Leçon 230 Séries de nombres réels ou complexes, comportement des restes ou des sommes partielles des séries numériques, exemples

Dorian Cacitti-Holland

2020-2021

\mathbf{D}	2 C	٠			
к	eт	er.	er	10	es.

1. Suites et séries de Mohammed El Amrani	
---	--

- 2. Les contre-exemples en mathématiques de Bertrand Hauchecorne
- 3. Analyse de Xavier Gourdon
- 4. Analyse complexe d'Amar et Matheron
- 5. Probabilités tome 1 de Jean-Yves Ouvrard
- 6. Probabilité de Barbe et Ledoux

Développements.

- 1. Théorèmes d'Abel angulaire et taubérien faible
- 2. Calcul d'une intégrale par un développement en série entière

Table des matières

1	Séri	Séries réelles et complexes						
		Suite des sommes cumulées d'une suite numérique						
	1.2	Cas particulier des séries de termes positifs						
	1.3	Règles et critères de convergence						
2	Etu	des de séries entières						
	2.1	Séries définies avec un rayon de convergence						
		Opérations et propriétés						
	2.3	Fonctions développables en série entière						
3	Des	séries pour tous les gôuts						
	3.1	Analycité des fonctions holomorphes						
	3.2	Séries de Fourier						
	3.3	Fonctions génératrices et lemme de Borel-Cantelli						

1 Séries réelles et complexes

1.1 Suite des sommes cumulées d'une suite numérique

(Chapitre 2.1 de Suites et séries de Mohammed El Amrani) On considère $(u_n)_{n\in\mathbb{N}}$ suite réelle ou complexe.

- 1. Définition : La série associée à $(u_n)_{n\in\mathbb{N}}$ est la suite $(S_n)_{n\in\mathbb{N}}$ définie par $\forall n\in\mathbb{N}, S_n=\sum_{k=0}^n u_k$, et est noté $\sum u_n$
- 2. Définition : On dit que $\sum u_n$ est convergente si $S_n \xrightarrow[n \to +\infty]{} S$, on le note $\sum_{n=0}^{+\infty} u_n = S$
- 3. Exemple : Soit $a \in \mathbb{C}$ tel que |a|, alors $\sum a^n$ est convergente de somme $\sum_{n=0}^{+\infty} a^n = \frac{1}{1-a}$
- 4. Définition : Si $\sum u_n$ converge alors $R_n := S S_n$ est le reste d'ordre n de $\sum u_n$
- 5. Proposition : L'ensemble des séries convergentes est un espace vectoriel
- 6. Théorème : Si $\sum u_n$ converge alors $u_n \underset{n \to +\infty}{\longrightarrow} 0$
- 7. Remarque : La réciproque est fausse : $\sum \ln \left(1 + \frac{1}{n}\right)$ diverge mais $\ln \left(1 + \frac{1}{n}\right) \xrightarrow[n \to +\infty]{} 0$
- 8. Définition : On dit que $\sum u_n$ converge absolument si $\sum |u_n|$ converge
- 9. Théorème : Si $\sum u_n$ converge absolument alors $\sum u_n$ converge
- 10. Remarque : La réciproque est fausse : Si $u_{2p} = -\frac{1}{p}$ et $u_{2p-1} = \frac{1}{p}$ pour tout $p \in \mathbb{N}^*$ alors $\sum u_n$ converge mais ne converge pas absolument

1.2 Cas particulier des séries de termes positifs

(Chapitre 2.2 de Suites et séries de Mohammed El Amrani) On considère $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites de termes positifs.

- 1. Lemme : $\sum u_n$ converge si et seulement si $(S_n)_{n\in\mathbb{N}}$ est majorée
- 2. Théorème : Règle de comparaison : Si $u \leq v$ alors :
 - Si $\sum v_n$ converge alors $\sum u_n$ également et $\sum_{n=0}^{+\infty} u_n \leq \sum_{n=0}^{+\infty} v_n$
 - Si $\sum u_n$ diverge alors $\sum v_n$ également
- 3. Exemple : $\sum \frac{1}{n}$ diverge donc $\sum \frac{1}{\sqrt{n}}$ également
- 4. Théorème : Règle d'équivalence : Si $u_n \sim v_n$ alors $\sum u_n$ et $\sum v_n$ sont de même nature, en cas de cas de convergence les restes sont équivalents, en cas de divergence les sommes partielles sont équivalents
- 5. Remarque : La positivité est nécessaire dans le théorème précédent : $\sum \left(\frac{(-1)^n}{\sqrt{n}} + \frac{1}{n}\right)$ diverge et $\sum \frac{(-1)^n}{\sqrt{n}}$ converge même si les termes sont équivalents (Exemple 7.6 des Contre-exemples en mathématiques de Bertrand Hauchecorne)

2

- 6. Théorème : Si $u_n = O(v_n)$ (respectivment o) et $\sum v_n$ converge alors $\sum u_n$ converge et $\sum_{k=n+1}^{+\infty} u_k = O\left(\sum_{k=n+1}^{+\infty} v_k\right)$ (respectivement o)
- 7. Remarque : Le théorème précédent reste vrai en remplaçant u_n par $|u_n|$
- 8. Théorème de comparaison série-intégrale : Soit $a \in \mathbb{R}$, $f:[a,+\infty[\longrightarrow \mathbb{R}$ positive décroissante alors $\sum f(n)$ et $\int_a^{+\infty} f(t)dt$ sont de même nature, en cas de convergence $\int_{n+1}^{+\infty} f(t)dt \le \sum_{k=n+1}^{+\infty} f(k) \le \int_{n}^{+\infty} f(t)dt$
- 9. Exemple: $\sum \frac{1}{n^{\alpha} \ln(n)^{\beta}}$ converge si et seulement si $\alpha > 1$ ou $(\alpha, \beta) \in \{1\} \times [1, +\infty[$

Règles et critères de convergence 1.3

(Chapitres 2.1, 2.3, de Suites et séries de Mohammed El Amrani)

- 1. Théorème : Critère de Cauchy : $\sum u_n$ converge si et seulement si $\forall \varepsilon \in \mathbb{R}_+^*, \exists N \in$ $\mathbb{N}, \forall n \in \mathbb{N}, \forall p \in \mathbb{N}^*, n \ge N \Rightarrow \begin{vmatrix} \sum_{k=n}^{n+p} u_k \end{vmatrix} \le \varepsilon$
- 2. Exemple : La série harmonique $\sum \frac{1}{n}$ diverge
- 3. Théorème : Règle de Cauchy : Si $\sqrt[n]{|u_n|} \underset{n \to +\infty}{\longrightarrow} \lambda$ alors :
 - Si $\lambda < 1$ alors $\sum u_n$ converge absolument Si $\lambda > 1$ alors $\sum u_n$ diverge
- 4. Exemple: $\sum \left(1 \frac{1}{n}\right)^{n^2}$ converge
- 5. Théorème : Règle de D'Alembert : Si $\left|\frac{u_{n+1}}{u_n}\right| \underset{n \to +\infty}{\longrightarrow} \lambda$ alors :
 - Si $\lambda < 1$ alors $\sum u_n$ converge absolument Si $\lambda > 1$ alors $\sum u_n$ diverge
- 6. Exemple : $\sum \frac{a^n}{n}$ converge si 0 < a < 1 et diverge si a > 1
- 7. Remarque : Si $\lambda = 1$ alors on ne peut conclure : $\sum \frac{1}{n^2}$ converge et $\sum \frac{1}{n}$ (Exemples 7.14) et 7.15 des Contre-exemples en mathématiques de Bertrand Hauchecorne)
- 8. Proposition: Si la règle de D'Alembert peut être appliqué alors celle de Cauchy également
- 9. Remarque : La réciproque est fausse : Si $u_n = \frac{1}{3^n}$ si n pair et $u_n = \frac{4}{3^n}$ si n impair alors on peut appliquer la règle de Cauchy mais pas la règle de D'Alembert (Exemple 7.16 des Contre-exemples en mathématiques de Bertrand Hauchecorne)
- 10. Proposition: Transformation d'Abel: Soit $(p,q) \in \mathbb{N}^2$ tel que $q \geq p+1$, alors $\sum_{k=p+1}^{q} u_k v_k = u_q \sum_{k=p+1}^{q} v_k + \sum_{k=p+1}^{q-1} (u_k - u_{k-1}) \sum_{j=p+1}^{k} v_j \text{ (Exercice 7.9 des Contre-exemples)}$ en mathématiques de Bertrand Hauchecorne)
- 11. Théorème d'Abel : Si $(u_n)_{n\in\mathbb{N}}$ décroissant vers 0 et $\left(\sum_{k=0}^n v_k\right)_{n\in\mathbb{N}}$ bornée alors $\sum u_n v_n$ converge (Exercice 7.9 des Contre-exemples en mathématiques de Bertrand Hauchecorne)

12. Exemple : $\sum \frac{e^{int}}{n^{\alpha}}$ converge

2 Etudes de séries entières

2.1 Séries définies avec un rayon de convergence

(Chapitre 5.1 de Suites et séries de Mohammed El Amrani) On considère $(a_n)_{n\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$.

- 1. Définition : Une série entière est une série de fonctions $\sum a_n z^n$ et la somme de la série entière est la fonction $S(z) = \sum_{n=0}^{+\infty} a_n z^n$ pour $z \in \mathbb{C}$ tel que $\sum a_n z^n$ converge
- 2. Lemme d'Abel : Soit $z_0 \in \mathbb{C}$ tel que $(a_n z_0^n)_{n \in \mathbb{N}}$ soit bornée, alors pour $z \in D(0, |z_0|)$, $\sum a_n z^n$ converge absolument
- 3. Corollaire : Il existe un unique $R \in \mathbb{R}_+^*$ (appelé rayon de convergence) tel que pour $z \in \mathbb{C}$, si |z| < R alors $\sum a_n z^n$ converge et si |z| > R alors $\sum a_n z^n$ diverge
- 4. Remarque : On a $R = \sup(r \in \mathbb{R}_+, (a_n r^n)_{n \in \mathbb{N}} \text{ born\'ee})$
- 5. Remarque : D(0,R) est le disque de convergence, C(0,R) est le cercle d'incertitude : $R\left(\sum z^n\right)=1$ mais $\sum 1^n$ diverge, $R\left(\sum \frac{z^n}{n^2}\right)=1$ mais $\sum \frac{1^n}{n^2}$ converge
- 6. Proposition : Règle de Cauchy : Si $\left|\frac{a_{n+1}}{a_n}\right| \xrightarrow[n \to +\infty]{} L \in \overline{\mathbb{R}}_+$ alors $R = \frac{1}{L}$
- 7. Exemple: $R\left(\sum \frac{z^n}{n!}\right) = +\infty$
- 8. Théorème : Formule de Hadamard : $R = \left(\limsup_{n \to +\infty} |a_n|^{\frac{1}{n}}\right)$
- 9. Exemple : $R\left(\sum 2^n z^{2n}\right) = \frac{1}{\sqrt{2}}$
- 10. Corollaire : Règle de Cauchy : Si $|a_n|^{\frac{1}{n}} \longrightarrow_{n \to +\infty} L$ alors $R = \frac{1}{L}$

2.2 Opérations et propriétés

(Chapitres 5.2, 5.3 et 5.4 de Suites et séries de Mohammed El Amrani)

- 1. Proposition : Soit $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières, alors $R(\sum (a_n + b_n) z^n) \ge \min(R_a, R_b)$ et $R(\sum c_n z^n) \ge \min(R_a, R_b)$ avec $\sum c_n z^n$ produit de Cauchy, ie $c_n = \sum_{k=0}^n a_k b_{n-k}$
- 2. Théorème : $\sum a_n z^n$ converge normalement sur tout compact de D(0,R)
- 3. Corollaire : S est continue sur $D(0,{\cal R})$
- 4. Théorème d'Abel angulaire : Si R=1 et $\sum a_n$ converge, soit $\theta_0 \in \left[0, \frac{\pi}{2}\right[, \Delta_{\theta_0}$ défini en annexe, alors $S(z) \underset{z \in \Delta_{\theta_0}}{\longrightarrow} \sum_{n=0}^{+\infty} a_n$ (Exercice 4.10 d'Analyse de Xavier Gourdon)
- 5. Remarque : La réciproque est fausse : $\sum (-1)^n$ diverge mais $\sum_{n=0}^{+\infty} (-1)^n z^n \underset{\substack{z \to +\infty \\ |z| < 1}}{\longrightarrow} \frac{1}{2}$

- 6. Théorème taubérien faible : Si R=1, il existe $S\in\mathbb{C}$ tel que $f(z)\underset{\substack{z\to +\infty\\|z|<1}}{\longrightarrow} S$ et $a_n\underset{n\to +\infty}{=}$
 - $o\left(\frac{1}{n}\right)$ alors $\sum a_n$ converge et $S = \sum_{n=0}^{+\infty} a_n$ (Exercice 4.11 d'Analyse de Xavier Gourdon)
- 7. Théorème : Si $\sum a_n x^n$ série entière entière de variable réelle alors la fonction somme S est de classe C^{∞} sur]-R,R[

2.3 Fonctions développables en série entière

(Chapitre 5.5 de Suites et séries de Mohammed El Amrani) On considère $f:X\subset\mathbb{R}\longrightarrow\mathbb{C}$.

- 1. Définition : On dit que f est développable en série entière en 0 s'il existe $\sum a_n x^n$ de rayon de convergence $R \in \mathbb{R}_+^*$ et $r \in]0,R]$ tel que $]-r,r[\subset X$ et $\forall x \in]-r,r[,f(x)=\sum_{n=0}^{+\infty}a_nx^n$
- 2. Remarque : On dit que f est développable en série entière en 0 si $f(\cdot x_0)$ l'est en 0
- 3. Exemple : Tout polynôme est développable en série entière sur $\mathbb R$ d'après la formule de Taylor
- 4. Proposition : SI f développable en série entière en $x_0 \in X$ alors f est de classe C^{∞} au voisinage de x_0
- 5. Remarque : La réciproque est fausse : $f = e^{-\frac{1}{x^2}} \mathbb{1}_{\mathbb{R}_+^*}$ est de classe C^{∞} mais non développable en série entière en 0
- 6. Application : Un développement en série entière et une interversion série intégrale permettent de calculer des intégrales
- 7. Exemple : L'intégrale $\int_0^{+\infty} \frac{x}{ch(x)} dx$ est convergente et $\int_0^{+\infty} \frac{x}{ch(x)} dx = 2 \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)^2}$

3 Des séries pour tous les gôuts

3.1 Analycité des fonctions holomorphes

(Chapitre 3.4 d'Analyse complexe d'Amar et Matheron) On considère Ω ouvert de \mathbb{C} et $f:\Omega \longrightarrow \mathbb{C}$

- 1. Théorème : Si $f \in H(D(z_0, R))$ alors $f(z) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(z_0)}{n!} (z z_0)^n$ avec convergence normale sur tout compact de $D(z_0, R)$
- 2. Corollaire : Si $f \in H(\Omega)$ alors f est développable en série entière au voisinage de chaque point, ie f est analytique
- 3. Remarque : Si $f \in H(D(0,R))$ alors les coefficients de son développement en série entière sont $\frac{f^{(n)}(0)}{n!} = \frac{1}{2i\pi} \int_{\partial D(0,r)} \frac{f(\zeta)}{\zeta^{n+1}} d\zeta$
- 4. Théorème : Si Ω connexe et $f \in H(\Omega)$ tel qu'il existe $z_0 \in \Omega$ tel que $\forall n \in \mathbb{N}, f^{(n)}(z_0) = 0$ alors f = 0

- 5. Corollaire: Principe du prolongement analytique: Si Ω connexe et $(f,g) \in H(\Omega)^2$ coïncidant sur un ouvert non vide de Ω alors f=g
- 6. Application : $H(\Omega)$ est un anneau intègre

3.2 Séries de Fourier

(Chapitre 6.3 de Suites et séries de Mohammed El Amrani) On considère $f \in CM_{2\pi}(\mathbb{R})$

- 1. Définition : Soit $n \in \mathbb{Z}$, alors le n-ième coefficient de Fourier de f est $c_n(f) =$ $\frac{1}{2\pi} \int_0^{2\pi} f(t)e^{int}dt$, et la série de Fourier de f est $S(f) = \sum c_n(f)e_n$ avec $e_n(t) = e^{int}$
- 2. Théorème de Dirichlet : Si f de classe C^1 par morceaux alors S(f) converge simplement vers \tilde{f} avec $\forall t \in \mathbb{R}, \tilde{f}(t) = \frac{f(t^-) + f(t^+)}{2}$
- 3. Remarque : La continuité de f ne suffit pas, le théorème de Banach-Steinhaus permet d'établir l'existence d'un contre-exemple
- 4. Corollaire: Si f de classe C^1 par morceaux et continue alors S(f) converge normalement vers f
- 5. Application : Formule sommatoire de Poisson : Si f de classe C^1 avec $f(x) = = |x| \to +\infty$ $O\left(\frac{1}{x^2}\right)$ et $f'(x) = O\left(\frac{1}{x^2}\right)$ alors $\forall x \in \mathbb{R}, \sum_{n \in \mathbb{Z}} f(x+n) = \sum_{n \in \mathbb{Z}} \mathcal{F}(f)(n)e^{2i\pi nx}$ (Exercice 4.6.4 d'Analyse de Xavier Gourdon)
- 6. Lemme : Soit $\delta_{\mathbb{Z}} := \sum_{n \in \mathbb{Z}} \delta_n$, alors $\delta_{\mathbb{Z}} \in S'(\mathbb{R})$ $\delta_{\mathbb{Z}} = \mathcal{F}(\delta_{\mathbb{Z}})$
- 7. Application: Inversion de Fourier: Soit $\varphi \in S(\mathbb{R})$, alors $\forall x \in \mathbb{R}, \varphi(x) = \int_{\mathbb{R}} \mathcal{F}(\varphi)(\xi) e^{2i\pi x \xi} d\xi$

Fonctions génératrices et lemme de Borel-Cantelli

(Chapitre 5.3 de Probabilités tome 1 de Jean-Yves Ouvrard et Probabilité de Barbe et Ledoux)

On considère X variable aléatoire à valeurs dans \mathbb{N} .

- 1. Définition : $G_X = \overline{+\infty}_{n=0} \mathbb{P}(X=n) s^n$
- 2. Exemple : Si $X \sim \mathcal{B}(n,p)$ alors $G_X = (sp+1-p)^n$
- 3. Théorème : G_X est continue sur [-1,1] et de classe C^∞ sur]-1,1[et $\forall n\in\mathbb{N},\mathbb{P}(X=0)$ $n) = \frac{G^{(n)}(0)}{n!}$
- 4. Corollaire : G_X caractérise la loi de X
- 5. Lemme de Borel-Cantelli : Soit $(A_n)_{n\in\mathbb{N}}$ suite d'événéments, alors :
 - Si $\sum \mathbb{P}(A_n)$ converge alors $\mathbb{P}(limsupA_n) = 0$
 - Si les A_n sont indépendants et $\sum \mathbb{P}(A_n)$ diverge alors $\mathbb{P}(\limsup_{n \to +\infty} A_n) = 1$
- 6. Corollaire : Soit $(X_n)_{n\in\mathbb{N}}$ suite de variables aléatoires et X une variable aléatoire, alors :
 - Si pour tout $\varepsilon \in \mathbb{R}_+^*$, $\sum \mathbb{P}(|X_n X| \ge \varepsilon)$ converge alors $x_n \xrightarrow[n \to +\infty]{PS} X$

— Si les X_n sont mutuellement indépendants alors $X_n \xrightarrow[n \to +\infty]{PS}$ si et seulement si pour tout $\varepsilon \in \mathbb{R}_+^*$, $\sum \mathbb{P}(|X_n| \ge \varepsilon) < +\infty$