Exercice.

- 1. On considère la série $\sum_{n\geq 2} u_n$ avec $u_n = \frac{1}{n(\ln(n))^{\alpha}}$ où $n\geq 2$ entier et $\alpha\in\mathbb{R}$.
 - (a) En utilisant une minoration de u_n pour tout $n \ge 2$ entier, montrer que si $\alpha \le 0$ alors la série $\sum_{n\ge 2} u_n$ diverge.
 - (b) En utilisant la fonction $f: x \longmapsto \frac{1}{x(\ln(x))^{\alpha}}$ définie sur $]1, +\infty[$, étudier la nature de la série $\sum_{n\geq 2} u_n$ lorsque $\alpha>0$.
- $2.\ \ \text{Déterminer la nature de la série}\ \sum_{n\geq 2}\frac{\left(e-\left(1+\frac{1}{n}\right)^n\right)e^{\frac{1}{n}}}{(\ln(n^2+n))^2}.$

Exercice. Déterminer la nature de la série $\sum u_n$ où $u_n = \left(\frac{1}{n}\right)^{1+\frac{1}{n}}$.

Exercice. On considère $u, v \in (\mathbb{R}_+)^{\mathbb{N}}$ telles que

$$\forall n \in \mathbb{N}, \quad v_n = \frac{1}{1 + n^2 u_n}.$$

On suppose que la série $\sum v_n$ converge.

- 1. Montrer que la série $\sum \sqrt{u_n v_n}$ diverge.
- 2. En déduire que la série $\sum u_n$ diverge.

Vous pourrez trouver en ligne la correction des exercices proposés sur ma page personnelle en cherchant "Cacitti page personnelle" sur Google ou grâce à l'URL :

 $https://perso.eleves.ens-rennes.fr/\sim dcaci409/Kholles2425.html$

Exercice. On considère la série $\sum_{n\geq 1} \cos\left(\pi\sqrt{n^2+n+1}\right)$.

- 1. Montrer que $\sqrt{n^2+n+1} = n + \frac{1}{2} + \frac{\alpha}{n} + O\left(\frac{1}{n^2}\right)$ où α est un réel à déterminer.
- 2. En déduire que la série $\sum_{n\geq 1}\cos\left(\pi\sqrt{n^2+n+1}\right)$ converge.
- 3. La série $\sum_{n>1}\cos\left(\pi\sqrt{n^2+n+1}\right)$ converge-t-elle absolument ?

Exercice. Soient $a, b \in \mathbb{R}$.

- 1. Déterminer, en fonction de a et b, la nature de la série $\sum_{n\geq 1} (\ln(n) + a \ln(n+1) + b \ln(n+2))$.
- 2. Calculer la somme lorsqu'il y a convergence.

Exercice. Soient $\alpha \in \mathbb{R}$ et $f \in C^0([0,1],\mathbb{R})$ telle que $f(0) \neq 0$.

- 1. Montrer que $\int_0^{\frac{1}{n}} f(t^n) dt \sim \lim_{n \to +\infty} \frac{1}{n} f(0)$.
- 2. En déduire, en fonction de α , la nature de la série $\sum u_n$ où $u_n = \frac{1}{n^{\alpha}} \int_0^{\frac{1}{n}} f(t^n) dt$ pour tout $n \in \mathbb{N}^*$.

Vous pourrez trouver en ligne la correction des exercices proposés sur ma page personnelle en cherchant "Cacitti page personnelle" sur Google ou grâce à l'URL :

 $https://perso.eleves.ens-rennes.fr/\sim dcaci409/Kholles2425.html$

Exercice.

- 1. Soient u et v deux suites réelles telles que v est non nulle à partir d'un certain rang.
 - (a) Montrer que si $u_n \underset{n \to +\infty}{\sim} v_n$ alors u_n et v_n sont de même signe à partir d'un certain rang.
 - (b) Montrer que si v est une suite positive et $u_n \sim v_n$ alors les séries $\sum u_n$ et $\sum v_n$ sont de même nature.
- 2. Etudier la convergence de la série $\sum_{n\geq 2}\frac{((-1)^n+i)\sin\left(\frac{1}{n}\right)\ln(n)}{\sqrt{n+3}-1}.$

Exercice. On considère $u \in (\mathbb{R}_+^*)^{\mathbb{N}}$.

- 1. On considère v la suite définie par $v_n = \frac{u_n}{1+u_n}$ pour tout $n \in \mathbb{N}$. Montrer que les séries $\sum u_n$ et $\sum v_n$ sont de même nature.
- 2. Même question si $v_n = \frac{u_n}{u_1 + \ldots + v_n}$. On pourra étudier la suite $w = (\ln(1 v_n))_{n \ge 2}$ dans le cadre de la divergence.

Exercice. On considère $u \in (\mathbb{R}_+^*)^{\mathbb{N}}$ décroissante de limite nulle, et la suite v définie par

$$\forall n \in \mathbb{N}, \quad v_n = \sum_{k=1}^n u_k - nu_n.$$

Montrer que si la suite v est bornée alors la série $\sum u_n$ converge.

Vous pourrez trouver en ligne la correction des exercices proposés sur ma page personnelle en cherchant "Cacitti page personnelle" sur Google ou grâce à l'URL :

 $https://perso.eleves.ens-rennes.fr/\sim dcaci409/Kholles2425.html$