Question de cours. On considère P le plan d'équation x + y + z = 0 et D la droite d'équation $x = \frac{y}{2} = \frac{z}{3}$.

- 1. Montrer que $\mathbb{R}^3 = P \oplus D$.
- 2. On considère p la projection de \mathbb{R}^3 sur P parallèlement à D. Déterminer p(u) pour tout $u=(x,y,z)\in\mathbb{R}^3$.
- 3. En déduire $p(e_1), p(e_2)$ et $p(e_3)$ où (e_1, e_2, e_3) est la base canonique de \mathbb{R}^3 .
- 4. Déterminer une base (v_1, v_2, v_3) de \mathbb{R}^3 telle qu'il existe $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ tels que

$$p(v_1) = \lambda_1 v_1, \quad p(v_2) = \lambda_2, \quad p(v_3) = \lambda_3 v_3.$$

Réponse.

1. $\dim(P) = 2$ de base ((1, -1, 0), (1, 0, -1)), $\dim(D) = 1$ de base ((1, 2, 3)) et $P \cap D = \{0\}$ car pour tout $(x, y, z) \in P \cap D$, nous avons

$$0 = \frac{x}{6} + \frac{y}{6} + \frac{z}{6} = \frac{x}{6} + \frac{x}{3} + \frac{x}{2}$$

i.e. $0=x=\frac{y}{2}=\frac{z}{3}$ i.e. (x,y,z)=(0,0,0). Par conséquent P et D sont en somme directe et $\dim(P\oplus D)=2+1=3=\dim(\mathbb{R}^3).$ Donc P et D sont supplémentaires dans $\mathbb{R}^3:\mathbb{R}^3=P\oplus D.$

2. Soit $u=(x,y,z)\in\mathbb{R}^3$. Alors, d'après la question précédente, il existe $v=(x_P,y_P,z_P)\in P$ et $w=(x_D,y_D,z_D)\in D$ tels que u=v+w i.e.

$$x = x_P + x_D$$
, $y = y_P + y_D = y_P + 2x_D$, $z = z_P + z_D = z_P + 3x_D$.

Donc, en effectuant la somme, nous obtenons

$$x + y + z = x_P + y_P + z_P + 6x_D = 6x_D$$

i.e.
$$x_D = \frac{1}{6}x + \frac{1}{6}y + \frac{1}{6}z$$
 et

$$w = (x_D, y_D, z_D) = \left(\frac{1}{6}x + \frac{1}{6}y + \frac{1}{6}z, \frac{1}{3}x + \frac{1}{3}y + \frac{1}{3}z, \frac{1}{2}x + \frac{1}{2}y + \frac{1}{2}z\right).$$

Par conséquent

$$p(u) = v = u - w = \left(\frac{5}{6}x - \frac{1}{6}y - \frac{1}{6}z, -\frac{1}{3}x + \frac{2}{3}y - \frac{1}{3}z, -\frac{1}{2}x - \frac{1}{2}y + \frac{1}{2}z\right).$$

3. Nous obtenons

$$p(e_1) = p((1,0,0)) = \left(\frac{5}{6}, -\frac{1}{3}, -\frac{1}{2}\right),$$

$$p(e_2) = p((0,1,0)) = \left(-\frac{1}{6}, \frac{2}{3}, -\frac{1}{2}\right),$$

$$p(e_3) = p((0,0,1)) = \left(-\frac{1}{6}, -\frac{1}{3}, \frac{1}{2}\right).$$

4. Nous avons, en notant $v_3 = (1,2,3) \in D = \ker(p), p(v_3) = 0 = 0 \times v_3$. Puis, en notant $v_1 = (1,-1,0), v_2 = (1,0,-1) \in P, p(v_1) = v_1, p(v_2) = v_2$. De plus, d'après la question 1, (v_1,v_2,v_3) est une base de \mathbb{R}^3 .

Exercice. On considère l'espace vectoriel $E = C^{\infty}(\mathbb{R}, \mathbb{R})$ et l'application $\varphi : E \longrightarrow E$ définie par

$$\forall f \in E, \quad \varphi(f) = f'' - 3f' + 2f.$$

1. Montrer que l'application φ est un endomorphisme.

- 2. Déterminer son noyau $\ker(\varphi)$.
- 3. Que peut-on dire de l'injectivité et de la surjectivité de l'application φ ?

Réponse.

- 1. L'application φ est linéaire par linéarité de la dérivation.
- 2. Soit $f \in \ker(\varphi)$. Alors f est solution de l'équation différentielle linéaire du second ordre à coefficients constants y'' 3y' + 2y = 0 d'équation caractéristique $r^2 3r + 2 = 0$ de solutions $r_1 = 1$ et $r_2 = 2$. Donc il existe $\lambda, \mu \in \mathbb{R}$ tels que

$$\forall x \in \mathbb{R}, \quad f(x) = \lambda e^x + \mu e^{2x}.$$

Réciproquement toute fonction de cette forme est dans $\ker(\varphi)$. On pouvait également le rédiger par équivalence.

3. Comme $\ker(\varphi) \neq \{0\}$, l'endomorphisme φ n'est pas injectif. Puis, pour tout $g \in C^{\infty}(\mathbb{R}, \mathbb{R})$, pour tout $x_0 \in \mathbb{R}$, il existe une unique fonction $f \in C^2(\mathbb{R}, \mathbb{R})$ solution du problème de Cauchy

$$\begin{cases} y'' - 3y' + 2y = g \\ y(0) = x_0. \end{cases}$$

Puis f'' = 3f' - 2f + g est également de classe C^1 . On en déduit donc, par récurrence, que la fonction f est de classe C^{∞} . Par conséquent $g = \varphi(f)$. L'endomorphisme φ est donc surjectif.

Exercice. Soient $p \in \mathbb{N}, a \in \mathbb{R} \setminus \{0,1\}$ et S_p^a l'ensemble des suites réelles u telles que

$$\exists P_u \in \mathbb{R}_p[X], \ \forall n \in \mathbb{N}, \ u_{n+1} = au_n + P_u(n).$$

- 1. Montrer que S_p^a est un espace vectoriel.
- 2. Montrer que l'application $\phi:u\in S^a_p\longmapsto P_u\in\mathbb{R}_p[X]$ est bien définie et linéaire.
- 3. Déterminer le noyau et l'image de ϕ .
- 4. Donner une base de S_n^a . On pourra utiliser les polynôme $R_k = (X+1)^k aX^k, k \in \{0,...,p\}$.
- 5. En déduire l'expression générale de la suite u définie par

$$u_0 = -2, \quad \forall n \in \mathbb{N}, \ u_{n+1} = 2u_n - 2n + 7.$$

Réponse.

1. Soient $\lambda \in \mathbb{R}$ et $u, v \in S_p^a$. Alors il existe $P_u, P_v \in \mathbb{R}_p[X]$ tels que

$$\forall n \in \mathbb{N}, \quad u_{n+1} = au_n + P_u(n), \quad v_{n+1} = au_n + P_v(n).$$

Ainsi

$$\forall n \in \mathbb{N}, \quad (\lambda u + v)_{n+1} = a(\lambda u + v)_n + (\lambda P_u + P_v)(n)$$

avec $\lambda P_u + P_v \in \mathbb{R}_p[X]$. Donc $\lambda u + v \in S_p^a$ ce qui montre que S_p^a est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$ et en particulier un espace vectoriel.

2. Commençons par montrer que ϕ est bien définie, autrement dit que P_u est unique. Soit $P \in \mathbb{R}_p[X]$ tel que

$$\forall n \in \mathbb{N}, \quad au_n + P(n) = u_{n+1} = au_n + P_u(n).$$

Donc $P-P_u$ admet une infinité de racines, d'où $P=P_u$. Puis nous avons d'après la question précédente, $P_{\lambda u+v}=\lambda P_u+P_v$ pour tout $\lambda\in\mathbb{R}$ et $u,v\in S_p^a$. Donc l'application ϕ est linéaire.

3. • Soit $u \in \ker(\phi)$: $u \in S_p^a$ et $P_u = 0$. Donc $u_{n+1} = au_n$ pour tout $n \in \mathbb{N}$. Par conséquent $u_n = a^n u_0$ pour tout $n \in \mathbb{N}$. Réciproquement toutes les suites géométriques de raison a sont dans $\ker(\phi)$ par unicité de P_u pour $u \in S_p^a$. Par conséquent

$$\ker(\phi) = \{ u \in \mathbb{R}^{\mathbb{N}}, \quad \forall n \in \mathbb{N}, \ u_{n+1} = au_n \}.$$

• Soit $P \in \text{Im}(\phi)$: $P \in \mathbb{R}_p[X]$ et il existe $u \in S_p^a$ tel que $P = \phi(u)$. Nous n'avons pas de condition sur u. Donc réciproquement pour tout $P \in \mathbb{R}_p[X]$ nous pouvons considérer la suite $u \in \mathbb{R}^{\mathbb{N}}$ définie par

$$\forall n \in \mathbb{N}, \quad u_{n+1} = au_n + P(n).$$

Ainsi $P = P_u = \phi(u)$. Par conséquent $\operatorname{Im}(\phi) = \mathbb{R}_p[X]$.

4. On considère la famille $r = (R_k)_{0 \le k \le p}$. Alors la famille r est échelonnée en degré donc c'est une famille libre de $p+1 = \dim(\mathbb{R}_p[X])$ vecteurs, donc c'est une base de $\mathbb{R}_p[X]$. Cherchons une famille antécédente à r par ϕ . Soient $k \in \{0, ..., p\}$ et $u \in S_p^a$ tel que $\phi(u) = R_k$ i.e.

$$\forall n \in \mathbb{N}, \quad u_{n+1} = au_n + R_k(n) = au_n + (n+1)^k - an^k$$

i.e.

$$\forall n \in \mathbb{N}, \quad u_{n+1} - (n+1)^k = a(u_n - n^k).$$

Donc la suite $(u_n - n^k)_{n \in \mathbb{N}}$ est géométrique de raison a:

$$\forall n \in \mathbb{N}, \quad u_n - n^k = a^n u_0$$

i.e.

$$\forall n \in \mathbb{N}, \quad u_n = a^n u_0 + n^k.$$

Par conséquent en considérant la suite $u^k = (n^k)_{n \in \mathbb{N}}$, nous obtenons $\phi(u^k) = R_k$.

Soit $u \in S_p^a$. Alors il existe $\lambda_0, ..., \lambda_p \in \mathbb{R}$ tels que

$$\phi(u) = P_u = \lambda_0 R_0 + \dots + \lambda_p R_p = \lambda_0 \phi(u^0) + \dots + \lambda_p \phi(u^p) = \phi(\lambda_0 u^0 + \dots + \lambda_p u^p).$$

Donc $u - \lambda_0 u^0 - \dots - \lambda_p u^p \in \ker(\phi)$. Ainsi, d'après la question précédente, elle est géométrique de raison a:

$$\forall n \in \mathbb{N}, \quad u_n - \lambda_0 u_n^0 - \dots - \lambda_p u_n^p = a^n (u_0 - \lambda_0)$$

i.e.

$$\forall n \in \mathbb{N}, \quad u_n = (u_0 - \lambda_0)a^n + \lambda_0 u_n^0 + ... \lambda_p u_n^p.$$

Par conséquent la famille $((a^n)_{n\in\mathbb{N}}, u^0, ..., u^p)$ engendre S_p^a . De plus il s'agit d'une base car, par théorème du rang et la question précédente,

$$\dim(S_p^a) = \dim(\ker(\phi)) + \dim(\operatorname{Im}(\phi)) = 1 + p + 1 = p + 2.$$

5. Nous avons $u \in S_1^2$. Donc il existe $\lambda, \lambda_0 + \lambda_1$ tels que

$$\forall n \in \mathbb{N}, \quad u_n = \lambda 2^n + \lambda_0 + \lambda_1 n.$$

Or

$$-2X + 7 = P_u = \phi(u) = 0 + \lambda_0 \phi(u^0) + \lambda_1 \phi(u^1) = \lambda_0 R_0 + \lambda_1 R_1 = \lambda_0 (1 - 2) + \lambda_1 (X + 1 - 2X) = -\lambda_0 + \lambda_1 - \lambda_1 X.$$

Donc $7 = -\lambda_0 + \lambda_1$ et $-\lambda_1 = -2$ i.e. $\lambda_1 = 2$ et $\lambda_0 = -5$. Par conséquent

$$\forall n \in \mathbb{N}, \quad u_n = \lambda 2^n - 5 + 2n.$$

En particulier en n=0 nous avons $-2=u_0=\lambda-5$ i.e. $\lambda=3$. Par conséquent

$$\forall n \in \mathbb{N}, \quad u_n = 3 \times 2^n - 5 + 2n.$$

Question de cours. On considère trois scalaires distincts $a_1, a_2, a_3 \in \mathbb{K}$.

1. Montrer que l'application

$$\Phi: \mathbb{K}_2[X] \longrightarrow \mathbb{K}^3$$

$$P \longmapsto (P(a_1), P(a_2), P(a_3))$$

est un isomorphisme d'espaces vectoriels.

- 2. On considère (e_1, e_2, e_3) la base canonique de \mathbb{K}^3 et $L_k = \Phi^{-1}(e_k)$ pour tout $k \in \{1, 2, 3\}$.
 - (a) Montrer que (L_1, L_2, L_3) est une base de $\mathbb{K}_2[X]$.
 - (b) Exprimer L_1, L_2 et L_3 en fonction de a_1, a_2 et a_3 .
- 3. Soit $P \in \mathbb{K}_2[X]$. Déterminer les coordonnées de P dans la base (L_1, L_2, L_3) .
- 4. Application : On se place dans \mathbb{R}^2 muni d'un repère orthonormé et on considère les points A(0,1), B(1,3), C(2,1). Déterminer l'unique fonction polynomiale de degré 2 dont la courbe passe par les points A, B et C.

Réponse.

- 1. L'application Φ est linéaire par linéarité de l'évaluation, $\dim(\mathbb{K}_2[X]) = 3 = \dim(\mathbb{K}^3)$ et l'application Φ est injective car un polynôme de degré 2 avec 3 racines est nécessairement le polynôme nul. Par conséquent Φ est un isomorphisme.
- 2. (a) L'application Φ^{-1} est un isomorphisme et (e_1, e_2, e_3) est une base de \mathbb{K}^3 , donc $(L_1, L_2, L_3) = \Phi^{-1}(e_1, e_2, e_3)$ est une base de $\mathbb{K}_2[X]$.
 - (b) Nous avons $\Phi(L_1) = e_1 = (1,0,0)$ i.e. $L_1(a_1) = 1, L_1(a_2) = 0$ et $L_1(a_3) = 0$. Donc a_2 et a_3 sont racines du polynôme L_1 . Puis, comme $\deg(L_1) \leq 2$, il existe $\alpha \in \mathbb{K}$ tels que

$$L_1 = \alpha(X - a_2)(X - a_3).$$

Or
$$1 = L_1(a_1) = \alpha(a_1 - a_2)(a_1 - a_3)$$
 i.e. $\alpha \frac{1}{(a_1 - a_2)(a_1 - a_3)}$ et

$$L_1 = \frac{(X - a_2)(X - a_3)}{(a_1 - a_2)(a_1 - a_3)}.$$

Par symétrie des rôles nous en déduisons

$$L_2 = \frac{(X - a_1)(X - a_3)}{(a_2 - a_1)(a_2 - a_3)}, \quad L_3 = \frac{(X - a_1)(X - a_2)}{(a_3 - a_1)(a_3 - a_2)}.$$

3. Les polynômes P et $P(a_1)L_1 + P(a_2)L_2 + P(a_3)L_3$ coïncident en a_1, a_2 et a_3 et sont de degré au plus 2, donc sont égaux :

$$P = P(a_1)L_1 + P(a_2)L_2 + P(a_3)L_3.$$

On pouvait aussi écrire $P = \lambda_1 L_1 + \lambda_2 L_2 + \lambda_3 L_3$ et évaluer en a_1, a_2 et a_3 .

4. On considère $a_1=0, a_2=3$ et $a_3=2$. Alors les a_i sont distincts. Donc, d'après ce qui précède, l'application Φ est un isomorphisme. Donc il existe un unique polynôme $P \in \mathbb{R}_2[X]$ tel que

$$(1,3,1) = \Phi(P) = (P(a_1), P(a_2), P(a_2)) = (P(0), P(3), P(2)).$$

Ainsi la fonction polynomiale associée à P est l'unique fonction polynomiale de degré 2 dont la courbe passe par les points A, B et C. De plus, d'après la question précédente,

$$P = P(a_1)L_1 + P(a_2)L_2 + P(a_3)L_3 = \frac{(X-3)(X-2)}{(-3)(-2)} + 3\frac{(X-0)(X-2)}{(3-0)(3-2)} + \frac{(X-0)(X-3)}{(2-0)(2-3)}$$

i.e.

$$P = \frac{1}{6}(X-3)(X-2) + X(X-2) - \frac{1}{2}X(X-3) = \frac{2}{3}X^2 - \frac{4}{3}X + 1.$$

Exercice. On considère le plan vectoriel de \mathbb{R}^3 d'équation x-y+z=0 et la droite vectorielle engendrée par u=(1,3,1).

- 1. Montrer que les sous-espaces P et D sont supplémentaires dans \mathbb{R}^3 .
- 2. On note p la projection sur le plan P parallèlement à la droite D. Exprimer p(x, y, z) en fonction de $(x, y, z) \in \mathbb{R}^3$.
- 3. Faire de même avec s la symétrie par rapport au plan P parallèlement à la droite D.

Réponse.

1. Nous avons $\dim(P) + \dim(D) = 2 + 1 = 3 = \dim(\mathbb{R}^3)$ et pour $(x, y, z) \in P \cap D$, il existe $\lambda \in \mathbb{R}$ tel que $(x, y, z) = \lambda u = (\lambda, 3\lambda, \lambda)$, d'où

$$0 = x - y + z = \lambda - 3\lambda + \lambda = -\lambda$$

i.e. $\lambda=0$ puis (x,y,z)=0 ce qui montre que P et D sont en somme directe. Par conséquent P et D sont supplémentaires dans \mathbb{R}^3 .

2. Soit $(x, y, z) \in \mathbb{R}^3$. Alors, d'après la question précédente, il existe $u_P = (x_P, y_P, z_P) \in P$ et $\lambda \in \mathbb{R}$ tels que

$$(x, y, z) = u_P + \lambda u = (x_P, y_P, z_P) + (\lambda, 3\lambda, \lambda) = (x_P + \lambda, y_P + 3\lambda, z_P + \lambda).$$

Donc, grâce au fait que $u_P \in P$, nous avons le système 4×4 suivant

$$\begin{cases} x_P & + \lambda = x \\ y_P & + 3\lambda = y \\ z_P + \lambda = z \\ x_P - y_P + z_P & = 0 \end{cases}$$

Donc, en effectuant l'opération $L_4 - L_1 + L_2 - L_3$, nous obtenons

$$\lambda = -x + y - z.$$

Ainsi

$$x_{P} = x - \lambda$$

$$= 2x - y + z$$

$$y_{P} = y - 3\lambda$$

$$= 3x - 2y + 3z$$

$$z_{P} = z - \lambda$$

$$= x - y + 2z.$$

Par conséquent

$$p(x, y, z) = (x_P, y_P, z_P) = (2x - y + z, 3x - 2y + 3z, x - y + 2z).$$

3. Soit $(x, y, z) \in \mathbb{R}^3$. Alors, d'après ce qui précède,

$$s(x, y, z) = (x_P, y_P, z_P) - \lambda u = (x_P - \lambda, y_P - 3\lambda, z_P - \lambda) = (3x - 2y + 2z, 6x - 5y + 6z, 2x - 2y + 3z).$$

Exercice. On considère trois \mathbb{K} -espaces vectoriels E,F,G de dimensions finies.

1. Soient deux applications linéaires $f \in L(E, F)$ et $g \in L(E, G)$. Montrer que

$$\ker(f) \subset \ker(g) \iff \exists h \in L(F,G), \ g = h \circ f.$$

2. En déduire que $\varphi_1, ..., \varphi_n, \varphi$ des formes linéaires sur E,

$$\bigcap_{i=1}^{n} \ker(\varphi_i) \subset \ker(\varphi) \quad \Longleftrightarrow \quad \exists \lambda_1, ..., \lambda_n \in \mathbb{K}, \ \varphi = \lambda_1 \varphi_1 + ... + \lambda_n \varphi_n.$$

Réponse.

- 1. On procède par double implications.
 - On suppose que ker(f) ⊂ ker(g). On travaille entre trois espaces vectoriels E, F et G.
 Nous avons f de E dans F, plus précisément f de E dans Im(f) qui induit un isomorphisme φ entre H supplémentaire de ker(f) dans E et Im(f) par φ(x) = f(x) pour tout x ∈ H :

$$\phi: H \xrightarrow{\sim} \operatorname{Im}(f) = \operatorname{Im}(\phi).$$

Nous avons g de E dans G et nous voulons construire h de F dans G tel que $g = h \circ f$. Or

$$F = \operatorname{Im}(f) \oplus S = \operatorname{Im}(\phi) \oplus S$$

avec S un supplémentaire de Im(f) dans F.

Pour les y dans $\text{Im}(f) = \text{Im}(\phi)$ nous avons $y = \phi(x)$ avec $x \in H$ et nous voulons g(x) = h(f(x)) = h(y) i.e.

$$h(y) = g(x) = g(\phi^{-1}(y)) = (g \circ \phi^{-1})(y).$$

Nous savons donc comment définir h sur Im(f).

Le choix de h sur S n'est pas important car nous avons déjà

$$\forall x \in \ker(f) \subset \ker(g), \quad (h \circ f)(x) = h(0) = 0 = g(x)$$

et

$$\forall x \in H, (h \circ f)(x) = h(\phi(x)) = (g \circ \phi^{-1})(\phi(x)) = g(x).$$

Il suffit donc de choisir h = 0 sur S pour obtenir $h \in L(F, G)$ tel que $h \circ f = q$.

- Réciproquement on suppose qu'il existe $h \in L(F,G)$ tel que $g = h \circ f$. Soit $x \in \ker(f)$. Alors g(x) = h(f(x)) = h(0) = 0. Donc $\ker(f) \subset \ker(g)$.
- 2. On procède par double implications.
 - On suppose que $\bigcap_{i=1}^n \ker(\varphi_i) \subset \ker(\varphi)$. On considère l'application $f: E \longrightarrow \mathbb{K}^n$ définie par

$$\forall x \in E, \quad f(x) = (\varphi_1(x), ..., \varphi_n(x)).$$

Alors, d'après l'hypothèse, $\ker(f) \subset \ker(\varphi)$. Ainsi, d'après la question précédente, il existe $h \in L(\mathbb{K}^n, \mathbb{K})$ tel que $\varphi = h \circ f$. Or, en considérant e la base canonique de \mathbb{K}^n et e^* la base duale associée, il existe $\lambda_1, ..., \lambda_n \in \mathbb{K}$ tels que

$$h = \lambda_1 e_1^* + \dots + \lambda_n e_n^*.$$

Ainsi

$$\forall x \in E, \quad \varphi(x) = (h \circ f)(x) = h(\varphi_1(x), ..., \varphi_n(x)) = \lambda_1 \varphi_1(x) + ... + \lambda_n \varphi_n(x).$$

• Réciproquement on suppose que $\varphi = \lambda_1 \varphi_1 + ... + \lambda_n \varphi_n$ avec $\lambda_1, ..., \lambda_n \in \mathbb{K}$. Soit $x \in \bigcap_{i=1}^n \ker(\varphi_i)$. Alors $\varphi(x) = \lambda_1 \varphi_1(x) + ... + \lambda_n \varphi_n(x) = 0$. Ainsi $\bigcap_{i=1}^n \ker(\varphi_i) \subset \ker(\varphi)$.

Question de cours. On considère $a \in \mathbb{C}$ et

$$E = \{ u \in \mathbb{C}^{\mathbb{N}}, \quad \forall n \in \mathbb{N}, u_{n+2} = 2au_{n+1} + 4(ia - 1)u_n \}.$$

- 1. Montrer que E est un espace vectoriel.
- 2. Déterminer la dimension de E.
- 3. On considère la suite $u \in E$ telle que $u_0 = 1$ et $u_1 = 1$. Exprimer, pour tout $n \in \mathbb{N}$, u_n en fonction de n.

Réponse.

- 1. On vérifier que la suite nulle est dans E et que E est stable par combinaison linéaire.
- 2. L'application $\varphi: u \in E \longmapsto (u_0, u_1) \in \mathbb{C}^2$ est linéaire et bijective donc $\dim(E) = \dim(\mathbb{C}^2) = 2$.
- 3. L'équation caractéristique est $r^2 = 2ar + 4(ia 1)$ i.e. $r^2 2ar 4(ia 1) = 0$ de discriminant

$$\Delta = 4a^2 + 16(ia - 1) = 4(a^2 + 4ia - 4) = 2^2(a + 2i)^2.$$

• Si a=-2i alors $\Delta=0$ d'où l'équation caractéristique admet une solution double $r_0=-\frac{-2a}{2}=a=-2i$. Par conséquent il existe $\lambda,\mu\in\mathbb{C}$ tels que

$$\forall n \in \mathbb{N}, \quad u_n = (\lambda n + \mu)r^n = (\lambda n + \mu)(-2i)^n.$$

En particulier pour les deux premiers termes

$$1 = u_0 = \mu$$
, $1 = u_1 = (\lambda + \mu)(-2i) = -2i\lambda - 2i$

i.e. $\mu = 1$ et $\lambda = \frac{1}{-2i} - 1 = \frac{i}{2} - 1$. Par conséquent

$$\forall n \in \mathbb{N}, \quad u_n = \left(\left(\frac{i}{2} - 1\right)n + 1\right)(-2i)^n.$$

 \bullet Si $a \neq -2i$ alors $\Delta \neq 0$ d'où l'équation caractéristique admet deux solutions distinctes

$$r_1 = \frac{2a + 2(a+2i)}{2} = 2(a+i), \quad r_2 = \frac{2a - 2(a+2i)}{2} = -2i.$$

Par conséquent il existe $\lambda, \mu \in \mathbb{C}$ tels que

$$\forall n \in \mathbb{N}, \quad u_n = \lambda r_1^n + \mu r_2^n = \lambda 2^n (a+i)^n + \mu (-2i)^n.$$

En particulier pour les deux premiers termes

$$1 = u_0 = \lambda + \mu$$
, $1 = u_1 = 2\lambda(a+i) - 2i\mu = 2\lambda(a+i) - 2i(1-\lambda) = \lambda(2a+4i) - 2i(1-\lambda) = \lambda(2a+$

i.e.

$$\lambda = \frac{1+2i}{2(a+2i)}, \quad \mu = 1 - \lambda = \frac{2a+2i-1}{2(a+2i)}.$$

Par conséquent

$$\forall n \in \mathbb{N}, \quad u_n = \frac{(1+2i)2^n(a+i)^n + (2a+2i-1)(-2i)^n}{2(a+2i)}.$$

Exercice. On considère l'espace vectoriel $E=C^{\infty}(\mathbb{R},\mathbb{R})$ et les applications $D,I:E\longrightarrow E$ définie par

$$\forall f \in E, \quad D(f) = f', \quad I(f) = \int_0^f f.$$

- 1. Montrer que D et I sont des endomorphismes.
- 2. Exprimer $D \circ I$ et $I \circ D$.

3. Déterminer les images et noyaux des applications D et I.

Réponse.

- 1. D et I sont linéaires par linéarité de la dérivation et de l'intégration. De plus pour $f \in E$, nous avons également $f' \in E$ et I(f) dérivable de dérivée $I(f)' = f \in E$, d'où $D(f) \in E$ et $I(f) \in E$.
- 2. Soit $f \in E$. Alors $D(I(f)) = D(\int_0^f f) = f$. Donc $D \circ I = id_E$.
 - Soit $f \in E$. Alors $I(D(f)) = I(f') = \int_0 f' = f f(0)$. Donc $I \circ D = \mathrm{id}_E \mathrm{eva}_0$.
- 3. Soit $g \in \text{Im}(D)$. Alors il existe $f \in E$ tel que $g = D(f) = f' \in E$. Réciproquement soit $g \in E$. Alors on considère $f = I(g) \in E$. Donc, d'après ce qui précède, D(f) = D(I(g)) = g, d'où $g \in \text{Im}(D)$. Par conséquent Im(D) = E.
 - Soit $f \in \ker(D)$. Alors f' = 0. Donc f est une fonction constante. Réciproquement les fonctions constantes sont dans $\ker(D)$. Par conséquent $\ker(D) = \mathbb{R}$.
 - Soit $g \in \text{Im}(I)$. Alors il existe $f \in E$ tel que $g = I(f) = \int_0 f \in E$. En particulier $g(0) = \int_0^0 f = 0$. Réciproquement soit $g \in E$ tel que g(0) = 0. Alors on considère f = g'. Donc $I(f) = \int_0 g' = g g(0) = g$. Par conséquent $\text{Im}(I) = \{g \in E, g(0) = 0\}$.
 - Soit $f \in \ker(I)$. Alors $\int_0 f = 0$. Ainsi, en dérivant, f = 0. Par conséquent $\ker(I) = \{0\}$.

Exercice. On considère un espace vectoriel E et P l'ensemble des projecteurs de E. On définit la relation \leq sur P par, pour tout $p, q \in P, p \leq q$ si $p \circ q = q \circ p = p$.

- 1. Montrer que \leq est une relation d'ordre sur P.
- 2. Soient $p, q \in P$. Montrer que si p et q commutent alors $\inf\{p, q\} = p \circ q$ au sens de \leq .
- 3. Soient $p,q \in P$. A quelle condition nécessaire et suffisante en termes d'images et de noyaux est-il vrai que $p \leq q$?

Réponse.

- 1. Vérifions les trois propriétés d'une relation d'ordre sur P.
 - Soit $p \in P$. Alors $p \circ p = p$. Donc $p \le p$. La relation \le est réflexive.
 - Soient $p,q,r\in P$ tels que $p\leq q$ et $q\leq r$. Alors $p\circ q=q\circ p=p$ et $q\circ r=r\circ q=q$. Ainsi

$$p \circ r = p \circ q \circ r = p \circ q = p$$
, $r \circ p = r \circ q \circ p = q \circ p = p$.

Donc $p \leq r$. La relation \leq est transitive.

- Soient $p, q \in P$ tels que $p \le q$ et $q \le p$. Alors $p \circ q = q \circ p = p$ et $q \circ p = p \circ q = q$. Donc p = q. La relation \le est antisymétrique.
- 2. On suppose que p et q commutent : $p \circ q = q \circ p$. Montrons que la borne inférieure de l'ensemble $\{p,q\}$ est $p \circ q$. Autrement dit que $p \circ q \leq p, p \circ q \leq q$ et

$$\forall r \in P, \quad [r \le p, r \le q] \implies r \le p \circ q.$$

- Nous avons $p \circ (p \circ q) = p^2 \circ q = p \circ q$ et $(p \circ q) \circ p = p \circ p \circ q = p \circ q$. Donc $p \circ q \leq p$.
- De même $p \circ q = q \circ p \leq q$.
- Soit $r \in P$ tel que $r \le p$ et $r \le q$. Alors $r \circ p = p \circ r = r$ et $r \circ q = q \circ r = r$. Ainsi

$$r \circ (p \circ q) = r \circ q = r, \quad (p \circ q) \circ r = p \circ r = r.$$

Donc $r \leq p \circ q$.

- 3. On procède par analyse-synthèse.
 - On suppose que $p \le q$. Alors $p \circ q = q \circ p = p$. Soit $x \in E$. Si $x \in \ker(q)$ alors q(x) = 0 d'où p(x) = p(q(x)) = p(0) = 0. Ainsi $\ker(q) \subset \ker(p)$. Si $x \in \operatorname{Im}(p)$ alors il existe $y \in E$ tel que $x = p(y) = q(p(y)) \in \operatorname{Im}(q)$. Ainsi $\operatorname{Im}(p) \subset \operatorname{Im}(q)$.

• Réciproquement on suppose que $\ker(q) \subset \ker(p)$ et $\operatorname{Im}(p) \subset \operatorname{Im}(q)$. Montrons que $p \circ q = q \circ p = p$. Soit $x \in E$. Or $E = \ker(p) \oplus \operatorname{Im}(p)$. Donc il existe (de façon unique) $y \in \ker(p)$ et $z \in \operatorname{Im}(p) \subset \operatorname{Im}(q)$ tels que x = y + z. Ainsi

$$(q \circ p)(x) = q(p(y)) + q(p(z)) = q(0) + q(z) = z = p(x).$$

Donc $q\circ p=p$. De même il existe (de façon unique) $y'\in\ker(q)\subset\ker(p)$ et $z\in\operatorname{Im}(q)$ tels que x=y'+z'. Ainsi

$$(p \circ q)(x) = p(q(y')) + p(q(z')) = p(0) + p(z') = 0 + p(z') = p(y') + p(z') = p(x).$$

Donc $p \circ q = p$. Par conséquent $p \leq p$.