Leçon 228 Continuité, dérivabilité, dérivation faible des fonctions réelles d'une variable réelle, exemples et applications

Dorian Cacitti-Holland

2020-2021

D	2 C	٠		_		
к	éf	er	eı	11	[∵€	·S.

- 1. Eléments d'analyse réelle de Jean-Etienne Rombaldi
- 2. Suites et séries de Mohammed El Amrani
- 3. Théorie de l'intégration de Briane et Pagès
- 4. Petit guide de calcul différentiel de François Rouvière
- 5. Cours d'analyse fonctionnelle de Daniel Li

Développements.

- 1. Théorème de Weierstrass par les polynômes de Bernstein
- 2. Méthode de Newton

Table des matières

1	Cor	Continuité						
	1.1	Définition et caractérisations						
	1.2	Fonctions continues sur un connexe ou un compact						
	1.3	Uniforme continuité et lipschitziennité (pas assez de place)						
	1.4	Préservation de la continuité						
2	Dér	Dérivabilité						
	2.1	Définition et opérations						
	2.2	Propriétés d'une fonction dérivable						
	2.3	Dérivations d'ordre supérieur						
	2.4	Préservation de la dérivabilité						
3	Dérivations faibles							
	3.1	Dérivée faible pour se ramener au théorème d'intégration par parties						
	3.2	Les distributions						
	3.3	La dérivation de distributions						

1 Continuité

1.1 Définition et caractérisations

(Chapitres 6.1 et 6.2 de Eléments d'analyse réelle de Jean-Etienne Rombaldi) On considère I intervalle de $\mathbb R$ et $f:I\longrightarrow \mathbb R$.

- 1. Définition : On dit que f est continue sur I si $\forall a \in I, f(x) \xrightarrow[x \to a]{} f(a)$, et on note $C^0(I)$ leur ensemble
- 2. Exemple: Les fonctions constantes sont dans $C^0(I)$, $id_I \in C^0(I)$
- 3. Théorème de caractérisation séquentielle : f continue en a si et seulement si $\forall (x_n)_{n\in\mathbb{N}}\in I^{\mathbb{N}}, x_n \underset{n\to+\infty}{\longrightarrow} a \Longrightarrow f(x_n) \underset{n\to+\infty}{\longrightarrow} f(a)$
- 4. Exemple: Si $f(0) = 0, f(x) = \cos\left(\frac{1}{x}\right)$ alors f n'est pas continue en 0
- 5. Théorème : f est continue sur I si et seulement si l'image réciproque de tout ouvert (respectivement fermé) de \mathbb{R} par f est un ouvert (respectivement fermé)
- 6. Proposition : $C^0(I)$ est une \mathbb{R} -algèbre stable par composition, inverse (quand elles sont bien définies), minimum et maximum
- 7. Exemple : Les polynômes sont des $C^0(I)$
- 8. Théorème : Si $a \in \partial I \setminus I$ et f continue sur I tel que $f \xrightarrow{a} l$ alors il existe un unique prolongement \tilde{f} de f à $I \cup \{a\}$ continue sur I avec $\tilde{f}(a) = l$

1.2 Fonctions continues sur un connexe ou un compact

(Chapitres 6.5 et 6.4 de Eléments d'analyse réelle de Jean-Etienne Rombaldi)

- 1. Lemme : Les connexes de \mathbb{R} sont les intervalles
- 2. Théorème : Si f continue et alors f(I) intervalle de \mathbb{R}
- 3. Théorème des valeurs intermédiaires : Si I = [a, b] et f continue telle que f(a)f(b) < 0 alors il existe $c \in [a, b]$ tel que f(c) = 0
- 4. Remarque : Une fonction vérifiant le TVI n'est pas nécessairement continue
- 5. Exemple: Si $f(x) = x\mathbb{1}_{[0,1]}(x) + x\mathbb{1}_{[1,2]}(x) 1$ alors f(1) = 0 mais f n'est pas continue
- 6. Théorème : Si f continue strictement monotone alors f(I) intervalle de même nature que I et f homéomorphisme de I dans f(I)
- 7. Exemple : $exp:]-\infty, +\infty[\longrightarrow]0, +\infty[$ continue strictement monotone surjective donc homéomorphisme
- 8. Théorème : Si f continue et K compact de I alors f(K) compact de $\mathbb R$ en particulier bornée et atteint ses bornes
- 9. Théorème de Weierstrass : Si I = [a, b] alors l'espace des fonctions polynomiales sur [a, b] est dense dans $C^0(I)$ pour la norme uniforme (Exercice 2.4.8 de Eléments d'analyse réelle de Jean-Etienne Rombaldi)
- 10. Remarque : Le théorème est faux sur \mathbb{R}

1.3 Uniforme continuité et lipschitziennité (pas assez de place)

(Chapitre 1.4 de Eléments d'analyse réelle de Jean-Etienne Rombaldi)

- 1. Définition : On dit que f est uniformément continue si $\forall \varepsilon \in \mathbb{R}_+^*, \exists \delta \in \mathbb{R}_+^*, \forall (x,y) \in I^2, |x-y| < \delta \Rightarrow |f(x) f(y)| < \varepsilon$
- 2. Proposition : Si f uniformément continue alors f continue
- 3. Remarque : La réciproque est fausse
- 4. Exemple : La fonction carrée est continue sur $\mathbb R$ mais pas uniformément continue
- 5. Théorème de Heine : Si I compact et f continue alors f uniformément continue
- 6. Définition : On dit que f est k-lipschizienne si $\forall (x,y) \in I^2, |f(x)-f(y)| \leq k|x-y|$
- 7. Exemple : \cos et \sin sont 1-lipschizienne
- 8. Proposition : Si f lipschizienne alors f uniformément continue

1.4 Préservation de la continuité

(Chapitres 3.2 et 4.2 de Suites et séries de Mohammed El Amrani et 8.3 de Théorie de l'intégration de Briane et Pagès)

On considère $(f_n)_{n\in\mathbb{N}}\in(\mathbb{R}^I)^{\mathbb{N}}$

- 1. Théorème : Si f_n continue et $f_n \xrightarrow[n \to +\infty]{CVU} f$ alors f est continue
- 2. Remarque : La convergence simple ne suffit pas
- 3. Exemple : $e^{-nid_{\mathbb{R}_+}} \xrightarrow[n \to +\infty]{CVS} \delta_0 \notin C^0(\mathbb{R}_+)$
- 4. Théorème d'interversion limite-limite : En cas de convergence on a $\lim_{n\to +\infty} \lim_{x\to a} f_n(x) = \lim_{x\to an\to +\infty} f_n(x)$
- 5. Théorème de continuité sous le signe somme : Si f_n continue, $\sum f_n$ converge uniformément (sur tout compact) alors $\sum f_n$ continue
- 6. Exemple: $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$ est continue sur $]1, +\infty[$
- 7. Théorème de continuité sous le signe intégrale : Soit J intervalle de \mathbb{R} , $f: I \times J \longrightarrow \mathbb{R}$, si $f(x,\cdot)$ mesurable, $f(\cdot,t)$ continue et il existe $g \in L^1(I)$ tel que $|f(x,\cdot)| \leq g$ alors $F(x) = \int_I f(x,t) dt$ continue sur I
- 8. Application : Si $f \in L^1$ alors $\mathcal{F}(f)$ est continue

2 Dérivabilité

2.1 Définition et opérations

(Chapitre 7.1 et 7.2 de Eléments d'analyse réelle de Jean-Etienne Rombaldi)

1. Définition : On dit que f est dérivable en a si $\frac{f(x)-f(a)}{x-a} \xrightarrow[x\to a]{} \alpha =: f'(a)$, et on note D(I) l'ensemble des fonctions dérivables sur I

- 2. Remarque : Si f dérivable alors f continue, mais la réciproque est fausse
- 3. Exemple : $|\cdot|$ est continue mais non dérivable en 0
- 4. Proposition : D(I) est une \mathbb{R} -algèbre avec (f+g)'=f'+g', (fg)'=f'g+fg', stable par composition et inverse (quand elles sont bien définies) avec $(f \circ g)'=g'f' \circ g$ et $\left(\frac{1}{f}\right)'=\frac{-f'}{f^2}$
- 5. Proposition : Si f dérivable strictement monotone tel que f^{-1} ne s'annule pas alors f^{-1} dérivable avec $f^{-1'} = \frac{1}{f' \circ f^{-1}}$

2.2 Propriétés d'une fonction dérivable

(Chapitres 7.5, 9.1, 9.3 et 9.4 de Eléments d'analyse réelle de Jean-Etienne Rombaldi)

- 1. Proposition : Si $a \in \overset{\circ}{I}$ extremum local de f alors f'(x) = 0
- 2. Remarque : La réciproque est fausse
- 3. Exemple: x^3 en 0
- 4. Théorème de Rolle : Si I = [a, b] et f continue sur I, dérivable sur]a, b[et f(a) = f(b) alors il existe $c \in [a, b]$ tel que f'(c) = 0
- 5. Corollaire : Si $I = \mathbb{R}$ et f dérivable sur \mathbb{R} admettante une limite en $+\infty$ et $-\infty$ alors il existe $c \in \mathbb{R}$ tel que f'(c) = 0
- 6. Thoérème des accroissements finis : Si I = [a, b] et f continue sur I et dérivable sur [a, b[alors il existe $c \in]a, b[$ tel que f(b) f(a) = f'(c)(b a)
- 7. Corollaire : Inégalité des accroissements finis : Si I = [a,b] et f continue sur I et dérivable sur [a,b[alors il existe $c \in [a,b[$ tel que $|f(b)-f(a)| \leq |f'(c)||b-a|$
- 8. Théorème : Si f continue sur I dérivable sur $\overset{\circ}{I}$ alors f croissante si et seulement si $f' \geq 0$ sur $\overset{\circ}{I}$
- 9. Théorème : Si f continue sur I dérivable sur $I \setminus \{a\}$ avec $f' \xrightarrow{a} l$ alors f dérivable en a avec f'(a) = l

2.3 Dérivations d'ordre supérieur

(Chapitres 7.1, 10.1, 10.2 et 10.4 de Eléments d'analyse réelle de Jean-Etienne Rombaldi et Exercice 4.49 du Petit guide de calcul différentiel de François Rouvière)

- 1. Définition : On dit que f est de classe C^n si f est n-1-fois dérivable et $f^{(n)}$ est continue, et on note $C^n(I)$ leur \mathbb{R} -algèbre
- 2. Proposition: Formule de Leibniz: Si $f, g \in C^n(I)$ alors $(fg)^{(n)} = \sum_{k=0}^n \binom{n}{k} f^{(k)} g^{(n-k)}$
- 3. Théorème : Formule de Taylor-Lagrange : Si I=[a,b] et $f\in C^n(I)$ et n+1-fois dérivable sur]a,b[alors il existe $c\in]a,b[$ tel que $f(b)=\sum\limits_{k=0}^n\frac{f^{(k)}(a)}{k!}(b-a)^k+\frac{f^{(n+1)}(c)}{(n+1)!}(b-a)^{n+1}$

- 4. Corollaire : Inégalité de Taylor-Lagrange : Si de plus $f^{(n+1)}$ majorée sur a_i, b_i par a_i alors $\left| f(b) \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (b-a)^k \right| \leq \frac{M}{(n+1)!} (b-a)^{n+1}$
- 5. Application: Méthode de Newton: Soit $f:[c,d] \subset \mathbb{R} \longrightarrow \mathbb{R}$ de classe C^2 avec f(c) < 0 < f(d) et f' > 0, alors f admet un admet un unique point fixe $a \in]c,d[$ et pour tout $x_0 \in I$, $x_n \underset{n \to +\infty}{\longrightarrow} a$ avec $x_{n+1} = F(x_n) = x_n \frac{f(x_n)}{f'(x_n)}$
- 6. Corollaire: Si de plus f'' > 0 alors pour tout $x_0 \in I$, $(x_n)_{n \in \mathbb{N}}$ est strictement décroissante (ou constante) avec $0 \le x_{n+1} a \le C(x_n a)^2$ et $x_{n+1} a \sim \frac{1}{2} \frac{f''(a)}{f'(a)} (x_n a)^2$
- 7. Application : Soit $y \in \mathbb{R}_+^*$ et $f(x) = x^2 y$, alors la méthode de Newton permet d'approcher
- 8. Théorème : Formule de Taylor avec reste intégral : Si f de classe C^{n+1} alors $f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^k + \int_a^b \frac{f^{(n+1)}(t)}{n!} (b-t)^n dt$
- 9. Théorème : Formule de Taylor-Young : Si f est n-fois dérivable en $a \in I$ alors $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}}{k!} (x-a)^k + o((x-a)^n)$
- 10. Application : $e^x = \sum_{k=0}^{n} \frac{x^k}{k!} + o(x^n)$

2.4 Préservation de la dérivabilité

(Chapitres 3.3 et 4.4 de Suites et séries de Mohammed El Amrani et)

- 1. Théorème : Si f_n dérivable tel que $f_n \xrightarrow[n \to +\infty]{CVS} f$ et $f'_n \xrightarrow[n \to +\infty]{CVU} g$ alors f dérivable de dérivée g
- 2. Remarque: $f_n \xrightarrow[n \to +\infty]{CVS} f$ ne suffit pas, $f_n(x) = \left(x^2 + \frac{1}{n^2}\right)^{\frac{1}{2}} \xrightarrow[n \to +\infty]{} |x|$ non dérivable
- 3. Théorème de dérivation sous le signe somme : Si f_n dérivable, $\sum f_n$ converge simplement, $\sum f'_n$ converge uniformément (sur tout compact de I) alors $\sum f_n$ dérivable et $(\sum f_n)' = \sum f'_n$
- 4. Exemple : $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$ est dérivable et $\zeta'(x) = -\sum_{n=1}^{+\infty} \frac{\ln(n)}{n^x}$
- 5. Théorème de dérivation sous le signe intégral : Si $f(x,\cdot) \in L^1(J), f(\cdot,t)$ dérivable et il existe $g \in L^1(J)$ tel que $\left|\frac{\partial f}{\partial x}(x,\cdot)\right| \leq g$ alors $F(x) = \int_J f(x,t) dt$ est dérivable et $F'(x) = \int_J \frac{\partial f}{\partial x}(x,t) dt$
- 6. Application : Si $f \in L^1$ et $id_{\mathbb{R}}f \in L^1$ alors $\mathcal{F}(f)$ dérivable de dérivée $\mathcal{F}(f)'(\xi) = -i\mathcal{F}(id_{\mathbb{R}}f)(\xi)$

3 Dérivations faibles

3.1 Dérivée faible pour se ramener au théorème d'intégration par parties

(Chapitre IX.2.1 du Cours d'analyse fonctionnelle de Daniel Li)

- 1. Définition : On dit que $u \in L^p(I)$ admet une dérivée faible s'il existe $v \in L^p(I)$ tel que $\forall \varphi \in C_c^1(I), \int_I u \varphi' = -\int_I v \varphi$
- 2. Exemple : Si I =]-1, 1[et $u(x) = x\mathbbm{1}_{[0,1[}(x) \text{ alors } u \text{ admet une dérivée faible et } v = \mathbbm{1}_{[0,1[}(x) \text{ alors } u \text{ admet une dérivée faible et } v = \mathbbm{1}_{[0,1[}(x) \text{ alors } u \text{ admet une dérivée faible et } v = \mathbbm{1}_{[0,1[}(x) \text{ alors } u \text{ admet une dérivée faible et } v = \mathbbm{1}_{[0,1[}(x) \text{ alors } u \text{ admet une dérivée faible et } v = \mathbbm{1}_{[0,1[}(x) \text{ alors } u \text{ admet une dérivée faible et } v = \mathbbm{1}_{[0,1[}(x) \text{ alors } u \text{ admet une dérivée faible et } v = \mathbbm{1}_{[0,1[}(x) \text{ alors } u \text{ admet une dérivée faible et } v = \mathbbm{1}_{[0,1[}(x) \text{ alors } u \text{ admet une dérivée faible et } v = \mathbbm{1}_{[0,1[}(x) \text{ alors } u \text{ admet une dérivée faible et } v = \mathbbm{1}_{[0,1[}(x) \text{ alors } u \text{ admet une dérivée faible et } v = \mathbbm{1}_{[0,1[}(x) \text{ alors } u \text{ admet une dérivée faible et } v = \mathbbm{1}_{[0,1[}(x) \text{ admet une dérivée faible et } v = \mathbbm{1}_{[0,1[}(x) \text{ admet une dérivée faible et } v = \mathbbm{1}_{[0,1[}(x) \text{ admet une dérivée faible et } v = \mathbbm{1}_{[0,1[}(x) \text{ admet une dérivée faible et } v = \mathbbm{1}_{[0,1[}(x) \text{ admet une derivée faible et } v = \mathbbm{1}_{[0,1[}(x) \text{ admet une derivée faible et } v = \mathbbm{1}_{[0,1[}(x) \text{ admet une derivée faible et } v = \mathbbm{1}_{[0,1[}(x) \text{ admet une derivée faible et } v = \mathbbm{1}_{[0,1[}(x) \text{ admet une derivée faible et } v = \mathbbm{1}_{[0,1[}(x) \text{ admet une derivée faible et } v = \mathbbm{1}_{[0,1[}(x) \text{ admet une derivée faible et } v = \mathbbm{1}_{[0,1[}(x) \text{ admet une derivée faible et } v = \mathbbm{1}_{[0,1[}(x) \text{ admet une derivée faible et } v = \mathbbm{1}_{[0,1[}(x) \text{ admet une derivée faible et } v = \mathbbm{1}_{[0,1[}(x) \text{ admet une derivée faible et } v = \mathbbm]_{[0,1[}(x) \text{ admet une derivée faible et } v = \mathbbm]_{[0,1[}(x) \text{ admet une derivée faible et } v = \mathbbm]_{[0,1[}(x) \text{ admet une derivée faible et } v = \mathbbm]_{[0,1[}(x) \text{ admet une derivée faible et } v = \mathbbm]_{[0,1[}(x) \text{ admet une derivée faible et } v = \mathbbm]_{[0,1[}(x) \text{ admet une derivée faible et } v = \mathbbm]_{[0,1[}(x) \text{ admet une derivée faible et } v = \mathbbm]_{[0,1[}(x) \text{ admet u$
- 3. Lemme : Si $v_1,v_2\in L^1_{loc}(I)$ tel que $\varphi\in C^2_c(I), \int_I v_1\varphi=\int_I v_2\varphi$ alors $v_1=v_2$ presque partout
- 4. Proposition : Si u admet une dérivée faible alors v de la définition est unique, on le note v=u'

3.2 Les distributions

(Chapitre X.1.1, X.1.2 et du Cours d'analyse fonctionnelle de Daniel Li)

- 1. Définition : Soit $\varphi \in C^{\infty}(I)$, alors $Supp(\varphi) = \overline{\{x \in I, \varphi(x) \neq 0\}}$, et on note $\mathcal{D}(I)$ l'espace des fonctions C^{∞} à support compact
- 2. Exemple : $\varphi(x) = e^{-\frac{1}{1-|x|^2}} \mathbb{1}_{]-1,1[} \in \mathcal{D}(\mathbb{R})$
- 3. Définition : Soit $T: \mathcal{D}(I) \longrightarrow \mathbb{R}$, alors on dit que T est une distribution si T est linéaire et pour tout compact K de I il existe $(m_k, C_k) \in \mathbb{N} \times \mathbb{R}_+^*$ tel que $\forall \varphi \in \mathcal{D}(I), Supp(\varphi) \subset K \Rightarrow |T(\varphi)| \leq C_K \|\varphi\|_{(m)} =: C_K \max_{0 \leq j \leq m} \|\varphi^{(j)}\|_{\infty}$, et on note $\mathcal{D}'(I)$ leur ensemble
- 4. Exemple : $\delta_{x_0} \in \mathcal{D}'(I)$
- 5. Proposition : Si $f \in L^1_{loc}(I)$ alors $T(f)(\varphi) = \int_I f \varphi$ définit une distribution et $f \mapsto T(f)$ injective
- 6. Défintiion : Soit $(T_n)_{n\in\mathbb{N}}\in\mathcal{D}'(I)^{\mathbb{N}}$, alors on dit que $T_n\underset{n\to+\infty}{\longrightarrow} T$ si $\forall \varphi\in\mathcal{D}'(I), T_n(\varphi)\underset{n\to+\infty}{\longrightarrow} T(\varphi)$ (Exercice X.6.3 du Cours d'analyse fonctionnelle de Daniel Li)
- 7. Exemple: $T(sin(nid_{\mathbb{R}})) \xrightarrow[n \to +\infty]{} 0$

3.3 La dérivation de distributions

(Chapitre X.3.2 du Cours d'analyse fonctionnelle de Daniel Li)

- 1. Définition : On définit $T'(\varphi) = -T(\varphi')$
- 2. Exemple: $T(\mathbb{1}_{\mathbb{R}_+})' = T(\delta_0)$
- 3. Proposition: Si $T_n \xrightarrow[n \to +\infty]{} T$ alors $T'_n \xrightarrow[n \to +\infty]{} T'$
- 4. Lemme : Si $\varphi \in \mathcal{D}(\mathbb{R})$ et $\psi : \mathbb{R} \longrightarrow \mathbb{R}$ alors $\psi = \varphi'$ si et seulement si $\psi \in \mathcal{D}(\mathbb{R})$ et $\int_{\mathbb{R}} \psi(x) dx = 0$
- 5. Théorème : $T' = 0 \iff T = c$

- 6. Proposition : Soit $f \in C^1(I)$ alors T(f)' = T(f')
- 7. Théorème : Formule des sauts : Soit f C^1_{pm} alors $T(f)'=T(f')+\sum\limits_{j=1}^n\sigma_j\delta_{x_j}$ avec $\sigma_j=f(x_j^+)-f(x_j^-)$