Leçon 208 Espaces vectoriels normés, applications linéaires continues, exemples

Dorian Cacitti-Holland

2020-2021

\mathbf{T}		•			
к	ρt	ρr	ρr	C	es.

- 1. Cours d'analyse fonctionnelle de Daniel Li
- 2. Analyse de Xavier Gourdon
- 3. Analyse matricielle de Jean-Etienne Rombaldi
- 4. Analyse de Queffélec et Zuily

Développements.

- 1. Théorème de Banach-Steinhaus et série de Fourier divergente
- 2. Transformation de Fourier sur L^2 et théorème de Plancherel

Table des matières

1	Nor	mes et applications linéaires continues	2			
	1.1	Définition d'une norme et de normes équivalentes	2			
	1.2	Applications linéaires continues et normes subordonnées	2			
	1.3	Différences entre dimensions finie et infinie	3			
2 Cas particulier des espaces vectoriels normés complets						
	2.1	Les espaces de Banach	3			
	2.2	Conséquences du théorème de Baire dans un espace de Banach				
	2.3	Cas particulier des espaces de Hilbert	4			
3	B Etude d'opérateurs dans des espaces de Banach					
	3.1	Opérateurs compacts, auto-adjoints	Ę			
	3.2	L'opérateur transformation de Fourier $\mathcal{F}:L^2(\mathbb{R})\longrightarrow L^2(\mathbb{R})$				
	3.3	L'espace de Sobolev $H^1(I)$ et équations différentielles				

1 Normes et applications linéaires continues

1.1 Définition d'une norme et de normes équivalentes

(Chapitres I.1.1, I.1.2 et I.1.5 du Cours d'analyse fonctionnelle de Li, 1.5 d'Analyse de Gourdon)

On considère E un \mathbb{K} -espace vectoriel avec \mathbb{K} le corps des réels ou des complexes.

- 1. Définition : Une norme est une application $\|\cdot\|: E \longrightarrow \mathbb{R}_+$ vérifiant les propriété de séparation, d'absolue homogénéité et de sous-additivité, dans ce cas E est dit normé
- 2. Exemple: $||x||_1 = \sum_{i=1}^n |x_i|, ||x||_2^2 = \sum_{i=1}^n |x_i|^2, ||x||_\infty = \max_{1 \le i \le n} |x_i| \text{ sur } \mathbb{K}^n, ||f||_\infty = \sup_{x \in [0,1]} |f(x)|, ||f||_1 = \int_0^1 |f(x)| dx \text{ sur } C^0([0,1])$
- 3. Remarque : Un espace vectoriel normé est un espace métrique avec d(x,y) = ||x-y||, en particulier topologique
- 4. Définition : On dit $\|\cdot\|$ et $\|\cdot\|'$ sont équivalentes si $\exists (K_1, K_2) \in \mathbb{R}^2_+, K_1 \|\cdot\| \le \|\cdot\|' \le K_2 \|\cdot\|$
- 5. Exemple : $\|\cdot\|_{\infty} \leq \|\cdot\|_2 \leq \|\cdot\|_1 \leq n \|\cdot\|_{\infty}$ sur \mathbb{K}^n le sont mais pas $\|\cdot\|_{\infty}$ et $\|\cdot\|_1$ sur $C^0([0,1])$
- 6. Remarque : Deux normes équivalentes définissent les mêmes topologies

1.2 Applications linéaires continues et normes subordonnées

(Chapitres 1.5 d'Analyse de Gourdon et I.1.4 du Cours d'analyse fonctionnelle de Daniel Li)

On considère E et F deux espaces vectoriels normés et $T \in L(E, F)$.

- 1. Proposition: T est continue si seulement si $\exists K \in \mathbb{R}_+, \forall x \in E, ||T(x)|| \leq K ||x||$, on note $\mathcal{L}(E, F)$ leur espace vectoriel
- 2. Exemple : L'application $\delta_0: C([0,1]) \longrightarrow \mathbb{K}$ définie par $\delta_0(f) = f(0)$ est continue pour la norme $\|\cdot\|_{\infty}$ mais pas pour la norme $\|\cdot\|_1$ (Exercice I.3.2 du Cours d'Analyse fonctionnelle de Daniel Li)
- 3. Corollaire : $\|T\| = \sup_{x \neq 0} \frac{\|T(x)\|}{\|x\|}$ est la plus petite constante parmi les K précédents, de plus $\|T\| = \sup_{x \in B(0,1)} \|T(x)\| = \sup_{x \in S(0,1)} \|T(x)\|$ est appelé norme subordonnée de T
- 4. Exemple : Dans $C_b(\mathbb{R})$ muni de la norme uniforme, l'application $T: f \in C_b(\mathbb{R}) \mapsto 3f 2f \circ (id_{\mathbb{R}} + 4)$ est continue linéaire de norme ||T|| = 5 (Exercice 1.3.6 du Cours d'analyse fonctionnelle de Daniel Li)
- 5. Proposition : L'application $T \in \mathcal{L}(E, F) \longmapsto ||T|| \in \mathbb{R}_+$ est une norme sur $\mathcal{L}(E, F)$ appelée norme subordonnée à la norme $||\cdot||$
- 6. Exemple : La norme subordonnée à $\|\cdot\|_{\infty}$ sur \mathbb{K}^n est donnée par $\forall A \in M_n(\mathbb{K}), \|A\|_{\infty} = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}|$ (Chapitre 3.1 d'Analyse matricielle de Jean-Etienne Rombaldi)

1.3 Différences entre dimensions finie et infinie

(Chapitres 1.5 d'Analyse de Gourdon et I.2 du Cours d'analyse fonctionnelle de Li)

- 1. Proposition : Si $dim(E) < +\infty$, soit $\|\cdot\|$ une norme sur E, $(e_i)_{i \in [\![1,n]\!]}$ une base de E et $\|x\|_{\infty} := \max_{1 \le i \le n} |x_i|$ avec x_i les coordonnées dans la base, alors $\|\cdot\|$ et $\|\cdot\|_{\infty}$ sont équivalentes sur E
- 2. Théorème : Si $dim(E) < +\infty$ alors toutes les normes sur E sont équivalentes
- 3. Application : Pour montrer une convergence en analyse matricielle ou une différentiabilité en calcul différentiel en dimension finie on peut travailler avec n'importe quelle norme
- 4. Lemme de Riesz : Soit F sous-espace vectoriel fermé de E tel que $F \neq E$, soit $\delta \in]0,1[$, alors il existe $x \in E$ tel que ||x|| = 1 et $d(x,F) \geq 1 \delta$
- 5. Théorème de compacité de Riesz : $\overline{B}(0,1)$ est compact si et seulement si $dim(E) < +\infty$
- 6. Corollaire : Si $dim(E) = n < +\infty$ alors :
 - E et \mathbb{K}^n sont isomorphes
 - Soit F fermé borné de E, alors F compact
 - -E est complet
 - Soit F espace normé, alors $L(E, F) = \mathcal{L}(E, F)$
- 7. Corollaire : Soit F sous-espace de dimension finie de E, alors F est fermé
- 8. Remarque : Les résultats précédents sont faux en dimension infinie
- 9. Exemple : $f \in C^1([0,1]) \longrightarrow f' \in C^0([0,1])$, muni de $\|\cdot\|_{\infty}$, est linéaire non continue

2 Cas particulier des espaces vectoriels normés complets

2.1 Les espaces de Banach

(Chapitres I.1.3 du Cours d'analyse fonctionnelle de Daniel Li et 1.5 d'Analyse de Gourdon)

- 1. Définition : On dit que E est de Banach si E est complet, de plus si $\|\cdot\|$ est issue d'un produit scalaire alors on dit que E est de Hilbert
- 2. Exemple : \mathbb{R} , \mathbb{C} sont complets, donc \mathbb{K}^n également
- 3. Théorème : Si F est de Banach alors $\mathcal{L}(E,F)$ est de Banach
- 4. Corollaire : Les formes linéaires continues sur E forment un espace de Banach E^* qu'on appelle dual de E
- 5. Application : Si E de Banach, soit $(T_n)_{n\in\mathbb{N}}\in\mathcal{L}(E)^{\mathbb{N}}$ tel que $\sum ||T_n||$ soit convergente, alors $\sum T_n$ converge dans $\mathcal{L}(E)$
- 6. Définition : On dit que T est un isomorphisme d'espace normés si T est continue bijective d'inverse continue
- 7. Remarque : Dans ce cas, il existe $\alpha, \beta \in \mathbb{R}_+$ tel que $\forall x \in E, \alpha ||x|| \leq ||T(x)|| \leq \beta ||x||$
- 8. Exemple : Si E de Banach et ||T|| < 1 alors $id_E T$ est un isomorphisme d'espaces normés d'inverse $\sum_{n=0}^{+\infty} T^n$

2.2 Conséquences du théorème de Baire dans un espace de Banach

(Chapitres IV du Cours d'analyse fonctionnelle de Li et A d'Analyse de Gourdon) On considère E et F deux espaces de Banach.

- 1. Théorème de Baire : Soit $(F_n)_{n\in\mathbb{N}}$ famille de fermés d'intérieur vide de X espace métrique complet, alors $\bigcup_{n\in\mathbb{N}} F_n$ est d'intérieur vide
- 2. Corollaire : Soit $(O_n)_{n\in\mathbb{N}}$ famille d'ouverts denses dans X espace métrique complet, alors $\bigcap_{n\in\mathbb{N}}O_n$ est dense
- 3. Application : Un espade de Banach de dimension infinie n'admet pas de base algébrique dénombrable
- 4. Exemple : L'espace des fonctions polynomiales sur [0,1] muni de la norme infinie n'est pas de Banach car admet $(1, x, ..., x^n, ...)$ comme base algébrique dénombrable
- 5. Théorème de Banach-Steinhaus : Soit $(T_i)_{i \in I} \in \mathcal{L}(E, F)^I$ tel que $\forall x \in E, \sup_{i \in I} ||T_i(x)|| < +\infty$, alors $\sup_{i \in I} ||T_i|| < +\infty$
- 6. Application : Il existe $f \in C_{2\pi}(\mathbb{R}, \mathbb{C})$ ne coïncidant pas avec sa série de Fourier
- 7. Corollaire : Soit $(T_n)_{n\in\mathbb{N}} \in \mathcal{L}(E,F)^{\mathbb{N}}$ tel que $\forall x \in E, T_n(x) \xrightarrow[n \to +\infty]{} T(x) \in F$, alors $\sup_{n \in \mathbb{N}} ||T_n|| < +\infty, T \in \mathcal{L}(E,F)$ et $||T|| \leq \liminf_{n \to +\infty} ||T_n||$
- 8. Théorème de l'application ouverte : Soit $T \in \mathcal{L}(E, F)$ surjective, alors $\exists c \in \mathbb{R}_+^*, T(B(0, 1)) \supset B(0, c)$, ainsi T est ouverte
- 9. Corollaire : Théorème d'isomorphisme de Banach : Soit $T \in \mathcal{L}(E, F)$ bijective, alors $T^{-1} \in \mathcal{L}(E, F)$
- 10. Application : $\mathcal{F}: L^1(\mathbb{R}) \longrightarrow C_0(\mathbb{R})$ n'est pas surjective
- 11. Théorème du graphe fermé : Soit $T \in L(E, F)$, alors T continue si et seulement si le graphe de T est fermé dans $E \times F$
- 12. Remarque : La complétude est importante dans ce théorème :
- 13. Exemple: $C^1([0,1])$ muni de la norme uniforme n'est pas complet et $D: f \in C^1([0,1]) \mapsto f' \in C^0([0,1])$ admet un graphe fermé (Exercice IV.4.2 du Cours d'analyse fonctionnelle de Daniel Li)

2.3 Cas particulier des espaces de Hilbert

(Chapitres II.1 et II.2 du Cours d'analyse fonctionnelle de Li) On considère ${\cal H}$ un espace de Hilbert.

- 1. Théorème de projection sur un convexe fermé non vide : Soit C convexe fermé non vide de H alors pour $x \in H$, il existe un unique $p_C(x) \in C$ tel que $d(x,C) = ||x p_C(x)||$, de plus $p_C(x)$ est l'unique $y \in H$ tel que $y \in C, \forall z \in C, Re(\langle x y, z y \rangle) \leq 0$
- 2. Corollaire : Soit C convexe fermé non vide, alors $p_C: H \longrightarrow C$ est 1-lipschitzienne donc continue

- 3. Théorème de projection sur un sous-espace vectoriel fermé : Soit F sous-espace vectoriel fermé de H, alors $p_F \in \mathcal{L}(H, F)$ de norme 1 et pour $x \in H$, $p_F(x)$ est l'unique $y \in H$ tel que $y \in F$, $x y \in F^{\perp}$
- 4. Corollaire : Soit F sous-espace de H, alors F dense dans H si et seulement si $F^{\perp} = \{0\}$
- 5. Application: Les fonctions continues à supports compacts sont denses dans $L^2(\mathbb{R})$ et C([0,1]) est dense dans $L^2(]0,1[)$
- 6. Théorème de représentation de Riesz : Soit $\phi \in H^*$, alors il existe un unique $y \in H$ tel que $\forall x \in H, \phi(x) = \langle x, y \rangle$
- 7. Corollaire : Soit $T \in \mathcal{L}(H)$, alors il existe un unique $T^* \in \mathcal{L}(H)$, appelé adjoint de T, tel que $\forall (x,y) \in H^2$, $\langle T(x), y \rangle = \langle x, T^*(y) \rangle$ et $||T^*|| = ||T||$
- 8. Application : Théorème de Lax-Milgram : Soit B une forme bilinéaire sur H continue coercive et L une forme linéaire continue sur H, alors il existe $u \in H$ tel que $\forall y \in H, B(u,y) = L(y)$, de plus si B est symétrique, alors en posant J(x) := B(x,x) 2L(x), alors u est caractérisé par $J(u) = \min_{x \in H} J(x)$ (Exercice II.5.14 du Cours d'analyse fonctionnelle de Daniel Li)
- 9. Exemple: Problème de Dirichlet: Soit $f \in L^2(0,1)$, alors l'équation -u''+u=f, u(0)=u(1)=0 admet une unique solution faible $u \in H^1_0(0,1)$ et u réalise le minimum dans $H^1_0(0,1)$ de la fonctionnelle $J_f(v)=\frac{1}{2}\int_0^1(v^2+v'^2)(x)dx-\int_0^1(fv)(x)dx$ (Exercice IX.4.6 du Cours d'analyse fonctionnelle de Daniel Li)
- 10. Définition : On dit que $(u_n)_{n\in\mathbb{N}}$ est une base hlbertienne de H si $(u_n)_{n\in\mathbb{N}}$ orthonormale et $Vect(u_n, n\in\mathbb{N})$ dense dans H
- 11. Exemple : D'après la théorie des séries de Fourier, les $e_n: x \in \mathbb{R} \longmapsto e^{inx}$ forment une base hilbertienne de $L^2_{2\pi}(\mathbb{R})$
- 12. Théorème : Si H est séparable alors il existe une base hilbertienne $(u_n)_{n\in\mathbb{N}}$ sur H
- 13. Corollaire : Soit $x \in H$, alors $x = \sum_{n=0}^{+\infty} \langle x, u_n \rangle u_n$, de plus $||x||^2 = \sum_{n=0}^{+\infty} |\langle x, u_n \rangle|^2$

3 Etude d'opérateurs dans des espaces de Banach

3.1 Opérateurs compacts, auto-adjoints

(Chapitres VII.2 et VII.3 du Cours d'analyse fonctionnelle de Daniel Li et V.V.3 d'Analyse de Queffélec et Zuily)

On considère E et F deux espaces de Banach et H un espace de Hilbert.

- 1. Définition : Soit $T \in \mathcal{L}(E,F)$, on dit que T est compact si T(B(0,1)) est compact
- 2. Exemple : Pour un noyau $K \in C([0,1]^2)$, $T_K(f)(x) = \int_0^1 K(x,y)f(y)dy$ définit un opérateur compact sur C([0,1])
- 3. Proposition : Il existe un unique $T^* \in \mathcal{L}(F^*, E^*)$, appelé opérateur adjoint de T, tel que $\forall (x, \varphi) \in E \times F^*, \langle \varphi, T(x) \rangle = \varphi(T(x)) = T^*(\varphi)(x) = \langle T^*(\varphi), x \rangle$, et $||T^*|| = ||T||$
- 4. Remarque : Cela correspond à la notion d'opérateur adjoint dans un Hilbert H grâce à l'isomorphisme isométrique entre H et H^*

- 5. Définition : Soit $T \in \mathcal{L}(H)$, si $T = T^*$ alors on dit que T est auto-adjoint
- 6. Théorème (admis) : Soit $T \in \mathcal{L}(H)$ auto-adjoint compact, alors il existe une base hilbertienne de H formée de vecteurs propres de T et $\forall x \in H, T(x) = \sum_{n=1}^{+\infty} \lambda_n \langle x, e_n \rangle e_n$ avec λ_n valeur propre associé à e_n
- 7. Remarque : Il s'agit d'une généralisation du théorème spectral en dimension infinie, mais la compacité de T est primordial
- 8. Exemple : L'opérateur $T: f \in L^2(0,1) \longmapsto id_{\mathbb{R}} \times f \in L^2(0,1)$ est auto-adjoint mais n'a aucune valeurs propre (Exercice VII.5.6 du Cours d'analyse fonctionnelle de Daniel Li)

3.2 L'opérateur transformation de Fourier $\mathcal{F}:L^2(\mathbb{R})\longrightarrow L^2(\mathbb{R})$

(Chapitres III.2 du Cours d'analyse fonctionnelle de Daniel Li)

- 1. Définition: La transformation de Fourier de $f \in L^1(\mathbb{R})$ est définie par $\forall \xi \in \mathbb{R}, \mathcal{F}(f)(\xi) = \int_{\mathbb{R}} f(x)e^{-2i\pi x\xi}dx$ (bien défini car $\forall \xi \in \mathbb{R}, x \longmapsto |f(x)e^{-2i\pi x\xi}| = |f(x)| \in L^1(\mathbb{R})$)
- 2. Exemple : Transformée de Fourier de la gausienne : Si $f(x) = e^{-\pi x^2}$ alors $\mathcal{F}(f) = f$
- 3. Proposition : \mathcal{F} est une application linéaire continue de $L^1(\mathbb{R})$ dans $C_0(\mathbb{R})$ de norme 1, de plus $\forall (f,g) \in L^1(\mathbb{R}), \mathcal{F}(f*g) = \mathcal{F}(f)\mathcal{F}(g)$
- 4. Corollaire : $L^1(\mathbb{R})$ n'a pas d'unité pour la convolution
- 5. Théorème d'inversion : Soit $f \in L^1(\mathbb{R})$ tel que $\mathcal{F}(f) \in L^1(\mathbb{R})$, alors pour presque tout $x \in \mathbb{R}$, $f(x) = \int_{\mathbb{R}} \mathcal{F}(f)(\xi)e^{2i\pi x\xi}d\xi = \mathcal{F}(\mathcal{F}(f)\circ(-id_{\mathbb{R}}))(x)$
- 6. Corollaire : $\mathcal{F}: L^1(\mathbb{R}) \longrightarrow C_0(\mathbb{R})$ est injective
- 7. Lemme : $A(\mathbb{R}) := \{ f \in L^1(\mathbb{R}), \mathcal{F}(f) \in L^1(\mathbb{R}) \}$ est dense dans $(L^2(\mathbb{R}), \|\cdot\|_2)$
- 8. Théorème de Plancherel : $\mathcal{F}: L^1(\mathbb{R}) \cap L^2(\mathbb{R}) \longrightarrow C_0(\mathbb{R})$ se prolonge de façon unique en un isomorphisme isométrique de $L^2(\mathbb{R})$ dans lui-même
- 9. Corollaire: Soit $f \in L^2(\mathbb{R})$ tel que $\mathcal{F}(f) \in L^1(\mathbb{R})$, alors presque partout $f(x) = \int_{\mathbb{R}} \mathcal{F}(f)(\xi) e^{2i\pi x \xi} d\xi$
- 10. Exemple : Comme $\mathcal{F}(\mathbb{1}_{[-\lambda,\lambda]})(\xi) = \frac{\sin(2\pi\lambda\xi)}{\pi\lambda\xi}$ presque partout, on a $\mathcal{F}\left(\frac{\sin(2\pi\lambda x)}{2\pi\lambda x}\right) = \frac{1}{2\lambda}\mathbb{1}_{[-\lambda,\lambda]}$
- 11. Théorème : Il existe une unique famille $(H_n)_{n\in\mathbb{N}}$ de polynômes, appelés de Hermite, de coefficients dominant 2^n de degrés respectifs n orthogonaux deux à deux pour le produit scalaire $\langle f,g\rangle=\int_{\mathbb{R}}f(x)\overline{g(x)}e^{-x^2}dx$
- 12. Corollaire : Les fonctions de Hermite $h_n(x) = (2^n \sqrt{\pi} n!)^{-\frac{1}{2}} H_n(x) e^{-\frac{x^2}{2}}$ forment une base hilbertienne de $L^2(\mathbb{R})$ constituées de vecteurs propres de $\mathcal{F}: L^2(\mathbb{R}) \longrightarrow L^2(\mathbb{R}):$ $\forall n \in \mathbb{N}, \mathcal{F}(h_n) = (-i)^n h_n$ (Exercice III.3.2.29 du Cours d'analyse fonctionnelle de Daniel Li)

3.3 L'espace de Sobolev $H^1(I)$ et équations différentielles

(Chapitres IX.2 du Cours d'analyse fonctionnelle de Daniel Li) On considère I intervalle ouvert non vide de \mathbb{R} .

- 1. Définition : On dit que $u \in L^2(I)$ admet une dérivée faible s'il existe $v \in L^2(I)$ tel que $\forall \varphi \in C_c^1(I), \int_I u(t)\varphi'(t)dt = -\int_I v(t)\varphi(t)dt$
- 2. Proposition : Pour $u \in L^2(I)$, si un tel $v \in L^2(I)$, alors v est unique, on le note v = u' et on l'appelle dérivée faible de u, de plus on note $H^1(I) := \{u \in L^2(I), u' \in L^2(I)\}$
- 3. Exemple : $u: x \in]-1, 1[\mapsto x \mathbbm{1}_{[0,1[}(x) \text{ admet comme dérivée faible } u': x \in]-1, 1[\mapsto \mathbbm{1}_{[0,1[}(x)$
- 4. Propositon : $\langle u, v \rangle = \langle u, v \rangle_2 + \langle u', v' \rangle_2$ définit un produit scalaire sur $H^1(I)$ dont la norme associée est $||u|| = \sqrt{||u||_2^2 + ||u'||_2^2}$
- 5. Corollaire : $H^1(I)$ muni de ce produit sclaire est un espace de Hilbert séparable
- 6. Théorème : Soit $u \in H^1(I)$, alors il existe un unique $\tilde{u} \in C^0(\overline{I})$ tel que $\tilde{u}_{|I|}$ soit un représentant de u, de plus $\forall (x,y) \in I^2$, $\tilde{u}(y) \tilde{u}(x) = \int_x^y u'(t)dt$
- 7. Corollaire : Théorème de Rellich-Kondrachov : Si I est borné alors l'injection $j:u\in H^1(I)\longmapsto \tilde{u}\in C(\overline{I})$ est un opérateur compact
- 8. Définition : $H_0^1(]0,1[):=\{u\in H^1(]0,1[),\tilde{u}(0)=\tilde{u}(1)=0\}$
- 9. Proposition : Inégalité de Poincaré : Soit $u \in H_0^1(]0,1[)$, alors $||u|| \leq \sqrt{\frac{3}{2}} ||u'||_2$, en particulier $||\cdot||$ et $||\cdot||_2$ sont équivalentes sur $H_0^1(]0,1[)$
- 10. Application : Soit $f \in L^2(0,1)$, T(f) = u avec $u \in H^1_0(0,1)$ solution faible du problème de Dirichlet de l'exemple 2.3.10, alors $T: L^2(0,1) \longrightarrow L^2(0,1)$ est un opérateur compact auto-adjoint, donc il existe une base hilbertienne de $L^2(0,1)$ formée de vecteurs propres de T (Exercice IX.4.10 du Cours d'analyse fonctionnelle de Daniel Li)