for Software Engineering and Parallel Computing Systems*. Boston, United States: ACM, Nov. 2018, pp. 11–15.

Yohann Uguen and Florent de Dinechin. "Design-space exploration for the Kulisch accumulator". working paper or preprint. Mar. 2017.

Yohann Uguen and Florent de Dinechin. "Exploration architecturale de l'accumulateur de Kulisch". In: *Compas'2017 - Conférence d'informatique en Parallélisme, Architecture et Système*. Sophia Antipolis, France, June 2017, pp. 1–8.

Yohann Uguen, Florent de Dinechin, and Steven Derrien. "A high-level synthesis approach optimizing accumulations in floating-point programs using custom formats and operators". In: 2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). Napa, United States: IEEE, Apr. 2017, pp. 80–80.

Yohann Uguen, Florent de Dinechin, and Steven Derrien. "Bridging High-Level Synthesis and Application-Specific Arithmetic: The Case Study of Floating-Point Summations". In: *27th International Conference on Field-Programmable Logic and Applications (FPL)*. IEEE. Gent, Belgium, Sept. 2017, p. 8.

Yohann Uguen, Florent de Dinechin, and Steven Derrien. *High-level synthesis and arithmetic optimizations*. Compas'2016. Poster. Lorient, France, July 2016.