Leçon 107 Représentations et caractères d'un groupe fini sur un C-espace vectoriel, exemples

Dorian Cacitti-Holland

2020-2021

\mathbf{T}	101	,		
к	Δtc	α	\mathbf{n}	es.
	-1	JI ()	111	

1.	Algèbre et géométrie de Jean-Etienne Rombaldi
2.	L'algèbre discrète de la transformation de Fourier de Gabriel Peyré

- 3. Eléments d'algèbre et d'analyse de Pierre Colmez
- 4. Représentations linéaires des groupes finis de Jean-Pierre Serre

Développements.

- 1. Théorème de structure des groupes abéliens finis
- 2. Table des caractères de \mathcal{S}_4

Table des matières

1	Rep	Représentations linéaires d'un groupe fini		
	1.1	Définition	2	
	1.2	Sous-représentations et représentations irréductibles	2	
	1.3	G-morphismes	3	
	1.4	Lemme de Schur et théorème de décomposition de Maschke	٩	
2 Caractères linéaires d'un groupe fini en dimension finie				
	2.1	Définitions et premières propriétés	4	
	2.2	Espace \mathbb{C}^G , fonctions centrales et orthogonalité	4	
	2.3	Base orthonormale des fonctions centrales	Ę	
3 Etudier un groupe à partir de ses caractères				
	3.1	Cas des groupes abéliens finis	(
	3.2	Tables de caractères	(

1 Représentations linéaires d'un groupe fini

1.1 Définition

(Chapitre 6.1 d'Algèbre et géométrie de Jean-Etienne Rombaldi) On considère G un groupe fini.

- 1. Définition : Soit V un \mathbb{C} -espace vectoriel et $\rho: G \longrightarrow GL(V)$, alors on dit que (ρ, V) est une représentation linéaire si ρ est un morphisme de groupes, dans ce cas on dit que V est un G-module
- 2. Exemple : $\rho(g) = id_V$ définit une représentation dite triviale
- 3. Définition : Soit (ρ, V) une représentation de V, alors le degré de (ρ, V) est dim(V)
- 4. Remarque : Si $dim(V) < +\infty$ et b base de V alors une représentation $\rho : G \longrightarrow GL(V)$ revient à se donner un morphisme de groupes $G \longrightarrow GL_n(\mathbb{C})$
- 5. Remarque : Se donner une représentation $\rho: G \longrightarrow GL(V)$ revient à se donner une action à gauche $(g,x) \in G \times V \longrightarrow g * x \in V$
- 6. Proposition : Soit $(\rho_i, V_i)_{1 \le i \le p}$ est une famille de représentations de G, alors (ρ, V) est une représentation de G avec $V = \bigoplus_{i=1}^p V_i$ et $\forall g \in G, \forall x = \sum_{i=1}^p \in V, \rho(g)(x) = \sum_{i=1}^p \rho_i(g)(x_i)$
- 7. Corollaire: Dans ce cas, si $dim(V_i) < +\infty$ alors $dim(V) < +\infty$ et si b_i est une base de V_i alors $b = (b_1, ..., b_r)$ est une base V et $\forall g \in G, Mat_b(\rho(g)) = diag(Mat_{b_1}(\rho_1(g)), ..., Mat_{b_n}(\rho(g)))$
- 8. Définition : Soit (ρ, V) une représentation, alors son noyau est $ker(\rho) = \{g \in G, \rho(g) = id_V\}$
- 9. Définition : On dit qu'une représentation (ρ, V) est fidèle si $ker(\rho) = \{1\}$
- 10. Exemple : Si $|G| = n = dim(V) < +\infty$ et $(e_k)_{k \in G}$ base de V alors la représentation régulière définie par $\forall (g,k) \in G^2, \rho(g)(e_k) = e_{gk}$, appelé représentation régulière, est fidèle

1.2 Sous-représentations et représentations irréductibles

(Chapitre 6.2 d'Algèbre et géométrie de Jean-Etienne Rombaldi) On considère (ρ, V) une représentation de G.

- 1. Définition : On dit qu'un sous-espace F de V est G-invariant si $\forall g \in G, \rho(g)(F) \subset F$
- 2. Exemple : $\{0\}$ et V sont G-invariants
- 3. Remarque : Si $dim(V) < +\infty$ et F G-invariant alors $\forall g \in G, \rho(g)(F) = F$ car $\rho(g) \in GL(V)$, ainsi $(\rho^{|GL(F)}, F)$ est une représentation induite de G
- 4. Définition : $V^G = \{x \in V, \forall g \in G, \rho(g)(x) = x\}$ est l'ensemble des points fixes de V sous l'action de G
- 5. Proposition : V^G est un sous-espace vectoriel de V G-invariant
- 6. Définition : On dit que (ρ, V) est irréductible (ou simple) si $E \neq \{0\}$ et les seuls sous-espaces G-invariants sont $\{0\}$ et V
- 7. Exemple : Si $|G|=dim(V)=n<+\infty$ alors la représentation régulière n'est pas irréductible car $Vect\left(\sum_{k\in G}e_k\right)$ est G-invariant

1.3 G-morphismes

(Chapitre 6.2 d'Algèbre et géométrie de Jean-Etienne Rombaldi)

- 1. Définition : Soit (ρ_1, V_1) et (ρ_2, V_2) deux représentations de G, alors on dit que $u \in L(E, F)$ est un G-morphisme si $\forall g \in G, u \circ \rho_1(g) = \rho_2(g) \circ u$
- 2. Définition : Si de plus u est bijective alors on dit que u est un G-isomorphisme, dans ce cas on dit que (ρ_1, V_1) et (ρ_2, V_2) sont isomorphes
- 3. Remarque : Dans ce cas, si $dim(V_1) = dim(V_2) = n$ alors (ρ_1, V_1) et (ρ_2, V_2) sont isomorphes si et seulement si pour toute base b_1 de V_1 et b_2 de V_2 , il existe $P \in GL_n(K)$ tel que $\forall g \in G, Mat_{b_1}(\rho_1(g)) = PMat_{b_2}(\rho_2(g))P^{-1}$
- 4. Définition : On note $L_G(V_1, V_2)$ l'ensemble des G-morphismes de V_1 dans V_2
- 5. Remarque : $L_G(V_1, V_2)$ est un sous-espace vectoriel de $L(V_1, V_2)$
- 6. Proposition: L'application $\tau: g \in G \longmapsto [u \in L(V_1, V_2) \longmapsto \rho_2(g) \circ u \circ \rho_1(g) \in L(V_1, V_2)] \in GL(L(V_1, V_2))$ est une représentation de G dans $L(V_1, V_2)$
- 7. Remarque : Si V_1 et V_2 sont de dimension finie alors $(\tau, L(V_1, V_2))$ est de degré $dim(V_1)dim(V_2) = deg(\rho_1, V_1)deg(\rho_2, V_2)$
- 8. Corollaire: L'espace des points fixes de $(\tau, L(E, F))$ est $L(V_1, V_2)^G = L_G(V_1, V_2)$
- 9. Proposition : Soit $u \in L_G(V_1, V_2)$, alors ker(u) est G-invariant dans V_1 et Im(u) est G-invariant dans V_2

1.4 Lemme de Schur et théorème de décomposition de Maschke

(Chapitre 6.2 d'Algèbre et géométrie de Jean-Etienne Rombaldi)

- 1. Lemme de Schur : Soit (ρ_1, V_1) et (ρ_2, V_2) sont irréductibles, alors :
 - (a) Si V_1 et V_2 ne sont pas G-isomorphes alors $L_G(V_1, V_2) = \{0\}$
 - (b) Si E et F sont G-isomorphes et de dimension finie alors $dim(L_G(E,F)) = 1$, en particulier $L_G(E,F)$ est un corps
- 2. Théorème : Soit (ρ_1, V_1) et (ρ_2, V_2) deux représentations de G, $u \in L(V_1, V_2)$ et $\hat{u} = \frac{1}{|G|} \sum_{g \in G} \rho_2(g) \circ u \circ \rho_1(g^{-1})$, alors :
 - $-\hat{u} \in L_G(V_1, V_2)$
 - Si (ρ_1, V_1) et (ρ_2, V_2) sont irréductibles non G-isomorphes alors $\hat{u} = 0$
 - Si $(\rho_1, V_1) = (\rho_2, V_2)$ irréductible de degré fini alors $\hat{u} = \frac{tr(u)}{dim(V_1)} i d_{V_1}$, ie \hat{u} est l'homothétie de rapport $\frac{tr(u)}{dim(V_1)}$
- 3. Lemme : Soit (ρ, V) représentation de G, W un sous-espace vectoriel G-invariant de V et $\pi \in End(V)$ le projecteur d'image W, alors $\hat{\pi} = \frac{1}{|G|} \sum_{g \in G} \rho(g) \circ \pi \circ \rho(g^{-1}) \in L_G(V, V)$ est un projecteur d'image F et il existe W' un sous-espace vectoriel G-invariant de V tel que $V = W \oplus W'$
- 4. Théorème de Machske : Soit (ρ, V) représentation de degré fini de G, alors (ρ, V) est somme directe de sous-représentations irréducibles, ie il existe des sous-espaces vectoriels V_i G-invariants de V tel que $V = \bigoplus_{i=1}^p V_i$

2 Caractères linéaires d'un groupe fini en dimension finie

2.1 Définitions et premières propriétés

(Chapitres 6.3 d'Algèbre et géométrie de Jean-Etienne Rombaldi et VIII.2.2 de L'algèbre discrète de la transformation de Fourier de Gabriel Peyré)

- 1. Définition : Soit (ρ, V) une représentation de G, alors le caractère associé à (ρ, V) est l'application $\chi: g \in G \longmapsto tr(\rho(g))$
- 2. Définition : On dit que χ est un caractère s'il existe une représentation (ρ, V) de G telle que χ soit le caractère associée à (ρ, V)
- 3. Exemple : Le caractère de la représentation triviale est $\chi: g \in G \longmapsto dim(V) \in \mathbb{C}$
- 4. Théorème : Soit χ caractère d'une représentation (ρ, V) , alors :
 - $--\chi(1) = deg(\rho, V) = dim(V)$
 - χ est constante sur chaque classe de conjugaison, ie $\forall (g,h) \in G^2, \chi(ghg^{-1}) = \chi(h)$
 - Si (ρ, V) est somme directe de représentations alors χ est somme des caractères correspondants
- 5. Application : Les sous-groupes distingués de G sont exactement les intersections de noyaux de caractères irréductibles
- 6. Théorème : Deux représentations G-isomorphes ont le même caractère associé
- 7. Proposition : Si $g \in G$ d'ordre r alors $\chi(g)$ est somme de n racines r-ièmes de l'unité
- 8. Proposition: Si $g \in G$ alors $\chi(g^{-1}) = \overline{\chi(g)}$ et $|\chi(g)| \leq \chi(1) = \dim(V)$
- 9. Proposition : $ker(\rho) = \{g \in G, \chi(g) = \chi(1) = dim(V)\}$

2.2 Espace \mathbb{C}^G , fonctions centrales et orthogonalité

(Chapitres 6.3 et 6.4 d'Algèbre et géométrie de Jean-Etienne Rombaldi)

- 1. Définition : \mathbb{C}^G est l'espace vectoriel des applications de G dans \mathbb{C}
- 2. Remarque : $dim(\mathbb{C}^G) = |G|$
- 3. Définition : $\forall (u,v) \in \mathbb{C}^G$, $\langle u,v \rangle = \frac{1}{|G|} \sum_{g \in G} u(g) u(g^{-1}) = \sum_{g \in G} u(g) \overline{u(g)}$ définit une forme bilinéaire sur \mathbb{C}^G
- 4. Lemme : Cette forme bilinéaire est symétrique et non dégénérée sur \mathbb{C}^G , ainsi il s'agit d'un produit sclaire hermition sur \mathbb{C}^G
- 5. Théorème : Soit (V_1, ρ_1) et (V_2, ρ_2) sont deux représentations de G, alors :
 - $\chi_{\tau} = \overline{\chi_1} \chi_2$
 - $--\langle \chi_1, \chi_2 \rangle = \dim(L_G(V_1, V_2)) \in \mathbb{N}$
 - Si $V_1 \neq \{0\}$ alors $\langle \chi_1, \chi_2 \rangle \in \mathbb{N}^*$
 - Si (ρ_1, V_1) et (ρ_2, V_2) sont irréductibles alors $\langle \chi_1, \chi_2 \rangle \geq 1$ si et seulement si (ρ_1, V_1) et (ρ_2, V_2) sont G-isomorphes si et seulement si $\chi_1 = \chi_2$
- 6. Remarque : Soit (ρ, V) irréductible, alors $\langle \chi, \chi \rangle = 1$
- 7. Théorème : Les caractères irréductibles sont orthonormaux pour ce produit scalaire

- 8. Théorème : Si $\chi_1, ..., \chi_p$ sont des caractères irréductibles distincts de G alors il sont linéairement indépendants, et particulier $p \leq dim(\mathbb{C}^G) = |G|$
- 9. Définition : On dit que $\varphi \in \mathbb{C}^G$ est centrale si φ est constante sur les classes de conjugaisons de G, ie $\forall (g,h) \in G^2, \varphi(gh) = \varphi(hg)$, on note \mathcal{H} leur sous-espace vectoriel de \mathbb{C}^G
- 10. Exemple : Les caractères sont des fonctions centrales
- 11. Remarque : \mathcal{H} est muni du produit hermitien défini par $\forall (\varphi, \psi) \in \mathcal{H}^2, \langle \varphi, \psi \rangle = \frac{1}{|G|} \sum_{g \in G} \overline{\varphi(g)} \psi(g)$
- 12. Lemme : Soit $\varphi \in \mathcal{H}$ et (ρ, V) une représentation de G, alors $\rho_{\varphi} = \frac{1}{|G|} \sum_{g \in G} \varphi(g^{-1}) \rho(g)$: $V \longrightarrow V$ est un G-morphisme de (ρ, V)
- 13. Proposition : Dans ce cas, si (ρ, V) est irréductible alors ρ_{φ} est une homothétie de rapprt $\frac{\langle \varphi, \chi \rangle}{dim(V)}$

2.3 Base orthonormale des fonctions centrales

(Chapitre 6.4 d'Algèbre et géométrie de Jean-Etienne Rombaldi)

- 1. Théorème : Les caractères irréductibles de G forment une base orthonormée de \mathcal{H} et leur nombre est $p:=|Irr(G)|=dim(\mathcal{H})=|Cl(G)|$
- 2. Définition : On note $\chi_1,...,\chi_p$ les caractères irréductibles de G et $\overline{g_1},...,\overline{g_p}$ les classes de conjugaisons de G
- 3. Théorème : Si $(i,j) \in [1,p]$ alors :

— Si
$$i = j$$
 alors $\sum_{g \in G} \overline{\chi_i(g)} \chi_j(g) = |G|$ et $\sum_{k=1}^p \overline{\chi_k(g_i)} \chi_k(g_j) = \frac{|G|}{|\overline{g_i}|}$

— Si
$$i \neq j$$
 alors $\sum_{g \in G} \overline{\chi_i(g)} \chi_j(g) = 0$ et $\sum_{k=1}^p \overline{\chi_k(g_i)} \chi_k(g_j) = 0$

- 4. Corollaire : $\sum_{i=1}^{p} (dim(V_k))^2 = |G|$
- 5. Corollaire: Soit (ρ, V) est une représentation irréductible de G, alors il existe $i \in [1, p]$ tel que (ρ, V) et (ρ_i, V_i) soient isomorphes
- 6. Théorème : Soit (ρ, V) et (ρ', V') deux représentations de G décomposées en somme directes de représentations irréductibles $(\rho, V) = \bigoplus_{i=1}^{m} (\tau_i, V_i)$ et $(\rho', V') = \bigoplus_{j=1}^{m'} (\tau'_j, V'_j)$, alors les assertions suivantes sont équivalentes :
 - Les représentations (ρ, V) et (ρ', V') sont G-isomorphes
 - $--\chi_{\rho}=\chi_{\rho'}$
 - m = m' et il existe $\sigma \in S_n$ tel que pour tout $j \in [1, m], (\tau'_j, V'_j)$ et $(\tau_{\sigma(j)}, V_{\sigma(j)})$ sont G-isomorphes
- 7. Corollaire : Soit χ caractère de G, alors il existe $(m_1,...,m_p) \in \mathbb{N}^p$ tel que $\chi = \sum_{i=1}^p m_i \chi_i$
- 8. Corollaire : Soit χ caractère de G, alors χ est irréductible si et seulement si $\langle \chi, \chi \rangle = 1$

3 Etudier un groupe à partir de ses caractères

3.1 Cas des groupes abéliens finis

(Chapitres I.2 de L'algèbre discrète de la transformation de Fourier de Gabriel Peyré, 6.5 d'Algèbre et géométrie de Jean-Etienne Rombaldi et I.2 de Eléménts d'analyse et d'algèbre de Pierre Colmez)

On considère G un groupe abélien.

- 1. Théorème : G abélien si et seulement si tout caractère irréductible est de degré 1
- 2. Remarque : Il est donc normal d'étudier les morphismes de groupes $\chi:G\longrightarrow \mathbb{C}^*$ appelés caractères, on note \hat{G} leur groupe appelé groupe dual de G
- 3. Lemme : G et \hat{G} sont isomorphes
- 4. Lemme : Il existe $g \in G$ d'ordre o(g) = N(G) avec $N(G) := PPCM(o(h), h \in G)$ l'exposant de G
- 5. Proposition : G et \hat{G} ont le même exposant
- 6. Théorème de structure des groupes abéliens finis : $G \simeq \mathbb{Z}/d_1\mathbb{Z} \times ... \times \mathbb{Z}/d_r\mathbb{Z}$ avec $d_{i+1} \mid d_i$

3.2 Tables de caractères

(Chapitres VIII.1.2 et VIII.1.4 de L'algèbre discrète de la transformation de Fourier de Gabriel Peyré)

- 1. Définition : La table de caractères de G est le tableau avec en colonne les classes de conjugaison de G et en ligne les caractères irréductibles, il s'agit d'un tableau carré
- 2. Proposition : Si G est cyclique engendré par g_0 alors G est abélien et ses caractères irréductibles sont de la forme $\chi(g)=\chi(g_0^k)=e^{\frac{2i\pi k}{n}}$
- 3. Corollaire : La table de caractère de G cyclique est une matrice de Vandermonde associé à une racine n-ième primitive de l'unité
- 4. Proposition : $|Irr(S_4)| = |Cl(S_4)| = 5$ avec |Cl(id)| = 1, |Cl(ij)| = 6, |Cl(ijk)| = 8, |Cl(ij)(kl)| = 3, |Cl(ijkl)| = 6
- 5. Remarque : La représentation triviale $(1,\mathbb{C})$ est irréductible et $\forall \sigma \in S_4, \chi_1(\sigma) = 1$
- 6. Proposition : La représentation alternée $\varepsilon : \sigma \in S_4 \longmapsto \varepsilon(\sigma) \in \{-1,1\} \subset \mathbb{C}^* \simeq GL(\mathbb{C})$ est irréductible
- 7. Proposition : $f: u \in Isom(T) \longmapsto u_{|\{A,B,C,D\}} \in S_{\{A,B,C,D\}} \simeq S_4$, avec T = ABCD le tétraèdre régulier de \mathbb{R}^3 , est un isomorphisme de groupes
- 8. Corollaire : $\rho = i \circ f^{-1} : S_4 \longrightarrow Isom(T) \subset GL(\mathbb{C}^3)$ représentation irréductible de S_4
- 9. Proposition : $f: u \in Isom^+(C) \longmapsto u_{|\mathcal{D}} \in S_{\mathcal{D}} \simeq S_4$, avec C = ABCDA'B'C'D' et \mathcal{D} l'ensemble des quatre grandes diagonales de C, est un isomorphisme de groupes
- 10. Corollaire : $\rho = i \circ f^{-1} : S_4 \longrightarrow Isom^+(C) \subset GL(\mathbb{C}^3)$ représentation irréductible de S_4
- 11. Application : On en déduit la table des caractères irréductibles de S_4 , ses sous-groupes distingués et sa non abélienité