Question de cours. Montrer que $\bigcup_{n\in\mathbb{N}^*} \mathbb{U}_n$ est un groupe pour une loi de composition interne que l'on précisera.

Réponse. On considère la loi \times . Montrer que $\bigcup_{n\in\mathbb{N}^*} \mathbb{U}_n$ est un sous-groupe de \mathbb{C}^* pour cette loi.

- Nous avons bien $\bigcup_{n\in\mathbb{N}^*} \mathbb{U}_n \subset \mathbb{C}^*$.
- Nous avons bien $1 \in \bigcup_{n \in \mathbb{N}^*} \mathbb{U}_n$ parce que $1^1 = 1$ par exemple.
- Soient $z, w \in \bigcup_{n \in \mathbb{N}^*} \mathbb{U}_n$. Alors il existe $n, m \in \mathbb{N}^*$ tels que $z^n = 1 = w^m$. En particulier

$$(zw^{-1})^{nm} = (z^n)^m (w^m)^{-n} = 1.$$

Donc $zw^{-1} \in \mathbb{U}_{nm} \subset \bigcup_{k \in \mathbb{N}^*} \mathbb{U}_k$.

Par conséquent $\bigcup_{n\in\mathbb{N}^*}\mathbb{U}_n$ est un sous-groupe de \mathbb{C}^* . En particulier il s'agit d'un groupe.

Exercice. On considère un morphisme d'anneaux $f:\mathbb{C}\longrightarrow\mathbb{C}$ tel que

$$\forall x \in \mathbb{R}, \quad f(x) = x.$$

Montrer que f est l'identité ou la conjugaison complexe.

Réponse. Nous avons

$$f(i)^2 = f(i^2) = f(-1) = -1.$$

Donc $f(i) \in \{i, -i\}$. Si f(i) = i alors

$$\forall x + iy \in \mathbb{C}, \quad f(x + iy) = f(x) + f(i)f(y) = x + iy,$$

d'où f est l'identité. Sinon f(i) = -i et dans ce cas

$$\forall x + iy \in \mathbb{C}, \quad f(x + iy) = f(x) + f(i)f(y) = x - iy = \overline{x + iy},$$

d'où f est la conjugaison complexe.

Exercice. On considère pour $a, b \in \mathbb{R}$,

$$a \perp b = a + b - 1$$
, $a \cdot b = ab - a - b + 2$.

Montrer que $(\mathbb{R}, \perp, \cdot)$ est un corps.

Réponse. On commence par vérifier que (\mathbb{R}, \perp) est un groupe abélien.

- \bullet \perp est bien une loi de composition interne.
- \perp est associative : pour tout $a, b, c \in \mathbb{R}$,

$$a \perp (b \perp c) = a \perp (b+c-1) = a+b+c-1-1 = a+b+c-2 = (a \perp b) \perp c.$$

• \perp est commutative : pour tout $a, b \in \mathbb{R}$,

$$a \perp b = a + b - 1 = b + a - 1 = b \perp a.$$

• \perp admet 1 comme élément neutre : pour tout $a \in \mathbb{R}$,

$$a \perp 1 = a + 1 - 1 = a$$
.

• \perp est inversible : pour tout $a \in \mathbb{R}$,

$$a \perp (-a) = a - a + 1 = 1.$$

On vérifie ensuite que $(\mathbb{R}, \perp, \cdot)$ est un corps.

• · est commutative : pour tout $a, b \in \mathbb{R}$,

$$a \cdot b = ab - a - b + 2 = ba - b - a + 2 = b \cdot a$$
.

- · est associative : pour tout $a,b,c\in\mathbb{R},$ $a\cdot(b\cdot c)=a\cdot(bc-b-c+2)=a(bc-b-c+2)-a-(bc-b-c+2)+2=abc-ab-ac-bc+a+b+c=(a\cdot b)\cdot c.$
- · admet 2 comme élément neutre : pour tout $a \in \mathbb{R}$,

$$a \cdot 2 = 2a - a - 2 + 2 = a$$
.

• · est distributive sur \bot : pour tout $a, b, c \in \mathbb{R}$,

$$a \cdot (b \perp c) = a(b \perp c) - a - b \perp c + 2 = a(b + c - 1) - a - b - c + 1 + 2 = ab + ac - 2a - b - c + 3$$
 et

$$(a \cdot b) \perp (a \cdot c) = a \cdot b + a \cdot c - 1 = ab - a - b + 2 + ac - a - c + 2 - 1 = ab + ac - 2a - b - c + 3.$$

Done

$$a \cdot (b \perp c) = (a \cdot b) \perp (a \cdot c).$$

• · est inversible: pour tout $a \in \mathbb{R} \setminus \{1\}$, on cherche $b \in \mathbb{R}$ tel que

$$2 = a \cdot b = ab - a - b + 2$$

i.e. a = ab - b = b(a - 1) i.e., comme $a \neq 1, b = \frac{a}{a - 1}$. Par conséquent

$$a \cdot \frac{a}{a-1} = a \frac{a}{a-1} - a - \frac{a}{a-1} + 2 = \frac{a^2 - a(a-1) - a + 2(a-1)}{a-1} = 2.$$

Question de cours. Expliciter les sous-groupes de $(\mathbb{Z}, +)$.

Réponse. Montrons que les sous groupes de \mathbb{Z} sont exactement les $n\mathbb{Z}$ pour $n \in \mathbb{N}$. On procède par double inclusions.

- Soit $n \in \mathbb{N}$. Alors:
 - $\star \ n\mathbb{Z} \subset \mathbb{Z}.$
 - $\star 0 = n \times 0 \in n\mathbb{Z}.$
 - \star Soient $x, y \in n\mathbb{Z}$. Alors il existe $k, \ell \in \mathbb{Z}$ tels que x = nk et $y = n\ell$. En particulier

$$x - y = n(k - \ell) \in \mathbb{Z}.$$

Par conséquent $n\mathbb{Z}$ est un sous-groupe de \mathbb{Z} .

• Réciproquement on considère H un sous-groupe de \mathbb{Z} . Si $H = \{0\}$ alors H est un sous-groupe de \mathbb{Z} . Sinon il existe $x \in H$ tel que $x \neq 0$. Si x < 0 alors, comme H est un sous-groupe, $-x \in H$. Ainsi

$$\{x \in \mathbb{N}^*, x \in H\}$$

est un sous-ensemble non vide de N. Donc il admet un plus petit élément

$$n := \min\{x \in \mathbb{N}^*, \quad x \in H\}.$$

En particulier $n \in H$. Donc, comme H est un sous-groupe, $n\mathbb{Z} \subset H$. Réciproquement soit $x \in H$. Si x = 0 alors $x = n \times 0 \in n\mathbb{Z}$. Si x > 0 alors on effectue la division euclidienne de x par n: il existe $q, r \in \mathbb{N}$ tels que

$$x = qn + r$$
, $0 \le r < n$.

Si $r \neq 0$ alors 0 < r < n et $r = x - qn \in H$ ce qui contredit la définition de n. Donc r = 0 et $x = qn \in n\mathbb{Z}$. Si x < 0 alors -x > 0 et ainsi $-x \in n\mathbb{Z}$, d'où $x \in n\mathbb{Z}$. Par conséquent

$$H = n\mathbb{Z}$$
.

Exercice. On considère $A = \mathcal{M}_2(\mathbb{Z})$ l'ensemble des matrices carrées d'ordre 2 à coefficients entiers.

- 1. Montrer que A est un anneau non commutatif.
- 2. Montrer que les éléments inversibles de A sont ceux de déterminants ± 1 . On pourra commencer par rappeler la formule du déterminant pour les matrices carrées d'ordre 2.
- 3. Les applications trace et déterminant sont-elles des morphismes d'anneaux de A vers \mathbb{Z} ?

Réponse.

- 1. Montrons que A est un sous-anneau de $\mathcal{M}_2(\mathcal{R})$.
 - Nous avons bien $I_2 \in A$.
 - Soient $M, N \in A$. Alors $M N \in A$ et $MN \in A$.

Donc A est un sous-anneau de $\mathcal{M}_2(\mathcal{R})$, en particulier un anneau. Il n'est pas commutatif car par exemple

$$\left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right) \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right) \neq \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right).$$

2. Soit $M \in A^{\times}$. Alors il existe $N \in A$ tel que $MN = I_2$. Ainsi $\det(M) \det(N) = 1$ avec $\det(M), \det(N) \in \mathbb{Z}$. Donc $\det(M) = \pm 1$. Réciproquement soit $M \in A$ tel que $\det(M) = \pm 1$. Ainsi M est inversible et, en notant $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$,

$$M^{-1} = \frac{1}{\det(M)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \pm \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \in A.$$

Donc $M \in A^{\times}$.

3. Il n'agit pas de morphismes d'anneaux car par exemple

$$\operatorname{tr}\left(\left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right)\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right)\right) = \operatorname{tr}\left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right) = 1 \neq 0 = \operatorname{tr}\left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right)\operatorname{tr}\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right)$$

et

$$\det\left(\left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right) + \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right)\right) = \det\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) = -1 \neq 0 = \det\left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right) + \det\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right).$$

Exercice. On considère les corps

$$C_1=\mathbb{Q}[i\sqrt{2}]=\{a+bi\sqrt{2},\quad a,b\in\mathbb{Q}\},\quad C_2=\mathbb{Q}[i\sqrt{2}]=\{a+b\sqrt{2},\quad a,b\in\mathbb{Q}\}.$$

1. Déterminer $x,y\in \mathbb{Q}[i\sqrt{2}]$ tels que

$$-1 = x^2 + y^2$$
.

2. En déduire que les corps $\mathbb{Q}[i\sqrt{2}]$ et $\mathbb{Q}[\sqrt{2}]$ ne sont pas isomorphes.

Réponse.

1. Nous avons $(i\sqrt{2})^2 = -2$ donc

$$-1 = 1^2 + (i\sqrt{2})^2.$$

2. On suppose par l'absurde qu'il existe une isomorphisme de corps φ de $\mathbb{Q}[i\sqrt{2}]$ vers $\mathbb{Q}[\sqrt{2}]$. Alors

$$-1 = -1\varphi(1) = \varphi(-1) = \varphi(x^2 + y^2) = \varphi(x)^2 + \varphi(y)^2 \ge 0$$

ce qui est absurde. Par conséquent il n'existe pas de morphisme d'anneaux entre les corps $\mathbb{Q}[i\sqrt{2}]$ et $\mathbb{Q}[\sqrt{2}]$.

Question de cours. Montrer que $\mathbb{Q}[\sqrt{3}] = \{a + b\sqrt{3}, a, b \in \mathbb{Q}\}$ est un sous-corps de \mathbb{R} .

Réponse. Montrons tout d'abord que $\mathbb{Q}[\sqrt{3}]$ est un sous-anneau de $(\mathbb{R}, +, \times)$.

- Nous avons bien $\mathbb{Q}[\sqrt{3}] \subset \mathbb{R}$.
- Nous avons bien $0 = 0 + 0 \times \sqrt{3} \in \mathbb{Q}[\sqrt{3}].$
- Soient $x, y \in \mathbb{Q}[\sqrt{3}]$. Alors il existe $a, b, c, d \in \mathbb{Q}$ tels que $x = a + b\sqrt{3}, y = c + d\sqrt{3}$. Donc

$$x - y = a - c + (b - d)\sqrt{3} \in \mathbb{Q}[\sqrt{3}].$$

 \bullet Toujours avec x et y nous avons

$$xy = ac + 3bd + (ad + bc)\sqrt{3} \in \mathbb{Q}[\sqrt{3}].$$

Il ne reste plus qu'à montrer que $\mathbb{Q}[\sqrt{3}]$ est inversible pour \times . Soit $x = a + b\sqrt{3} \in \mathbb{Q}[\sqrt{3}]$ différent de 0. Si b = 0 alors

$$x^{-1} = \frac{1}{a} \in \mathbb{Q}[\sqrt{3}].$$

Sinon $b \neq 0$ et ainsi $a - b\sqrt{3} \neq 0$ par unicité d'une telle décomposition dans $\mathbb{Q}[\sqrt{3}]$, d'où

$$x^{-1} = \frac{1}{a + b\sqrt{3}} = \frac{a - b\sqrt{3}}{a^2 - 3b^2} = \frac{a}{a^2 - 3b^2} - \frac{b}{a^2 - 3b^2}\sqrt{3} \in \mathbb{Q}[\sqrt{3}].$$

Par conséquent nous avons montré que $\mathbb{Q}[\sqrt{3}]$ est un sous-corps de \mathbb{R} .

Exercice. On considère un groupe G noté multiplicativement et deux sous-groupes A et B de G. On définit le sous-ensemble

$$AB = \{ab, a \in A, b \in B\} \subset G.$$

Montrer que AB est un sous-groupe de G si et seulement si AB = BA.

Réponse. On procède par double implications.

- On suppose que AB = BA. Vérifions les propriétés d'un sous-groupe.
 - $\star 1 = 1 \times 1 \in AB$ car A et B sont des sous-groupes de G.
 - * Soient $a_1b_1, a_2b_2 \in AB$ avec $a_1, a_2 \in A$ et $b_1, b_2 \in B$. Alors

$$a_1b_1(a_2b_2)^{-1} = a_1b_1b_2^{-1}a_2^{-1}$$

avec $b_2^{-1}a_2^{-1} \in BA = AB$. Donc il existe $a_3 \in A$ et $b_3 \in B$ tels que $b_2^{-1}a_2^{-1} = a_3b_3$. Ainsi

$$a_1b_1(a_2b_2)^{-1} = a_1b_1a_3b_3$$

avec $b_1a_3 \in BA = AB$. Ainsi il existe $a_4 \in A$ et $b_4 \in B$ tels que $b_1a_3 = a_4b_4$. Ainsi

$$a_1b_1(a_2b_2)^{-1} = a_1a_4b_4b_3 \in AB.$$

Donc AB est un sous-groupe de G.

- ullet Réciproquement on suppose que AB est un sous-groupe de G. Procédons par double inclusions.
 - \star Soit $ab \in AB$. Alors $(ab)^{-1} \in AB$. Donc il existe $a_1 \in A$ et $b_1 \in B$ tels que $(ab)^{-1} = a_1b_1$ i.e.

$$ab = (a_1b_1)^{-1} = b_1^{-1}a_1^{-1} \in BA.$$

* L'autre inclusion s'obtient de la même manière par symétrie des rôles.

Par conséquent AB = BA.

Exercice. Soit (G, \times) un groupe noté multiplicativement et $a \in G$ d'inverse a^{-1} . On considère la loi de composition interne * défini par

$$\forall x, y \in G, \quad x * y = xay.$$

- 1. Montrer que (G,*) est un groupe. On notera x^{-*} l'inverse de $x \in G$ pour cette loi.
- 2. Soient H un sous groupe de (G, \times) et $K = a^{-1}H = \{a^{-1}x, x \in H\}$. Montrer que K est un sous-groupe de (G, *).
- 3. Montrer que l'application $f: x \in G \longmapsto x * a^{-1}$ est un isomorphisme de (G, \times) vers (G, *).

Réponse.

- 1. On vérifie les axiomes d'un groupe.
 - * est associative : pour tout $x, y, z \in G$,

$$x * (y * z) = xa(y * z) = xayaz = (x * y) * z.$$

• * admet a^{-1} comme élément neutre : pour tout $x \in G$,

$$x * a^{-1} = xaa^{-1} = x = a^{-1}ax = a^{-1} * x.$$

• * est inversible : pour tout $x \in G$,

$$x * (a^{-1}x^{-1}a^{-1}) = xaa^{-1}x^{-1}a^{-1} = a^{-1}.$$

Donc

$$x^{-*} = a^{-1}x^{-1}a^{-1}$$
.

- 2. On vérifie les propriétés des sous-groupes.
 - $a^{-1} = a^{-1}1 \in a^{-1}H = K$.
 - Soient $a^{-1}x, a^{-1}y \in K$ avec $x, y \in H$. Alors $xy \in H$ et

$$(a^{-1}x) * (a^{-1}y) = a^{-1}xaa^{-1}y = a^{-1}xy \in a^{-1}H = K.$$

• Soit $a^{-1}x \in K$ avec $x \in H$. Alors $x^{-1} \in H$ et

$$(a^{-1}x)^{-*} = a^{-1}(a^{-1}x)^{-1}a^{-1} = a^{-1}x^{-1}aa^{-1} = a^{-1}x^{-1} \in a^{-1}H = K.$$

- 3. On vérifie les propriétés d'un isomorphisme d'un groupes.
 - $\bullet\,$ Nous avons bien le neutre de \times qui est envoyé sur le neutre de * :

$$f(1) = a^{-1}$$
.

• Soient $x, y \in G$. Alors

$$f(xy^{-1}) = xy^{-1}a^{-1} = xa^{-1}ay^{-1}a^{-1} = f(x)af(y)^{-1} = f(x) * f(y)^{-1}.$$

- Soient $x, y \in G$ tels que f(x) = f(y) i.e. $xa^{-1} = ya^{-1}$ i.e. x = y. Donc f est injective.
- Soit $z \in G$. Alors $z = zaa^{-1} = f(za)$. Donc f est surjective.

Par conséquent f est un isomorphisme de (G, \times) vers (G, *).