Leçon 121 Nombres premiers, applications

Dorian Cacitti-Holland

2020-2021

References.	

- 1. Algèbre et géométrie de Jean-Etienne Rombaldi
- 2. Cours d'algèbre de Daniel Perrin
- 3. Oraux X-ENS algèbre 1
- 4. Extensions de corps Théorie de Galois de Josette Calais
- 5. Eléments de théorie des anneaux de Josette Calais
- 6. Histoires hédonistes de groupes et de géométries tome 1 de Caldero et Germoni
- 7. Eléments de théorie des groupes de Josette Calais

Développements.

- 1. Equations des deux carrés par les entiers de Gauss
- 2. Théorème de Sophie Germain
- 3. Critère d'irréductibilité d'Eisenstein
- 4. Théorèmes de Sylow

Table des matières

1	Ari	thmétique sur les entiers avec les nombres premiers
	1.1	Factorialité de l'anneau des entiers
	1.2	Résolutions d'équations diophantiennes
	1.3	Fonctions liées : valuations, fonctions d'Euler et de Möbius
2	A la	a recherche des nombres premiers
	2.1	Répartition des nombres premiers
	2.2	Critères de primalité
3	Uti	lisation en théorie des corps finis
	3.1	Propriétés des corps finis
		Critères d'irréductibilité des polynômes
		Résidus quadratiques et symbole de Legendre

4 Utilisation en théorie des groupes			7
	4.1	Théorèmes de Sylow	7
	4.2	Conséquences sur les groupes finis d'un cardinal donné	8

1 Arithmétique sur les entiers avec les nombres premiers

1.1 Factorialité de l'anneau des entiers

(Chapitres 11.1 et 7.6, d'Algèbre et géométrie de Jean-Etienne Rombaldi)

- 1. Définition : Soit $p \in \mathbb{N}$, alors on dit que p est premier s'il admet exactement deux diviseurs positifs (1 et p), et on note \mathcal{P} leur ensemble
- 2. Exemple: 2 est premier, 21 ne l'est pas
- 3. Théorème d'Euclide : Soit $n \in \mathbb{Z} \setminus \{-1, 0, 1\}$, alors n admet un diviseur premier
- 4. Exemple : Un diviseur premier de 27 est 3
- 5. Définition : Soit A un anneau intègre commutatif unitaire, alors on dit que A est factoriel si tout $a \in A$ s'écrit $a = u \prod_{i=1}^r p_i$ avec $u \in A^{\times}$ et $p_i \in A$ irréductibles, et si

 $a=u\prod_{i=1}^r p_i=v\prod_{j=1}^s q_j$ deux telles décompositions, alors u et v sont associés, r=s et il existe $\sigma\in S_r$ tel que $p_i=q_{\sigma(i)}$

- 6. Théorème : Soit A un anneau euclidien, alors A est factoriel
- 7. Proposition: \mathbb{Z} muni du stathme $|\cdot|$ est un anneau euclidien
- 8. Corollaire : Théorème fondamental de l'arithmétique : \mathbb{Z} est un anneau factoriel
- 9. Example: $314 = 2 \times 157$

1.2 Résolutions d'équations diophantiennes

(Chapitre II.6 du Cours d'algèbre de Daniel Perrin et Exercice 4.39 de Oraux X-ENS algèbre 1)

- 1. Définition : L'anneau des entiers de Gauss est $\mathbb{Z}[i] = \{a+ib, a, b \in \mathbb{Z}\}$, et on définit $\Sigma = \{n \in \mathbb{N}, \exists (x,y) \in \mathbb{N}^2, n = x^2 + y^2\}$
- 2. Lemme : On a $\mathbb{Z}[i]^{\times} = \{-1, 1, i, -i\}$
- 3. Lemme : Soit $n \in \mathbb{N}$, alors $n \equiv 3[4] \Longrightarrow n \notin \Sigma$ et $n \in \Sigma \Longleftrightarrow \exists z \in \mathbb{Z}[i], n = N(z)$
- 4. Proposition : L'ensemble Σ est stable par multiplication
- 5. Lemme : Soit $p \in \mathcal{P}$, alors $p \in \Sigma$ si et seulement si p n'est pas irréductible dans $\mathbb{Z}[i]$
- 6. Théorème : Soit $p \in \mathcal{P}$, alors $p \in \Sigma \Longleftrightarrow p = 2$ ou $p \equiv 1[4]$
- 7. Exemple : 41,53 et 61 sont congrus à 1 modulo 4, donc sont sommes de deux carrés, effectivement $41=5^2+4^2$, $53=7^2+2^2$, $61=6^2+5^2$
- 8. Théorème : Soit $n \in \mathbb{N}$, alors, si $n \in \{0,1\}$ alors $n \in \Sigma$, sinon on décompose n en facteurs premiers $n = \prod_{p \in \mathcal{P}} p^{\nu_p(n)}$ et ainsi $n \in \Sigma \iff \forall p \in \mathcal{P}, p \equiv 3[4] \Rightarrow \nu_p(n) \in 2\mathbb{N}$
- 9. Théorème de Sophie Germain : Soit $p \in \mathcal{P}$ impair tel que $q = 2p + 1 \in \mathcal{P}$ (p est appelé nombre de Sophie Germain), alors il n'existe pas de triplet $(x, y, z) \in \mathbb{Z}^3$ tel que p ne divise pas xyz et $x^p + y^p + z^p = 0$
- 10. Remarque : Le théorème de Fermat nous dit qu'il n'existe pas $x,y,z\in N^*$ tel que $x^n+y^n=z^n$ dès que $n\geq 2$ (admis)

1.3 Fonctions liées : valuations, fonctions d'Euler et de Möbius

(Chapitres 11.2, 11.4, 10.2 et 11.7 d'Algèbre et géométrie de Jean-Etienne Rombaldi)

- 1. Définition : Soit $n = \prod_{i=1}^r p_i^{\alpha_i}$ avec p_i distincts, alors la valuation p_i -adique est $\nu_{p_i}(n) := \alpha_i$
- 2. Remarque : Soit $n \in \mathbb{N}$ et $p \in \mathcal{P}$, alors $p \mid n \iff \nu_p(n) > 0$
- 3. Proposition : Soit $a, b \in \mathbb{N}$, alors $a \mid b \iff \forall p \in \mathcal{P}, \nu_p(a) \leq \nu_b(p), \nu_p(ab) = \nu_p(a) + \nu_p(b), \nu_p(a^b) = b\nu_p(a)$ et $\nu_p(a+b) \geq \min(\nu_p(a), \nu_p(b))$
- 4. Application : $PGCD(a,b) = \prod_{p \in \mathcal{P}} p^{min(\nu_p(a),\nu_p(b))}$ et $PPCM(a,b) = \prod_{p \in \mathcal{P}} p^{max(\nu_p(a),\nu_p(b))}$
- 5. Définition : Soit $n \in \mathbb{N}^*$, alors la fonction d'Euler en n est $\varphi(n)$ le nombre d'entiers compris entre 1 et n premiers avec n
- 6. Exemple : Soit $p \in \mathcal{P}$, alors $\varphi(p) = p 1$
- 7. Théorème d'Euler : Soit $n, a \in \mathbb{N}^*$ premiers entre eux, alors $a^{\varphi(n)} \equiv \mathbb{1}[n]$
- 8. Corollaire : Théorème de Fermat : Soit $p \in \mathcal{P}$ et $a \in N^*$ premier avec p, alors $a^{p-1} \equiv 1[p]$, donc pour tout $a \in \mathbb{N}$, $a^p \equiv 1[p]$
- 9. Théorème : $n = \sum_{d|n} \varphi(d)$
- 10. Définition : Soit $n = \prod_{i=1}^r p_i^{\alpha_i}$, alors la fonction de Möbius en n est $\mu(n) = 1$ si n = 1, $\mu(n) = (-1)^r$ si $n = \prod_{i=1}^r p_i$ et $\mu(n) = 0$ sinon
- 11. Proposition : Soit $n \in \mathbb{N}^*$, alors $\sum_{d|n} \mu(d) = 0$ si $n \ge 2$ et $\sum_{d|n} \mu(d) = 1$ si n = 1
- 12. Théorème : Formule d'inversion de Möbius : Soit $u(n) = \sum_{d|n} v(d)$, alors $v(n) = \sum_{d|n} \mu(d) u\left(\frac{n}{d}\right)$
- 13. Application : $\varphi(n) = \sum_{d|n} \mu(d) \frac{n}{d}$

2 A la recherche des nombres premiers

2.1 Répartition des nombres premiers

(Chapitres 11.1 et 11.3 d'Algèbre et géométrie de Jean-Etienne Rombaldi et Exercices 11.9.10, 11.9.12 et 11.9.13 d'Algèbre et géométrie de Jean-Etienne Rombaldi)

- 1. Théorème d'Euclide : $|\mathcal{P}| = +\infty$
- 2. Définition : Soit $n \in \mathbb{N}^*$, alors on note \mathcal{P}_n l'ensemble des nombres premiers compris entre 1 et n, et $\pi(n) = |\mathcal{P}_n|$
- 3. Remarque : $\pi(n) \xrightarrow[n \to +\infty]{} +\infty$
- 4. Théorème (admis) : $\pi(n) \sim \frac{n}{n \to +\infty} \frac{n}{\ln(n)}$
- 5. Corollaire : Théorème de raréfaction de Legendre : $\frac{\pi(n)}{n} \longrightarrow_{n \to +\infty} 0$

- 6. Proposition: Soit $n \geq 2$, alors il existe n entiers consécutifs non premiers
- 7. Exemple: $m_k = (n+1)! + k \text{ pour } k \in [2, n+1]$
- 8. Lemme : En notant p_n le n-ième nombre premier, on a $2n-1 \le p_n \le 2^{2^{n-1}}$ et $p_n \underset{n \to +\infty}{\sim} n \ln(n)$
- 9. Proposition : Soit $n \ge 2$, alors $\pi(n) > ln(ln(n))$
- 10. Théorème : $\sum_{n=1}^{+\infty} \frac{1}{p_n} = +\infty$

2.2 Critères de primalité

(Chapitres 11.1 et 11.5 d'Algèbre et géométrie de Jean-Etienne Rombaldi) On considère $n \geq 2$.

- 1. Théorème : Si n non premier alors il existe $p \in \mathcal{P}$ tel que $p \mid n$ et $p \leq \sqrt{n}$
- 2. Corollaire : En effectuant les divisions euclidiennes de n par tous les $d \in [2, \sqrt{n}]$, on peut tester la divisibilité de n par les nombres premiers $p \leq \sqrt{n}$
- 3. Théorème : Crible d'Erathostène : Soit m la partie entière de \sqrt{n} , on se donne la liste $[\![2,m]\!]$, on garde 2 et on supprime les multiples de 2 de cette liste, pareil pour 3 et pour tous les autres nombres premiers $p \leq \sqrt{n}$
- 4. Théorème : $n \in \mathcal{P}$ si et seulement si pour tout $\alpha \in \mathbb{N}^*$, $\varphi(n^{\alpha}) = (n-1)n^{\alpha-1}$ si et seulement si $\varphi(n) = n-1$
- 5. Proposition : n est premier si et seulement si n est premier avec tout entier de [1, n-1]
- 6. Théorème : n premier si et seulement si $\mathbb{Z}/n\mathbb{Z}$ un corps si et seulement si $\mathbb{Z}/n\mathbb{Z}$ intègre
- 7. Exemple : $\mathbb{Z}/4\mathbb{Z}$ n'est pas un corps

3 Utilisation en théorie des corps finis

3.1 Propriétés des corps finis

(Chapitres 13.4 d'Algèbre et géométrie de Jean-Etienne Rombaldi, III.2.b du Cours d'algèbre de Daniel Perrin et 4.3 de Extensions de corps de Josette Calais)

On considère $q = p^n$ avec $p \in \mathcal{P}$.

- 1. Proposition : Soit K un corps fini, alors la caractéristique de K est un nombre premier
- 2. Définition : On note $U_n(p)$ l'ensemble des polynômes unitaires irréductibles de degré n dans $\mathbb{F}_p[X]$ et $I_n(p) = |U_n(p)|$
- 3. Proposition: Soit $P \in U_n(p)$, alors $\mathbb{F}_p[X]/(P)$ est un \mathbb{F}_p -espace vectoriel de dimension n et est un corps de cardinal $q = p^n$
- 4. Exemple: $\forall \lambda \in \mathbb{F}_p, X \lambda \in U_1(p)$ donc $I_1(p) = p$ et tous ces corps $\mathbb{F}_p[X]/(X \lambda)$ sont isomorphes à \mathbb{F}_p
- 5. Exemple : Comme $P=X^2+\lambda X+\mu$ est irréductible si et seulement si sans racines, $I_2(p)=\frac{p(p-1)}{2}$

- 6. Lemme : En notant $P_n = X^{p^n} X = X^q X$, tout diviseur irréductible de P_n dans $\mathbb{F}_p[X]$ est de degré divisant n, réciproquement pour tout diviseur d de n, tout polynôme $P \in U_n(d)$ divise P_n
- 7. Théorème : P_n est sans facteur carré dans $\mathbb{F}_p[X]$ et on a la décomposition en irréductibles $P_n = \prod_{d|n} \prod_{P \in U_d(p)} P$
- 8. Théorème : A isomorphisme près, il existe un unique corps à q éléments, on le note \mathbb{F}_q , il s'agit de $\mathbb{F}_p[X]/(P)$ avec $P \in U_n(p)$, et du corps de décomposition de P_n sur \mathbb{F}_p
- 9. Exemple : $\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$, $\mathbb{F}_4 = \mathbb{F}_2[X]/(X^2+1)$

3.2 Critères d'irréductibilité des polynômes

(Chapitres 5.6.C de Eléments de théorie des anneaux de Josette Calais, II.4.a du Cours d'algèbre de Daniel Perrin)

- 1. Définition : Soit $f \in \mathbb{Z}[X] \setminus \mathbb{Z}$, alors le contenu de f est c(f) le PGCD des coefficients de f, et on dit que f est primitif si 1 est le PGCD des coefficients de f
- 2. Remarque : Soit $f \in \mathbb{Z}[X] \setminus \mathbb{Z}$, alors il existe $f_0 \in \mathbb{Z}[X] \setminus A$ primitif tel que $f = c(f)f_0$, de plus tout polynôme unitaire est primitif
- 3. Lemme de Gauss : Soit $f, g \in \mathbb{Z}[X]$, alors c(fg) = c(f)c(g)
- 4. Proposition : Soit $r \in \mathbb{Z}[X]^*$, alors :
 - r irréductible dans $\mathbb{Z}[X]$ et deg(r) = 0 si et seulement si r irréductible dans \mathbb{Z}
 - r irréductible dans $\mathbb{Z}[X]$ et deg(r) > 0 si seulement si r primitif dans $\mathbb{Z}[X]$ et irréductible dans $\mathbb{Q}[X]$
- 5. Théorème : $\mathbb{Z}[X]$ est factoriel
- 6. Théorème : Critère d'irréductiblité d'Eisenstein : Soit $f \in \mathbb{Z}[X]$ de degré n = deg(f) > 0, s'il existe $p \in \mathcal{P}$ tel que $\forall i \in [0, n-1], p \mid a_i, p^2$ ne divise pas a_i et p ne divise pas a_n alors f irréductible dans $\mathbb{Q}[X]$, si de plus f primitif alors f irréductible dans $\mathbb{Z}[X]$
- 7. Exemple: Dans $\mathbb{Z}[X]$, $X^5 + 4X^3 + 15X + 2$ est irréductible dans $\mathbb{Z}[X]$, $\sum_{i=0}^{p-1} X^i$ également
- 8. Application : $P = X^n p$ avec $p \in \mathcal{P},$ est irréductible et de degré n

3.3 Résidus quadratiques et symbole de Legendre

(Chapitres 13.6 et 13.7 d'Algèbre et géométrie de Jean-Etienne Rombaldi, III.2.d du Cours d'algèbre de Daniel Perrin et V.C de Histoires de groupes et de géométries de Caldero et Germoni)

On considère $p \in \mathcal{P}$ impair et $q = p^n$.

- 1. Définition : \mathbb{F}_q^2 est l'ensemble des $x\in\mathbb{F}_q$ tel qu'il existe $y\in\mathbb{F}_q$ tel que $x=y^2$
- 2. Théorème : Soit $x \in \mathbb{F}_q$, alors x est un carré dans \mathbb{F}_q^* si et seulement si $x^{\frac{q-1}{2}} = 1$
- 3. Corollaire : -1 est un carré dans \mathbb{F}_q si et seulement si $q \equiv 1[4]$
- 4. Application : Il existe une infinité de nombre premiers $p \equiv 1[4]$

- 5. Définition : On dit que a non multple de p est un résidu quadratique modulo p si \overline{a} est un carré dans \mathbb{F}_p^* et on note $\left(\frac{a}{p}\right) = 1$ si a est résidu quadratique et $\left(\frac{a}{p}\right) = -1$ sinon, appelé symbole de Legendre
- 6. Proposition: Soit $a \in \mathbb{F}_p^*$, alors $a^{\frac{p-1}{2}} \equiv \left(\frac{a}{p}\right)[p]$ et $a \in \mathbb{F}_p^* \longmapsto \left(\frac{a}{p}\right) \in \{-1,1\}$ est l'unique morphisme de groupes non trivial
- 7. Exemple : $2^{\frac{5-1}{2}}=2^2=4\equiv -1[5],$ donc 2 n'est pas un résidu quadratique modulo 5
- 8. Corollaire : Si $n = \pm \prod_{i=1}^{r} p_i^{\alpha_i}$ alors $\left(\frac{n}{p}\right) = (\pm 1)^{\frac{p-1}{2}} \prod_{i=1}^{r} \left(\frac{p_i}{p}\right)^{\alpha_i}$
- 9. Lemme de Gauss : Soit $a \in \mathbb{Z}$ et \overline{a} l'unite entier tel que $a \equiv \overline{a}[p]$ et $-\frac{p-1}{2} \leq \overline{a} \leq \frac{p-1}{2}$ et l le nombre d'entiers négatifs dans $\{\overline{a}, \overline{2a}, ..., \overline{\frac{p-1}{2}a}, \text{ si } p \text{ ne divise pas } a \text{ alors } \left(\frac{a}{p}\right) = (-1)^l$
- 10. Proposition : $(\frac{2}{p}) = (-1)^{\frac{p^2-1}{8}}$
- 11. Théorème : Loi de réciprocité quadratique : Soit p et q deux nombres premiers impairs distincts, alors $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2}\frac{q-1}{2}}$
- 12. Exemple! $\left(\frac{11}{83}\right) = 1$ donc 11 est un résidu quadratique modulo 83
- 13. Exemple: $\left(\frac{219}{383}\right) = 1$ donc 219 est un résidu quadratique modulo 383

4 Utilisation en théorie des groupes

4.1 Théorèmes de Sylow

(Chapitre 1.5 du Cours d'algèbre de Daniel Perrin)

On considère G groupe fini de cardinal $n=p^{\alpha}m$ avec p diviseur premier de n tel que $p\wedge m=1.$

- 1. Définition : Soit H sous-groupe de G, alors on dit que H est un p-sous groupe de Sylow de G si $|H|=p^{\alpha}$
- 2. Autrement dit H est un p-groupe est [G:H] est premier avec p
- 3. Exemple : Soit $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ et $G = GL_n(\mathbb{F}_p)$, alors $|GL_n(\mathbb{F}_p)| = (p^n 1)...(p^n p^{n-1}) = mp^{\frac{n(n-1)}{2}}$ avec $p \wedge m = 1$, et le sous-groupes des matrices triangulaires supérieures de diagonale unitaire est un p-sous groupe de Sylow de G
- 4. Lemme : Soit H un sous-groupe de G et S un p-sous groupe de Sylow de G, alors il existe $a \in G$ tel que $aSa^{-1} \cap H$ soit un p-sous groupe de Sylow de H
- 5. Théorème de Sylow (premier) : G contient au moins un p-sous groupe de Sylow
- 6. Théorème de Sylow (second) : Soit H p-sous-groupe de G, alors H est inclus dans un p-sous groupe de Sylow de G, de plus les p-sous groupes de Sylow sont tous conjugués et leur nombre k vérifie $k \mid n, k \equiv 1[p]$
- 7. Corollaire : Soit S un p-sous groupe de Sylow de G, alors $S \triangleleft G$ si et seulement si S est l'unique p-sous groupe de Sylow de G

4.2 Conséquences sur les groupes finis d'un cardinal donné

(Chapitre VI.2 de Eléments de théorie des groupes de Josette Calais)

- 1. Théorème : Si |G|=pq avec p,q premiers distincts tels que $q\neq 1[p]$ alors G admet un unique p-sous groupe de Sylow
- 2. Exemple: S_3 admet un unique 3-sous groupe de Sylow, il s'agit du groupes des 3-cycles
- 3. Théorème : Si G simple non abélien et p diviseur premier de |G| alors le nombre k de p-sous groupes de Sylow de G vérifie k > 1
- 4. Corollaire : Si G simple et p diviseur premier de |G| tel que G admette un unique p-sous-groupe de Sylow alors G est abélien
- 5. Proposition: Si |G| = pq avec p, q premiers distincts, alors G n'est pas simple
- 6. Proposition : Si |G| = pq avec p, q premiers distincts tels que $p \neq 1[q], q \neq 1[p]$ alors G est cylique
- 7. Théorème : Soit p nombre premier impair, si |G|=2p alors $G\simeq \mathbb{Z}/2p\mathbb{Z}$ ou $G\simeq D_{2p}$