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Introduction of Malliavin calculus

Malliavin calculus: To extend classical differential calculus to stochastic
processes.

W.r.t. the Brownian motion:

Integration by parts,

Chain rule,

Clark-Ocone formula.

W.r.t jump processes: Different constructions and interests.

To add a jump at an instant and by chaos expansion,

To derive w.r.t. jump times,

To derive w.r.t. jump heights.
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1. Backward stochastic differential equation

Yt = ξ +

∫ T

t
f (s,Ys ,Zs ,Us)ds −

∫ T

t
ZsdWs −

∫ T

t

∫
E
Us(e)π̃(ds, de)

Equation: To find the unknown (Y ,Z ,U)

Differential: We know the dynamics of the process Y .

Stochastic: The parameters and the unknowns are stochastic processes.

Backward: To fix the terminal value YT = ξ and (Z ,U) are useful to
get an adapted process Y .
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1.A. BSDE driven by a Brownian motion
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1.A. BSDE driven by a Brownian motion

Yt = ξ +

∫ T

t
f (s,Ys ,Zs)ds −

∫ T

t
ZsdWs

Notations:

T ∈ R∗
+ a time horizon,

(Ω,F ,P) a probability
space,

W a d-dimensional
Brownian motion and
(Ft)0≤t≤T the augmented
filtration generated by W .

Parameters:

ξ terminal condition,

f (ω, s, y , z) progressively
measurable.

Unknowns:

Y a continuous adapted R-valued process,

Z a predictable Rd -valued process s.t.
∫ T
0 |Zt |2dt < +∞ P− a.s..
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1.A. BSDE driven by a Brownian motion

References:

Ph. Briand et al., Lp solutions of backward stochastic differential
equations, in: Stochastic Process. Appl. 108.1 (2003).

Existence and unicity of a solution

If ξ, f (·, 0) are integrable, the driver f is monotone w.r.t. y and Lipschitz
w.r.t. z then there is a unique solution (Y ,Z ) to the BSDE.

D. Nualart, The Malliavin calculus and related topics, Probability
and its Applications (New York), Springer-Verlag, 2006,

T. Mastrolia, D. Possamäı, and A. Réveillac, On the Malliavin
differentiability of BSDEs, in: Ann. Inst. Henri Poincaré Probab.
Stat. 53.1 (2017).

Formal link between Y and Z

DtYt = Zt for any 0 ≤ t ≤ T .
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1.A. BSDE driven by a Brownian motion

Yt = ξ +

∫ T

t
f (s,Ys ,Zs)ds −

∫ T

t
ZsdWs

Singular terminal condition : P(ξ = +∞) > 0

References :

A. Popier, Limit behaviour of BSDE with jumps and with singular
terminal condition, in: ESAIM: PS 20 (2016),

T. Kruse and A. Popier, Minimal supersolutions for BSDEs with
singular terminal condition and application to optimal position
targeting, in: Stochastic Processes and their Applications 126.9
(2016).

Problem

We get a unique minimal supersolution (Y ,Z ) : lim inf
t→T

Yt ≥ ξ.

But do we have the process Y is continuous at the terminal instant ?
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1.A. BSDE driven by a Brownian motion

Markovian framework:

f (ω, t, y , z) = f (t,Xt(ω), y , z), ξ = g(XT ),

Xt = x0 +

∫ t

0
b(s,Xs)ds +

∫ t

0
σ(s,Xs)dWs , 0 ≤ t ≤ T

Assumptions on X :

σ bounded continuous w.r.t. (s, x), class C 2 w.r.t. x with bounded
first derivatives,

b bounded continuous w.r.t. (s, x), class C 1 w.r.t. x with
polynomial growth derivatives,

σσ∗ uniformly elliptic and bounded second derivatives w.r.t. x .

Malliavin differentiability of the process X

The unique solution X is in S∞((0,T ),Rm),

X i
t ∈ D1,∞ for any t ∈ [0,T ] and i ∈ {1, ...,m},

X admits a density satisfying Gaussian estimates.
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1.A. BSDE driven by a Brownian motion

Assumptions on f :

f (t, x , 0, 0) ≥ 0 for any (t, x).

f Lipschitz continuous w.r.t. z .

f continuous and monotone w.r.t. y .

Growth condition: for q > 1

f (t, x , y , z)− f (t, x , 0, z) ≤ −η(t, x)|y |q

with 1
η(s,x) ≤ C (1 + |x |ℓ).

Assumptions on ξ = g(XT ):

g : R −→ R+ ∪ {+∞}.
S = {x ∈ Rm, g(x) = +∞} closed.

g locally continuously differentiable on Sc

ξ = g(XT ) locally integrable.

Problem

ξ = g(XT ) is not Malliavin differentiable.
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1.A. BSDE driven by a Brownian motion

ξn = φn(ξ) = φn(g(XT ))

with (φn)n∈N a well-chosen regularizing sequence: a non-decreasing
sequence of smooth non-decreasing functions such that

φn(u) =

{
u if u ≤ n − 1
n if u ≥ n + 1

, u ∧ (n − 1) ≤ φn(u) ≤ u ∧ n.

Malliavin differentiability of the terminal condition

For any n ∈ N, ξn ∈ D1,∞ and Dξn = GnDXT with Gn a bounded
random variable.

Idea of the proof: Chain rule (Lipschitz version).
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1.A. BSDE driven by a Brownian motion

Truncated BSDE:

Y n
t = ξn +

∫ T

t
f n(s,Xs ,Y

n
s ,Z

n
s )ds −

∫ T

t
Zn
s dWs , 0 ≤ t ≤ T

with f n(s, x , y , z) = f (s, x , y , z)− f (s, x , 0, 0) + φn(f (s, x , 0, 0)).

Convergence of (Y n,Zn)n∈N to (Y ,Z ).

Under our assumptions:

Unique solution (Y n,Zn) in Sp(0,T )× Hp(0,T ) for any p > 1.

(Y n,Zn)n∈N converges increasingly to (Y ,Z ) in
S∞(0,T−)× H∞(0,T−).

For any 0 ≤ t ≤ r < T ,

Yt = Yr +

∫ r

t
f (s,Xs ,Ys ,Zs)ds −

∫ r

t
ZsdWs .

(Y ,Z ) is the minimal supersolution.
In particular lim inf

t→T
Yt ≥ ξ.
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1.A. BSDE driven by a Brownian motion

Yt = ξ +

∫ T

t
f (s,Xs ,Ys ,Zs)ds −

∫ T

t
ZsdWs , 0 ≤ t ≤ T

Assumptions on f :

f of class C 1 w.r.t. (x , y , z),
∂f

∂y
locally (w.r.t. y) uniformly (w.r.t.

s, x , z) bounded and, for any i ∈ {1, ...,m}, ∂f
∂xi

locally (w.r.t. y)

uniformly (w.r.t. s, x , z) polynomial growth.

Evoke that for q > 1

f (t, x , y , z)− f (t, x , 0, z) ≤ −η(t, x)|y |q.

For q ≤ 3, with 0 ≤ α ≤ 2(q−1)
q+1 ,

|f (s, x , 0, z)− f (s, x , 0, 0)| ≤ C (1 + |x |ℓ)|z |α.
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1.A. BSDE driven by a Brownian motion

Continuity of the process Y in the terminal instant T

lim inf
t→T

Yt = ξ P− a.s.

Ideas of the proof:

For any φ ∈ C∞
c (Rm,R) with Supp(φ) ⊂ Sc , by Itô’s formula

E[φ(XT )Y
n
T ] = E[φ(Xt)Y

n
t ] + E

[∫ T

t
Φ(s,Xs ,Y

n
s )ds

]
− E

[∫ T

0
φ(Xs)(f (s,Xs , 0,Z

n
s )− f (s,Xs , 0, 0))ds

]
+ E

[∫ T

t
Zn
s ∇φ(Xs)σ(s,Xs)ds

]
.

(Y n,Zn) Malliavin differentiable, DtY
n
t = Zn

t , IBP and density of X .

E[φ(XT )ξ] ≥ E[φ(XT ) lim inft→T Yt ] & a.s. lim inf
t→T

Yt ≥ ξ.
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1.A. BSDE driven by a Brownian motion

Question

Do we have (Y ,Z ) Malliavin differentiable and DY continuous ?

Particular BSDE in liquidation problem:

Yt = ξ +

∫ T

t

(
−(p − 1)

|Ys |q−1Ys

ηq−1
s

ds + γs

)
ds −

∫ T

t
ZsdWs

Assumptions:

ξ = +∞, 1
p + 1

q = 1,

ηt = η0+
∫ t
0 bηs ds+

∫ t
0 σ

η
s dWs ,

0 < η∗ ≤ ηs < η∗,

bη, ση bounded prog. meas.,

γ progressively measurable,

0 ≤ γ ≤ γ∗.

Convergence of (Y n,Zn)n∈N and continuity of Y

(Y n,Zn)n∈N converges to (Y ,Z ),

(Y ,Z ) the minimal solution of the BSDE: lim
t→T

Yt = +∞.
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1.A. BSDE driven by a Brownian motion

Yt = (+∞) +

∫ T

t

(
−(p − 1)

|Ys |q−1Ys

ηq−1
s

ds + γs

)
ds −

∫ T

t
ZsdWs

Assumptions: bη, η and γ are Malliavin differentiable with suitable
standard integrability.

Malliavin derivatives and convergence

(Y ,Z ) Malliavin differentiable,

lim
n→+∞

sup
0≤θ≤T

E
[
sup

0≤t≤τ
|DθYt − DθY

n
t |ℓ
]
= 0, τ ∈ [0,T ) and ℓ > 1.

Limit behavior of Malliavin derivative

If η is deterministic then lim
t→T

|DθYt | = 0 =: Dθξ.

On {DθηT ̸= 0}, lim
t→T

|DθYt | = +∞ ̸= Dθξ.
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1.A. BSDE driven by a Brownian motion

Liquidation problem: To minimize

J(t,A) = E
[∫ T

t
(ηs |as |p + γs |As |p)ds + ξ|AT |p

∣∣∣∣Ft

]
over all progressively measurable processes A that satisfy the dynamics

As = x +

∫ s

t
audu and the liquidation constraint AT1{ξ=+∞} = 0.

Minimizer of the functional

A minimizer of J is given by A∗
s = x exp

(
−
∫ s

t

(
Yu

ηu

)q−1

du

)
.

The value function is given by v(t, x) := J(t,A∗
t ) = |x |pYt .
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1.A. BSDE driven by a Brownian motion

J(t,A) = E
[∫ T

t
(ηs |as |p + γs |As |p)ds + ξ|AT |p

∣∣∣∣Ft

]

A∗
s = x exp

(
−
∫ s

t

(
Yu

ηu

)q−1

du

)
, v(t, x) = |x |pYt

Consequence

lim
t→T

v(t, x) = |x |pξ = v(T , x) and there is no extra cost.

Consequence

If ξ = +∞ then the optimal quantity A∗ is Malliavin differentiable and

DθA
∗
s = −(q − 1)A∗

s

∫ s

t

∣∣∣∣Yu

ηu

∣∣∣∣q−2

sign(Yu)Dθ

(
Yu

ηu

)
du.

Interest: To compute the sensitivity in this liquidation problem.
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1.A. BSDE driven by a Brownian motion

Two papers with L. Denis and A. Popier:

D. Cacitti-Holland, L. Denis, and A. Popier, Growth condition on
the generator of BSDE with singular terminal value ensuring
continuity up to terminal time, in: Stochastic Processes and their
Applications (2025), vol 183,

D. Cacitti-Holland, L. Denis, A. Popier, Malliavin derivative and
sensitivity for optimal liquidation, 2025 submitted,
https://hal.science/hal-05072816.

Dorian Cacitti-Holland Malliavin calculus and applications for SDE



1.B. BSDE driven by a Poisson process
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1.B. BSDE driven by a Poisson process

Yt = ξ +

∫ T

t
f (s,Ys ,Us)ds −

∫ T

t
UsdÑs

Notations: N a Poisson process with intensity λ, Ñ the compensated
process and (Ft)0≤t≤T the filtration generated by N.

Problem

Does Y have a continuity property at the terminal instant T ?

Parameters:

ξ = g(NT ) singular terminal condition with a right barrier

g(x) = (+∞)1{x≥x0} + φ(x)1{x<x0},

f (s, y , u) = −y |y | the quadratic case.

Unknowns:

Y a càdlàg progressively measurable process,

U a predictable process.
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1.B. BSDE driven by a Poisson process

References:

T. Kruse and A. Popier, Minimal supersolutions for BSDEs with
singular terminal condition and application to optimal position
targeting, in: Stochastic Processes and their Applications 126.9
(2016),

A. Popier, Limit behaviour of BSDE with jumps and with singular
terminal condition, in: ESAIM: PS 20 (2016),

G. Barles, R. Buckdahn, and É. Pardoux, Backward stochastic
differential equations and integral-partial differential equations, in:
Stochastics Stochastics Rep.60.1-2 (1997).
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1.B. BSDE driven by a Poisson process

Yt = g(NT )−
∫ T

t
Ys |Ys |ds −

∫ T

t
UsdÑs

Associated IPDE:{
∂u

∂t
(t, x)− λu(t, x)− u(t, x)|u(t, x)| = −λu(t, x + 1)

u(T , x) = g(x)

Theorem

For any t ∈ [0,T ],Yt = u(t,Nt) =
1

T − t
1{t<T} + g(NT )1{t=T}.

Ideas of the proof:

Y n
t = un(t,Nt) with ξ

n = n ∧ g(NT ).

By Riccati’s equations, un(t, x) is obtained for x ∈ [x0,+∞) then
x ∈ [x0 − k − 1, x0 − k) by induction on k ∈ N.
u(t, x) = limn→+∞ un(t, x).

Dorian Cacitti-Holland Malliavin calculus and applications for SDE



1.B. BSDE driven by a Poisson process

Yt = g(NT )−
∫ T

t
Ys |Ys |ds −

∫ T

t
UsdÑs

Consequence

lim
t→T

Yt = +∞ ̸= g(NT ).

Other cases

With a term

∫ T

t
ZsdWs : lim

t→T
Yt = +∞ ̸= g(NT ).

If f (y) = −y |y |q−1 and 1 < q < 2: lim
t→T

Yt = +∞ ̸= g(NT ).

If f (y) = −y |y |q−1 and q > 2: lim
t→T

Yt = g(NT ).

With a left barrier g(x) = (+∞)1{x≤x0} + φ(x)1{x>x0}:
lim
t→T

Yt = g(NT ).
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1.B. BSDE driven by a Poisson process

Yt = g(NT )−
∫ T

t
Ys |Ys |q−1ds −

∫ T

t
UsdÑs

Liquidation problem: To minimize

J(t,A) = E
[∫ T

t
|as |pds + g(NT )|AT |p

∣∣∣∣Ft

]
, As = x +

∫ s

t
audu

Minimizer of the functional

The value function is given by v(t, x) = |x |pYt .

Consequence

There is an extra cost if and only if p ≥ 2 i.e. q ≤ 2.

Paper: D. Cacitti-Holland, L. Denis, and A. Popier, Continuity problem
for BSDE and IPDE with singular terminal condition, in: Journal of
Mathematical Analysis and Applications (2024).
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2. Malliavin calculus with respect to a Hawkes process
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2. Malliavin calculus with respect to a Hawkes process

Hawkes process: Self-exciting point process N where past events
increase the likelihood of future events.
Intensity of a Hawkes process: λ∗ satisfies

λ∗(t) = λ+

∫
(0,t)

µ(t − s)dNs = λ+

Nt−∑
i=1

µ(t − Ti ).

Self-exciting function: µ ∈ L1((0,+∞),R+) s.t.

∫ +∞

0
µ(t)dt < 1.
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2. Malliavin calculus with respect to a Hawkes process

References:

P. Laub, Y. Lee, and T. Taimre, The Elements of Hawkes Processes,
Jan. 2021,

M. Costa et al., Renewal in Hawkes processes with self-excitation
and inhibition, in: Advances in Applied Probability 52.3, 2020,

E. A. Carlen and E. Pardoux, Differential Calculus and Integration
by Parts on Poisson Space, in: Stochastics, Algebra and Analysis in
Classical and Quantum Dynamics: Proceedings of the IVth
French-German Encounter on Mathematics and Physics, 1990,

N. Bouleau and L. Denis, Dirichlet forms methods for Poisson point
measures and Lévy processes, vol. 76, Probability Theory and
Stochastic Modelling, Springer, 2015.
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2. Malliavin calculus with respect to a Hawkes process

Notations:

Ω the set of càdlàg real functions on [0,+∞),

Nt(ω) the number of jumps between 0 and t ∈ [0,+∞) of ω ∈ Ω,

P the probability measure such that N is a Hawkes process with
intensity

λ∗(t) = λ+

∫ t

0
µ(t − s)dNs , t ≥ 0,

with λ ∈ R∗
+, µ class C 1 on [0,+∞) and ∥µ∥1 < 1,

T ∈ (0,+∞) a terminal instant,

F = (Ft)0≤t≤T the filtration generated by N,

(Ti )i∈N∗ the jump instants of N.
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2.A. State of the art

Existing Malliavin calculus for Hawkes processes:

C. Hillairet, A. Réveillac, and M. Rosenbaum, An expansion formula
for Hawkes processes and application to cyber-insurance derivatives ,
in: Stochastic Processes and their Applications 160, 2023,

C. Hillairet et al., The Malliavin-Stein method for Hawkes
functionals, in: ALEA Latin American Journal of Probability and
Mathematical Statistics 19.2, 2022.

Based on representation of Hawkes process w.r.t. Poisson measure and
Malliavin calculus on Poisson space. Following the Picard’s approach
(creation operator and chaos representation).

Idea of our construction: To perturb the jump times and differentiate
w.r.t. this perturbation to get a directional derivative then a Malliavin
derivative satisfying the chain rule.

Dorian Cacitti-Holland Malliavin calculus and applications for SDE



2.B. Construction of a Malliavin-Hawkes calculus

Perturbation by a reparamaterization τε :

τε(t) = t + ε

∫ t

0
m(s)ds = t + εm̂(t)

preserving the number and the order of jump times with ε ∈ R∗
+ and

m ∈ H =

{
f ∈ L2(0,T ),

∫ T

0
f (s)ds = 0

}
Cameron-Martin space.

Directional derivative:

DmF = lim
ε→0

F ◦ Tε − F

ε
, Tε(ω) = ω ◦ τε

D0
m the set of F ∈ L2(Ω) s.t. this limit exists in L2(Ω).

Derivative of the jump instants T i := Ti ∧ T of the Hawkes process N

T i := Ti ∧ T ∈ D0
m and DmT i = −m̂(T i ) = −

∫ T i

0
m(s)ds.

Idea of the proof: TεT j(ω)− T j(ω) + εm̂(T j)(ω) = o(ε).
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2.B. Construction of a Malliavin-Hawkes calculus

DmF = lim
ε→0

F ◦ Tε − F

ε

Smooth random variables: S the set of

F = a1{NT=0} +
d∑

n=1

fn(T1, ...,Tn)1{NT=n}

where fn smooth with bounded derivatives of any order.

Differentiability of smooth random variables

S ⊂ D0
m and, for any F ∈ S,

DmF = −
d∑

n=1

n∑
j=1

∂fn
∂tj

(T1, ...,Tn)m̂(Tj)1{NT=n}.
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2.B. Construction of a Malliavin-Hawkes calculus

Derivative of a product

For any F ,G ∈ S,FG ∈ S ⊂ D0
m and Dm(FG ) = FDmG + GDmF .

Chain rule

For any ϕ ∈ C∞(Rn;R) and F1, ...,Fn ∈ S, ϕ(F1, ...,Fn) ∈ S ⊂ D0
m and

Dmϕ(F1, · · · ,Fn) =
n∑

j=1

∂ϕ

∂xj
(F1, · · · ,Fn)DmFj .

Idea of the proofs : To use the explicit expression of D on S.
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2.B. Construction of a Malliavin-Hawkes calculus

Integration by parts

For any F ∈ S,

E[DmF ] = E

[(∫
(0,T ]

(ψ(m, t) + m̂(t)µ(T − t) +m(t))dNt

)
F

]

where m̂ is the previous antiderivative of m and

ψ(m, t) =
1

λ∗(t)

∫
(0,t)

(m̂(t)− m̂(s))µ′(t − s)dNs .

Ideas of the proof: PT −1
ε ≪ P with explicit density G ε which satisfies

E[DmF ] = lim
ε→0

E
[
TεF − F

ε

]
= lim

ε→0
E
[
G ε − 1

ε
F

]
= E

[
∂G ε

∂ε |ε=0
F

]
.
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2.B. Construction of a Malliavin-Hawkes calculus

Definition of the domain and the directional derivative

The quadratic bilinear form

Em(F ,G ) = E[DmFDmG ], F ,G ∈ S,

is closable on L2(Ω).

We denote (D1,2
m , Em) its closed extension and (D1,2

m ,Dm) the extension
of (S,Dm).

The previous formulas remain valid for any F ∈ D1,2
m :

Derivative of a product, chain rule, integration by parts.
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2.B. Construction of a Malliavin-Hawkes calculus

Domain: with (mi )i∈N a Hilbert basis of H,

D1,2 =

{
F ∈

⋂
i∈N

D1,2
mi
, E(F ) :=

+∞∑
i=0

∥DmiF∥
2
L2(Ω) < +∞

}
.

Malliavin derivative: for any F ∈ D1,2,

DF =
+∞∑
i=0

DmiFmi ∈ L2(Ω;H).

In particular ⟨DF ,m⟩ = DmF for any m ∈ H.

Explicit expression

For any F ∈ S,

DF =
d∑

n=1

n∑
j=1

∂fn
∂tj

(T1, · · · ,Tn)

(
Tj

T
− 1[0,Tj ]

)
1{NT=n}.
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2.B. Construction of a Malliavin-Hawkes calculus

Domain of the divergence operator: Dom(δ) is the set of
u ∈ L2(Ω;H) such that there exists c ∈ R∗

+ such that

∀F ∈ D1,2,

∣∣∣∣E [∫ T

0
DtFutdt

]∣∣∣∣ ≤ c∥F∥D1,2

with

∥F∥2D1,2 = ∥F∥2L2(Ω) + E(F ) = ∥F∥2L2(Ω) + ∥DF∥2L2(Ω;H).

Divergence operator: for any u ∈ Dom(δ), δ(u) is the unique element
in L2(Ω) such that

∀F ∈ D1,2, E[δ(u)F ] = E[⟨u,DF ⟩H].
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2.B. Construction of a Malliavin-Hawkes calculus

Explicit expression

For any u predictable process in L2(Ω;H),

δ(u) =

∫
(0,T ]

(ψ(u, t) + û(t)µ(T − t) + u(t))dNt

where û(t) =

∫ t

0
u(s)ds and

ψ(u, t) =
1

λ∗(t)

∫
(0,t)

(û(t)− û(s))µ′(t − s)dNs .

We do not have the Clark-Ocone formula because NT ∈ D1,2 with
DNT = 0 but NT ̸= E[NT ].
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2.C. Absolute continuity criterion

Theorem

For any F = (F1, · · · ,Fd) ∈ (D1,2)d and

Γ[F ] = (Γ[Fi ,Fj ])1≤i ,j≤d = (⟨DFi ,DFj⟩H)1≤i ,j≤d ,

the image measure F∗[det(Γ[F ]).P] is absolutely continuous with respect
to the Lebesgue measure on Rd :

F∗[det(Γ[F ]).P] ≪ λd .

Corollary

For any F = (F1, · · · ,Fd) ∈ (D1,2)d , conditionally to Γ[F ] ∈ GLd(R), the
law of F is absolutely continuous with respect to the Lebesgue measure
on Rd :

PF (· | Γ[F ] ∈ GLd(R)) ≪ λd .
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2.D. SDE driven by a Hawkes process

SDE driven by a Hawkes process:

Xt = x +

∫ t

0
f (t,Xt)dt +

∫ t

0
g(t,Xt−)dNt

Assumptions:

For any t ∈ [0,T ], the maps f (t, ·), g(t, ·) are of class C 1.

supt,x(|∇x f (t, x)|+ |∇xg(t, x)|) < +∞.

For any x ∈ Rd , the map g(·, x) is differentiable.

Proposition

XT ∈ D1,2 and we have an explicit expression of DXT and Γ[XT ].

Dorian Cacitti-Holland Malliavin calculus and applications for SDE



2.D. SDE driven by a Hawkes process

Xt = x +

∫ t

0
f (t,Xt)dt +

∫ t

0
g(t,Xt−)dNt

Auxiliary function:

φ(t, x) = f (t, x + g(t, x))− (Id +∇xg(t, x))f (t, x)−
∂g

∂t
(t, x).

Theorem

If d = 1 and φ(t, x) ̸= 0 for any (t, x) ∈ [0,T ]×R then, conditionally to
{NT ≥ 1}, the law XT is absolutely continuous with respect to the
Lebesgue measure on R:

PXT
(· | NT ≥ 1) ≪ λ1.

We also have a theorem for d ≥ 1 with a spanning condition and
conditionally to the fact that the process N admits enough jumps.
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2.E. Greek computation

Dynamics of an asset price:

dSt = rStdt + σSt−dÑt = (r − σλ∗(t))dt + σSt−dNt , S0 = x0

Goal: To compute the derivatives of E[ϕ(ST )] w.r.t. parameters x0, r , σ
to get the sensitivity of our problem.

Expression of Delta

If m̂(t) ̸= 0 for any t ∈ (0,T ) then

∂

∂x0
E[1{NT>0}ϕ(ST )] = E

[
ϕ(ST )δ

(
m1{NT>0}

∂ST
∂x0

DmST

)]

with explicit expressions of δ and DmST .

Paper : D. Cacitti-Holland, L. Denis and A. Popier, Malliavin calculus
with respect to a Hawkes process, forthcoming paper.
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Perspectives

⋆ Simulations of Greeks in a financial model with a Hawkes
process: Choice of the function m.

⋆ Malliavin calculus with a non linear Hawkes process with a non
constant baseline:

λ∗(t) = λt + γ

(∫
(0,t)

µ(t − s)dNs

)
.

⋆ Continuity problem for BSDEs with jumps and singular terminal
condition: Driven by a Poisson measure, with an infinity of jumps
(positive or negative). To use a Malliavin calculus w.r.t. jump height.

⋆ Multidimensional BSDE with singular terminal condition : To
define the problem. Procope Project in progress.
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Thank you for your attention.
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